首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Ambient noise Rayleigh wave tomography of New Zealand   总被引:16,自引:0,他引:16  
We present the first New Zealand-wide study of surface wave dispersion, using ambient noise observed at 42 broad-band stations in the national seismic network (GeoNet) and the Global Seismic Network (GSN). Year-long vertical-component time-series recorded between 2005 April 1 and 2006 March 31 have been correlated with one another to yield estimated fundamental mode Rayleigh wave Green's functions. We filter these Green's functions to compute Rayleigh wave group dispersion curves at periods of 5–50 s, using a phase-matched filter, frequency–time analysis technique. The uncertainties of the measurements are estimated based on the temporal variation of the dispersion curves revealed by 12 overlapping 3-month stacks. After selecting the highest quality dispersion curve measurements, we compute group velocity maps from 7 to 25 s period. These maps, and 1-D shear wave velocity models at four selected locations, exhibit clear correlations with major geological structures, including the Taranaki and Canterbury Basins, the Hikurangi accretionary prism, and previously reported basement terrane boundaries.  相似文献   

2.
We determine the 3-D shear wave speed variations in the crust and upper mantle in the southeastern borderland of the Tibetan Plateau, SW China, with data from 25 temporary broad-band stations and one permanent station. Interstation Rayleigh wave (phase velocity) dispersion curves were obtained at periods from 10 to 50 s from empirical Green's function (EGF) derived from (ambient noise) interferometry and from 20 to 150 s from traditional two-station (TS) analysis. Here, we use these measurements to construct phase velocity maps (from 10 to 150 s, using the average interstation dispersion from the EGF and TS methods between 20 and 50 s) and estimate from them (with the Neighbourhood Algorithm) the 3-D wave speed variations and their uncertainty. The crust structure, parametrized in three layers, can be well resolved with a horizontal resolution about of 100 km or less. Because of the possible effect of mechanically weak layers on regional deformation, of particular interest is the existence and geometry of low (shear) velocity layers (LVLs). In some regions prominent LVLs occur in the middle crust, in others they may appear in the lower crust. In some cases the lateral transition of shear wave speed coincides with major fault zones. The spatial variation in strength and depth of crustal LVLs suggests that the 3-D geometry of weak layers is complex and that unhindered crustal flow over large regions may not occur. Consideration of such complexity may be the key to a better understanding of relative block motion and patterns of seismicity.  相似文献   

3.
It is well established that the Earth's uppermost mantle is anisotropic, but there are no clear observations of anisotropy in the deeper parts of the mantle. Surface waves are well suited to observe anisotropy since they carry information about both radial and azimuthal anisotropy. Fundamental mode surface waves, for commonly used periods up to 200 s, are sensitive to structure in the first few hundred kilometres, and therefore, do not provide information on anisotropy below. Higher mode surface waves have sensitivities that extend to and beyond the transition zone, and should thus give insight about azimuthal anisotropy at greater depths. We have measured higher mode Love and Rayleigh phase velocities using a model space search approach, which provides us with consistent relative uncertainties from measurement to measurement and from mode to mode. From these phase velocity measurements, we constructed global anisotropic phase velocity maps. Prior to inversion, we determine the optimum relative weighting for anisotropy. We present global azimuthal phase velocity maps for higher mode Rayleigh waves (up to the sixth higher mode) and Love waves (up to the fifth higher mode) with corresponding average model uncertainties. The anisotropy we derive is robust within the uncertainties for all modes. Given the ray theoretical sensitivity kernels of Rayleigh and Love wave modes, the source of anisotropy is complex, but mainly located in the asthenosphere and deeper. Our models show a good correspondence with other studies for the fundamental mode, but we have been able to achieve higher resolution.  相似文献   

4.
On crustal corrections in surface wave tomography   总被引:1,自引:0,他引:1  
Mantle models from surface waves rely on good crustal corrections. We investigated how far ray theoretical and finite frequency approximations can predict crustal corrections for fundamental mode surface waves. Using a spectral element method, we calculated synthetic seismograms in transversely isotropic PREM and in the 3-D crustal model Crust2.0 on top of PREM, and measured the corresponding time-shifts as a function of period. We then applied phase corrections to the PREM seismograms using ray theory and finite frequency theory with exact local phase velocity perturbations from Crust2.0 and looked at the residual time-shifts. After crustal corrections, residuals fall within the uncertainty of measured phase velocities for periods longer than 60 and 80 s for Rayleigh and Love waves, respectively. Rayleigh and Love waves are affected in a highly non-linear way by the crustal type. Oceanic crust affects Love waves stronger, while Rayleigh waves change most in continental crust. As a consequence, we find that the imperfect crustal corrections could have a large impact on our inferences of radial anisotropy. If we want to map anisotropy correctly, we should invert simultaneously for mantle and crust. The latter can only be achieved by using perturbation theory from a good 3-D starting model, or implementing full non-linearity from a 1-D starting model.  相似文献   

5.
It has been demonstrated both theoretically and experimentally that the Green's function between two receivers can be retrieved from the cross-correlation of isotropic noise records. Since surface waves dominate noise records in geophysics, tomographic inversion using noise correlation techniques have been performed from Rayleigh waves so far. However, very few numerical studies implying surface waves have been conducted to confirm the extraction of the true dispersion curves from noise correlation in a complicated soil structure. In this paper, synthetic noise has been generated in a small-scale (<1 km) numerical realistic environment and classical processing techniques are applied to retrieve the phase velocity dispersion curves, first step toward an inversion. We compare results obtained from spatial autocorrelation method (SPAC), high-resolution frequency-wavenumber method (HRFK) and noise correlation slantstack techniques on a 10-sensor array. Two cases are presented in the (1–20 Hz) frequency band that corresponds to an isotropic or a directional noise wavefield. Results show that noise correlation slantstack provides very accurate phase velocity estimates of Rayleigh waves within a wider frequency band than classical techniques and is also suitable for accurately retrieving Love waves dispersion curves.  相似文献   

6.
We propose a vertical array analysis method that decomposes complex seismograms into body and surface wave time histories by using a velocity structure at the vertical array site. We assume that the vertical array records are the sum of vertically incident plane P and S waves, and laterally incident Love and Rayleigh waves. Each phase at the surface is related to that at a certain depth by the transfer function in the frequency domain; the transfer function is obtained by Haskell's matrix method, assuming a 1-D velocity structure. Decomposed P , S and surface waves at the surface are estimated from the vertical array records and the transfer functions by using a least-squares method in the frequency domain; their time histories are obtained by the inverse Fourier transform. We carried out numerical tests of this method based on synthetic vertical array records consisting of vertically incident plane P and S waves and laterally incident plane Love and Rayleigh waves. Perfect results of the decomposed P , S , Love and Rayleigh waves were obtained for synthetic records without noise. A test of the synthetic records in which a small amount of white noise was added yielded a reasonable result for the decomposed P , S and surface waves. We applied this method to real vertical array records from the Ashigara valley, a moderate-sized sedimentary valley. The array records from two earthquakes occurring at depths of 123 and 148 km near the array (epicentral distance of about 31 km) exhibited long-duration later phases. The analysis showed that duration of the decomposed S waves was a few seconds and that the decomposed surface waves appeared a few seconds after the direct S -wave arrival and had very long duration. This result indicated that the long-duration later phases were generated not by multireflected S waves, but by basin-induced surface waves.  相似文献   

7.
We have analysed the fundamental mode of Love and Rayleigh waves generated by 12 earthquakes located in the mid-Atlantic ridge and Jan Mayen fracture zone. Using the multiple filter analysis technique, we isolated the Rayleigh and Love wave group velocities for periods between 10 and 50  s. The surface wave propagation paths were divided into five groups, and average group velocities calculated for each group. The average group velocities were inverted and produced shear wave velocity models that correspond to a quasi-continental oceanic structure in the Greenland–Norwegian Sea region. Although resolution is poor at shallow depth, we obtained crustal thickness values of about 18  km in the Norwegian Sea area and 9  km in the region between Svalbard and Iceland. The abnormally thick crust in the Norwegian Sea area is ascribed to magmatic underplating and the thermal blanketing effect of sedimentary layers. Maximum crustal shear velocities vary between 3.5 and 3.9  km  s−1 for most paths. An average lithospheric thickness of 60  km was observed, which is lower than expected for oceanic-type structure of similar age. We also observed low shear wave velocities in the lower crust and upper mantle. We suggest that high heat flow extending to depths of about 30  km beneath the surface can account for the thin lithosphere and observed low velocities. Anisotropy coefficients of 1–5 per cent in the shallow layers and >7 per cent in the upper mantle point to the existence of polarization anisotropy in the region.  相似文献   

8.
Surface wave tomography of the Barents Sea and surrounding regions   总被引:1,自引:0,他引:1  
The goal of this study is to refine knowledge of the structure and tectonic history of the European Arctic using the combination of all available seismological surface wave data, including historical data that were not used before for this purpose. We demonstrate how the improved data coverage leads to better depth and spatial resolution of the seismological model and discovery of intriguing features of upper-mantle structure. To improve the surface wave data set in the European Arctic, we extensively searched for broad-band data from stations in the area from the beginning of the 1970s until 2005. We were able to retrieve surface wave observations from regional data archives in Norway, Finland, Denmark and Russia in addition to data from the data centres of IRIS and GEOFON. Rayleigh and Love wave group velocity measurements between 10 and 150 s period were combined with existing data provided by the University of Colorado at Boulder. This new data set was inverted for maps showing the 2-D group-velocity distribution of Love and Rayleigh waves for specific periods. Using Monte Carlo inversion, we constructed a new 3-D shear velocity model of the crust and upper mantle beneath the European Arctic which provides higher resolution and accuracy than previous models. A new crustal model of the Barents Sea and surrounding areas, published recently by a collaboration between the University of Oslo, NORSAR and the USGS, constrains the 3-D inversion of the surface wave data in the shallow lithosphere. The new 3-D model, BARMOD, reveals substantial variations in shear wave speeds in the upper mantle across the region with a nominal resolution of 1°× 1°. Of particular note are clarified images of the mantle expression of the continent-ocean transition in the Norwegian Sea and a deep, high wave speed lithospheric root beneath the Eastern Barents Sea, which presumably is the remnant of several Palaeozoic collisions.  相似文献   

9.
A method for the computation of phase velocities of surface waves from microtremor waveforms is shown. The technique starts from simultaneous three-component records obtained in a circular array without a central station. Then, Fourier spectra of vertical, radial and tangential components of motion are calculated for each station and considered as complex-valuated functions of the azimuthal coordinate. A couple of intermediate real physical quantities, B and C , can be defined from the 0- and ±1-order coefficients of the Fourier series expansion of such functions. Finally, phase velocities of Rayleigh and Love waves can be retrieved from B and C by solving respective one-unknown equations. The basic assumption is the possibility of expanding the wavefield as a sum of plane surface waves with Rayleigh and Love wavenumbers being univocal functions of the circular frequency. The method is tested in synthetic ambient noise wavefields confirming its reliability and robustness for passive seismic surveying.  相似文献   

10.
Rayleigh wave phase velocity maps in southern Africa are obtained at periods from 6 to 40 s using seismic ambient noise tomography applied to data from the Southern Africa Seismic Experiment (SASE) deployed between 1997 and 1999. These phase velocity maps are combined with those from 45 to 143 s period which were determined previously using a two-plane-wave method by Li & Burke. In the period range of overlap (25–40 s), the ambient noise and two-plane-wave methods yield similar phase velocity maps. Dispersion curves from 6 to 143 s period were used to estimate the 3-D shear wave structure of the crust and uppermost mantle on an 1°× 1° grid beneath southern Africa to a depth of about 100 km. Average shear wave velocity in the crust is found to vary from 3.6 km s–1 at 0–10 km depths to 3.86 km s–1 from 20 to 40 km, and velocity anomalies in these layers correlate with known tectonic features. Shear wave velocity in the lower crust is on average low in the Kaapvaal and Zimbabwe cratons and higher in the surrounding Proterozoic terranes, such as the Limpopo and the Namaqua-Natal belts, which suggests that the lower crust underlying the Archean cratons is probably less mafic than beneath the Proterozoic terranes. Crustal thickness estimates agree well with a previous receiver function study of Nair et al. . Archean crust is relatively thin and light and underlain by a fast uppermost mantle, whereas the Proterozoic crust is thick and dense with a slower underlying mantle. These observations are consistent with the southern African Archean cratons having been formed by the accretion of island arcs with the convective removal of the dense lower crust, if the foundering process became less vigorous in arc environments during the Proterozoic.  相似文献   

11.
We test the feasibility of using Green's functions extracted from records of ambient seismic noise to monitor temporal changes in the Earth crust properties by repeated measurements at regional distances. We use about 11 yr of continuous recordings to extract surface waves between three pairs of stations in California. The correlations are computed in a moving 1-month window and we analyse the temporal evolution of measured interstation traveltimes. The comparison of the arrival times in the positive and negative correlation time of Rayleigh and Love waves allows us to separate time-shifts associated with any form of physical change in the medium, those resulting from clock drift or other instrumental errors, and those due to change in the localization of the noise sources. This separation is based on the principle of time symmetry. When possible, we perform our analysis in two different period bands: 5–10 and 10–20 s. The results indicate that significant instrumental time errors (0.5 s) are present in the data. These time-shifts can be measured and tested by closure relation and finally corrected independently of any velocity model. The traveltime series show a periodic oscillation that we interpret as the signature of the seasonal variation of the region of origin of the seismic noise. Between 1999 and 2005, the final arrival time fluctuations have a variance of the order of 0.01 s. This allows us to measure interstation traveltimes with errors smaller than 0.3 per cent of the interstation traveltime and smaller than 1 per cent of the used wave period. This level of accuracy was not sufficient to detect clear physical variation of crustal velocity during the considered 11 yr between the three stations in California. Such changes may be more easily detectable when considering pairs of stations more closely located to each other and in the vicinity of tectonically active faults or volcanoes.  相似文献   

12.
We infer the lithospheric structure in eastern Turkey using teleseismic and regional events recorded by 29 broad-band stations from the Eastern Turkey Seismic Experiment (ETSE). We combine the surface wave group velocities (Rayleigh and Love) with telesesimic receiver functions to jointly invert for the S -wave velocity structure, Moho depth and mantle-lid (lithospheric mantle) thickness. We also estimated the transverse anisotropy due to Love and Rayleigh velocity discrepancies. We found anomalously low shear wave velocities underneath the Anatolian Plateau. Average crustal thickness is 36 km in the Arabian Plate, 44 km in Anatolian Block and 48 km in the Anatolian Plateau. We observe very low shear wave velocities at the crustal portion (30–38 km) of the northeastern part of the Anatolian Plateau. The lithospheric mantle thickness is either not thick enough to resolve it or it is completely removed underneath the Anatolian Plateau. The shear velocities and anisotropy down to 100 km depth suggest that the average lithosphere–asthenosphere boundary in the Arabian Plate is about 90 and 70 km in Anatolian block. Adding the surface waves to the receiver functions is necessary to constrain the trade-off between velocity and the thickness. We find slower velocities than with the receiver function data alone. The study reveals three different lithospheric structures in eastern Turkey: the Anatolian plateau (east of Karliova Triple Junction), the Anatolian block and the northernmost portion of the Arabian plate. The boundary of lithospheric structure differences coincides with the major tectonic boundaries.  相似文献   

13.
Summary. Surface wave behaviour in flat anisotropic structures is first illustrated by performing an exact computation on a simple two-layer model. The variational procedure of Smith & Dahlen is then used to compute the partial derivatives of surface wave phase velocities with respect to the elastic parameters in more realistic earth models. Linear relationships between the partial derivatives for a general anisotropic structure and those for a transversely isotropic structure are derived. When considering waves propagating in a fixed direction, there are only four independent derivatives for Rayleigh waves, and two for Love waves. To avoid the lack of resolution in an inverse method, we propose to use physically constrained models. These results are illustrated by using a model with hexagonal symmetry and a symmetry axis oriented either vertically or horizontally. Quasi-Love- and quasi-Rayleigh-wave partial derivatives are computed for both axis orientations. Modes up to the second overtone and periods ranging between 45 and 130 s have been considered. Finally, anomalies of phase velocity are computed in an oceanic model made of 1/6 oriented olivine crystals with horizontal or vertical preferred orientations of the a -axis.  相似文献   

14.
A large data set of amplitude measurements of minor and major arc Rayleigh waves in the period range 73–171 s is collected. By comparing these amplitudes with the amplitudes of synthetic waveforms calculated by mode summation, maps of lateral variations in the apparent attenuation structure of the Earth are constructed. An existing formalism for predicting the effects of focusing is employed to calculate amplitude perturbations for the same data set. These perturbations are used to construct 'pseudo‐attenuation' maps and these results are compared with the apparent attenuation maps calculated from the data. It is shown that variations in Rayleigh wave amplitude perturbations in the Earth are dominated by attenuation at long wavelengths (below about degree 8) and by elastic structure at shorter wavelengths. It is also shown that the linear approximation for focusing is successful at predicting Rayleigh wave amplitudes using existing phase velocity maps. These results indicate that future attempts to model the velocity structure of the Earth would be assisted by incorporating amplitude data and by jointly inverting for Q structure.  相似文献   

15.
Summary. Amplitude spectra of Rayleigh and Love waves in a layered non-gravitating spherical earth have been obtained using as a source, displacement and stress discontinuities. In each layer elastic parameters and density follow specified functions of radial distance and the solutions of the equations of motion are obtained in terms of exponential functions. The Thomson—Haskell method is extended to this case. The problem reduces to simple calculations as in a plane-layered medium. Numerical results of phase and group velocities up to periods of 300 s in various earth models when compared with earlier results (obtained by numerical integration) show that the present method can be used with sufficient accuracy. The differences in phase velocity, group velocity and amplitude (also surface ellipticity in the case of Rayleigh waves) between spherical- and flat-earth models have been investigated in the range 20–300–s period and expressed in polynomials in the period.  相似文献   

16.
Summary. Normal mode theory, extended to the slightly laterally heterogeneous earth by the first-order Born approximation, is applied to the waveform inversion of mantle Love wave (200–500 s) for the Earth's lateral heterogeneity at l = 2 and a spherically symmétric anelasticity ( Q μ) structure. The data are from the Global Digital Seismograph Network (GDSN). The l =2 pattern is very similar to the results of other studies that used either different méthods, such as phase velocity measurements and multiplet location measurements, or a different data set, such as mantle Rayleigh waves from different instruments. The results are carefully analysed for variance reduction and are most naturally explained by heterogeneity in the upper 420 km. Because of the poor resolution of the data set for the deep interior, however, a fairly large heterogeneity in the transition zones, of the order of up to 3.5 per cent in shear wave velocity, is allowed. It is noteworthy that Love waves of this period range cannot constrain the structure below 420 km and thus any model presented by similar studies below this depth are likely to be constrained by Rayleigh waves (spheroidal modes) only.
The calculated modal Q values for the obtained Q μ model fall within the error bars of the observations. The result demonstrates the discrepancy of Rayleigh wave Q and Love wave Q and indicates that care must be taken when both Rayleigh and Love wave data, including amplitude information, are inverted simultaneously.
Anomalous amplitude inversions of G2 and G3, for example, are observed for some source-receiver pairs. This is due to multipathing effects. One example near the epicentral region, which is modelled by the obtained l = 2 heterogeneity, is shown.  相似文献   

17.
Summary. Mode conversion at a continental margin between normal modes of surface waves is investigated by theoretical calculations for oblique incidence for periods longer than 15 s. It is suggested that significant conversion takes place between the various modes of Love waves in the period interval between 15 and 40 s, while there is negligible mode conversion for longer periods. The largest mode conversion involves the lowest modes. In addition the calculations have revealed a small but significant conversion between Love and Rayleigh fundamental modes around 20-s period. Reflections of Love waves are found to be significant only for the continental fundamental mode.  相似文献   

18.
i
Displacements of Love waves generated by a two-dimensional point source in a layered medium have been studied earlier by Sezawa & Sato by the method of successive reflections at the boundaries. In this paper the same problem has been worked out by using Green's function. The paper deals with the study of attenuation of Love waves of low periods in the coastal region. Experimental observations show that Love waves of smaller periods can be obtained only in the island observing stations. A slight intervention of the continental boundary is sufficient to attenuate lower period Love waves giving a hint thereby that attenuation of lower periods takes place perhaps at the continental margin. Taking a simplified configuration for the continental boundary and using Green's function technique, the displacement of Love waves due to a point source has been obtained and it has been shown that attenuation of Love waves of smaller periods takes place in the continental margin due to the slope of the boundary.  相似文献   

19.
The dispersive properties of surface waves are used to infer earth structure in the Eastern Mediterranean region. Using group velocity maps for Rayleigh and Love waves from 7 to 100 s, we invert for the best 1-D crust and upper-mantle structure at a regular series of points. Assembling the results produces a 3-D lithospheric model, along with corresponding maps of sediment and crustal thickness. A comparison of our results to other studies finds the uncertainties of the Moho estimates to be about 5 km. We find thick sediments beneath most of the Eastern Mediterranean basin, in the Hellenic subduction zone and the Cyprus arc. The Ionian Sea is more characteristic of oceanic crust than the rest of the Eastern Mediterranean region as demonstrated, in particular, by the crustal thickness. We also find significant crustal thinning in the Aegean Sea portion of the backarc, particularly towards the south. Notably slower S -wave velocities are found in the upper mantle, especially in the northern Red Sea and Dead Sea Rift, central Turkey, and along the subduction zone. The low velocities in the upper mantle that span from North Africa to Crete, in the Libyan Sea, might be an indication of serpentinized mantle from the subducting African lithosphere. We also find evidence of a strong reverse correlation between sediment and crustal thickness which, while previously demonstrated for extensional regions, also seems applicable for this convergence zone.  相似文献   

20.
The use of the correlation of microtremor records is on its way to develop into a common tool to estimate local shear wave velocity structure. For this reason, the establishment of the conditions for the correct use of this method and its limitations when applied to real data is becoming increasingly important. In addition to the use of frequency domain spatial correlation technique [the Spatial Autocorrelation (SPAC) method], the use of time domain correlation to obtain the Green's function of the medium is rapidly gaining presence. We explore the use of microtremor correlation techniques in the time domain to determine local velocity structure and compare with previous results obtained with the same data using SPAC. Our data come from three experiments carried out in Parkway and Wainuiomata valleys in New Zealand, using broad-band portable stations. Interstation distances range from 5 m to 2.1 km, and our results are useful in the frequency band from 0.1 to 7 Hz. Frequency domain correlation requires an isotropic microtremor field, a condition that need not be satisfied in the time domain. Two station correlations provide useful results due to the temporal stationarity and isotropy, in average, of the microtremor wavefield. This manifests itself in the symmetry of the temporal correlation functions with respect to zero time. Our results show that the local velocity structure and the interstation distance are the key factors conditioning the frequency range where surface wave dispersion can be correctly measured either in frequency or time domains. We confirm that, when the interstation distance becomes much larger than the dominant wavelengths, only the correlation in time domain is useful. All our results indicate that the signal obtained in the correlation of vertical component microtremors is due to the fundamental mode of Rayleigh waves, which appears as the most stable propagation mode, without any indication of body waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号