首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the recent transition to a more risk-based approach in flood management, flood risk models—being a key component in flood risk management—are becoming increasingly important. Such models combine information from four components: (1) the flood hazard (mostly inundation depth), (2) the exposure (e.g. land use), (3) the value of elements at risk and (4) the susceptibility of the elements at risk to hydrologic conditions (e.g. depth–damage curves). All these components contain, however, a certain degree of uncertainty which propagates through the calculation and accumulates in the final damage estimate. In this study, an effort has been made to assess the influence of uncertainty in these four components on the final damage estimate. Different land-use data sets and damage models have been used to represent the uncertainties in the exposure, value and susceptibility components. For the flood hazard component, inundation depth has been varied systematically to estimate the sensitivity of flood damage estimations to this component. The results indicate that, assuming the uncertainty in inundation depth is about 25 cm (about 15% of the mean inundation depth), the total uncertainty surrounding the final damage estimate in the case study area can amount to a factor 5–6. The value of elements at risk and depth–damage curves are the most important sources of uncertainty in flood damage estimates and can both introduce about a factor 2 of uncertainty in the final damage estimates. Very large uncertainties in inundation depth would be necessary to have a similar effect on the uncertainty of the final damage estimate, which seem highly unrealistic. Hence, in order to reduce the uncertainties surrounding potential flood damage estimates, these components deserve prioritisation in future flood damage research. While absolute estimates of flood damage exhibit considerable uncertainty (the above-mentioned factor 5–6), estimates for proportional changes in flood damages (defined as the change in flood damages as a percentage of a base situation) are much more robust.  相似文献   

2.
Floods are regular feature in rapidly urbanizing Dhaka, the capital city of Bangladesh. It is observed that about 60% of the eastern Dhaka regularly goes under water every year in monsoon due to lack of flood protection. Experience gathered from past devastating floods shows that, besides structural approach, non-structural approach such as flood hazard map and risk map is effective tools for reducing flood damages. In this paper, assessment of flood hazard by developing a flood hazard map for mid-eastern Dhaka (37.16 km2) was carried out by 1D hydrodynamic simulation on the basis of digital elevation model (DEM) data from Shuttle Radar Topography Mission and the hydrologic field-observed data for 32 years (1972–2004). As the topography of the area has been considerably changed due to rapid land-filling by land developers which was observed in recent satellite image (DigitalGlobe image; Date of imagery: 7th March 2007), the acquired DEM data were modified to represent the current topography. The inundation simulation was conducted using hydrodynamic program HEC-RAS for flood of 100-year return period. The simulation has revealed that the maximum depth is 7.55 m at the southeastern part of that area and affected area is more than 50%. A flood hazard map was prepared according to the simulation result using the software ArcGIS. Finally, to assess the flood risk of that area, a risk map was prepared where risk was defined as the product of hazard (i.e., depth of inundation) and vulnerability (i.e., the exposure of people or assets to flood). These two maps should be helpful in raising awareness of inhabitants and in assigning priority for land development and for emergency preparedness including aid and relief operations in high-risk areas in the future.  相似文献   

3.
段宏飞 《岩土力学》2014,35(11):3323-3330
针对煤矿底板破坏深度影响因素较多,难以准确地确定难题,通过分析影响底板岩体变形程度的底板岩层的抗破坏能力和作用在底板上的矿山压力两方面因素,选取采深、采高、斜长(工作面)、倾角、底板岩性组合与顶板岩性组合6个因素进行底板破坏深度研究,以某矿4602工作面为背景概化工程地质模型进行6因素5水平正交数值模拟试验。试验结果表明,(1)影响底板破坏深度的主要因素是斜长,顶板岩性组合、底板岩性组合、采深、采高依次减弱,倾角最差;(2)首次明确了顶板岩性组合是影响底板破坏深度的关键因素;(3)建立了斜长-顶底板岩性组合-采深-采高-倾角的采动底板破坏深度预测模型,计算结果较开采规程经验公式的计算结果更接近实际,精度高、误差小,基本可以满足工程使用。研究结果对底板破坏深度的研究以及工程应用具有积极的指导意义。  相似文献   

4.
Among the coastal districts of mega city Istanbul, Bakirkoy is one of the most critical one with the importance of air and marine transportation and presence of many other coastal facilities and structures that are prone to suffer from marine hazards. In the history, the Sea of Marmara has experienced numerous earthquake and landslide events and associated tsunamis. Therefore, tsunami risk assessment is essential for all coastal districts of Istanbul, including Bakirkoy district. In this study, a further developed methodology for tsunami human vulnerability and risk assessment Metropolitan Tsunami Human Vulnerability Assessment (MeTHuVA) is applied for Bakirkoy district of Istanbul, considering earthquake generated tsunamis. High-resolution tsunami hazard analysis is performed with the integration of coastal inundation computation with tsunami numerical tool NAMI DANCE and tsunami human vulnerability assessment with GIS-based multi-criteria decision analysis methods (MCDA). Using analytical hierarchy process method of MCDA, a hierarchical structure is established, composed of two main elements of tsunami human vulnerability: Vulnerability at Location and Evacuation Resilience. Tsunami risk assessment for Bakirkoy district is calculated by integrating result of hazard and vulnerability assessments with a risk relation that includes a parameter (n), which represents the preparedness and awareness level of the community. Tsunami simulations revealed that the maximum inundation distance is over 350 m on land and water penetrates almost 1700 m along Ayamama stream. Inundation is observed in eleven neighborhoods of Bakirkoy district. In the inundation zone, maximum flow depth is found to be over 5.7 m. The inundated area forms 4.2% of whole Bakirkoy district, and 62 buildings are located in the inundation zone. Hazard, vulnerability and risk assessment results for different neighborhoods of Bakirkoy district are presented and discussed.  相似文献   

5.
中国城市主要自然灾害风险评价研究   总被引:12,自引:0,他引:12  
本文依据灾害系统理论和中国自然灾害数据库,构建了反映城市承灾体的综合城市化水平(CL)指标,并在此基础上得到城市脆弱性水平指数。考虑对城市具有结构性破坏和易于造成交通灾情的主要灾种,即水灾、地震、滑坡—泥石流、台风、沙尘暴,构建了反映城市主要致灾因子的综合自然灾害强度(QC)指标,并得到城市综合自然灾害强度指数。据此,在定性分析的基础上,通过半定量计算,将中国城市主要自然灾害风险划分为高风险、较高风险、中等风险、较低风险、低风险5个等级,编制了中国城市自然灾害风险评价图,并对灾害链的综合风险评价作了进一步的探讨。  相似文献   

6.
Dongchuan City is highly threatened by debris-flow disasters originating from Shengou gully, a typical debris-flow gully along Xiaojiang River in Yunnan Province (Kang et al. 2004). Shengou gully is studied, and a hazard assessment with numerical simulation is developed using ArcGIS 9.2 software. Debris-flow numerical simulation is an important method for predicting debris-flow inundation regions, zoning debris-flow risks, and helping in the design of debris-flow control works. Meanwhile, vulnerability measurement is essential for hazard and risk research. Based on the self-organized map neural network method, we combine the six vulnerability indicators to create an integrated debris-flow vulnerability map that depicts the vulnerability levels of Dongchuan City in Shengou Basin. Based on the risk assessment (including hazard assessment and vulnerability assessment), we adopt the principal–agent theory and use the risk degree of debris flows as an important index to build the insurance model and analyze the insurance premium of debris-flow disasters in Dongchuan City. This paper discusses the model and mechanism of property insurance in debris-flow risk regions and aims to provide technical support for insurance companies to participate in disaster prevention and reduction.  相似文献   

7.
Due to increasing flood severities and frequencies, studies on coastal vulnerability assessment are of increasing concern. Evaluation of flood inundation depth and extent is the first issue in flood vulnerability analysis. This study has proposed a practical framework for reliable coastal floodplain delineation considering both inland and coastal flooding. New York City (NYC) has been considered as the case study because of its vulnerability to storm surge-induced hazards. For floodplain delineation, a distributed hydrologic model is used. In the proposed method, the severities of combined inland and coastal floods for different recurrence intervals are determined. Through analyzing past storms in the study region, a referenced (base) configuration of rainfall and storm surge is selected to be used for defining flood scenarios with different return periods. The inundated areas are determined under different flooding scenarios. The inundation maps of 2012 superstorm Sandy in NYC is simulated and compared with the FEMA revised maps which shows a close agreement. This methodology could be of significant value to the planners and engineers working on the preparedness of coastal urban communities against storms by providing a platform for updating inundation maps as new events are observed and new information becomes available.  相似文献   

8.
The recurrent flooding during monsoon and subsequent waterlogging in the northern Bihar plains and the magnitude of losses due to these hazards indicate the continuing vulnerability of the region to flood and waterlogging. Management of floods and waterlogging hazards in highly flood-prone regions of India, including Bihar state has been largely response oriented with little or no attention to mitigation and preparedness. This paper presents a method for spatial, Geographic Information Systems-based assessment of flood and waterlogging vulnerability and risk in northern Bihar plains. Multitemporal satellite data was used to evaluate the area statistics and dynamics of waterlogging over the period from 1975 to 2008. The flood proneness is evaluated at district level with reference to flood inundation during a period from 1998 to 2008. Census data were used to examine the socio-economic characteristics of the region through computation of population density, cultivators, agricultural labourers, sex ratio, children in age group 0–6 years and literates. The geohazard map derived by combining area prone to waterlogging and flood inundation was multiplied with socio-economic vulnerability map to derive the flood-waterlogging risk map of the region. The result shows that flood and water-logging pose highest risk to the central districts in the northern Bihar plains with 50.95% of the total area under high and very high risk.  相似文献   

9.
基于自然灾害风险原理,结合青海省气象数据、地理信息数据、社会经济数据,并利用主成分分析法、GIS自然断点法对青海省暴雨洪涝灾害致灾因子危险度、承载体易损度评估模型以及暴雨洪涝灾害风险度进行评估,结果表明:青海省不同强度降水日数均呈增多趋势,新世纪以来中雨日数及强降水日数增加趋势尤为明显;暴雨洪涝灾害致灾因子危险度呈由东南向西北降低的趋势,承载体易损度为东北部地区最高,南部以及西部地区最低;暴雨洪涝风险较高的地区主要集中在东部地区,互助、湟中、大通、西宁为高风险区,东部大部地区、环青海湖地区为较高风险区,西部地区为低风险区。该评估结果可以在气象灾害风险管理业务中进行应用,可以加强对暴雨洪涝灾害风险的影响程度及影响区域的判定,为地方防灾减灾救灾工作提供科学依据。  相似文献   

10.
Flood disasters and its consequent damages are on the rise globally. Pakistan has been experiencing an increase in flood frequency and severity along with resultant damages in the past. In addition to the regular practices of loss and damage estimation, current focus is on risk assessment of hazard-prone communities. Risk measurement is complex as scholars engaged in disaster science and management use different quantitative models with diverse interpretations. This study tries to provide clarity in conceptualizing disaster risk and proposes a risk assessment methodology with constituent components such as hazard, vulnerability (exposure and sensitivity) and coping/adaptive capacity. Three communities from different urban centers in Pakistan have been selected based on high flood frequency and intensity. A primary survey was conducted in selected urban communities to capture data on a number of variables relating to flood hazard, vulnerability and capacity to compute flood risk index. Households were categorized into different risk levels, such as can manage risk, can survive and cope, and cannot cope. It was found that risk levels varied significantly across the households of the three communities. Metropolitan city was found to be highly vulnerable as compared to smaller cities due to weak capacity. Households living in medium town had devised coping mechanisms to manage risk. The proposed methodology is tested and found operational for risk assessment of flood-prone areas and communities irrespective of locations and countries.  相似文献   

11.
Economic damage assessment for flood risk estimation is established in many countries, but attentions have been focused on macro- or meso-scale approaches and less on micro-scale approaches. Whilst the macro- or meso-scale approaches of flood damage assessment are suitable for regional- or national-oriented studies, micro-scale approaches are more suitable for cost–benefit analysis of engineered protection measures. Furthermore, there remains lack of systematic and automated approaches to estimate economic flood damage for multiple flood scenarios for the purpose of flood risk assessment. Studies on flood risk have also been driven by the assumption of stationary characteristic of flood hazard, hence the stationary-oriented vulnerability assessment. This study proposes a novel approach to assess vulnerability and flood risk and accounts for adaptability of the approach to nonstationary conditions of flood hazard. The approach is innovative in which an automated concurrent estimation of economic flood damage for a range of flood events on the basis of a micro-scale flood risk assessment is made possible. It accounts for the heterogeneous distribution of residential buildings of a community exposed to flood hazard. The feasibility of the methodology was tested using real historical flow records and spatial information of Teddington, London. Vulnerability curves and residual risk associated with a number of alternative extents of property-level protection adoptions are estimated by the application of the proposed methodology. It is found that the methodology has the capacity to provide valuable information on vulnerability and flood risk that can be integrated in a practical decision-making process for a reliable cost–benefit analysis of flood risk reduction options.  相似文献   

12.
Taiwan is located in an area affected by Northwest Pacific typhoons, which are also one of the most important sources of rainfall to the island. Unfortunately, the abundant rainfall brought by typhoons frequently produces hazards. In recent years, typhoons and floods have caused serious damage, especially Typhoon Morakot in 2009. In this study, a probabilistic model is developed based on historical events which can be used to assess flood risk in Taiwan. There are 4 separate modules in this model, including a rainfall event module, a hydraulic module, a vulnerability module, and a financial loss module. Local data obtained from the Taiwan government are used to construct this model. Historical rainfall data for typhoon and flood events that have occurred since 1960, obtained from the Central Weather Bureau, are used for computing the maximum daily rainfall for each basin. In addition, the latest flood maps from the Water Resources Agency are collected to assess the probable inundation depth. A case study using the local data is carried out. Assessment is made to predict possible economic loss from different financial perspectives such as the total loss, insured loss, and loss exceeding probabilities. The assessment results can be used as a reference for making effective flood risk management strategies in Taiwan.  相似文献   

13.
孙君  奚赛英  尤迪  郑付涛 《城市地质》2012,7(3):31-33,37
洪水淹没范围的确定是洪灾损失评估和防洪决策的核心环节。基于TIN数据,运用ArcMap,采用"无源淹没分析"方法对区域天然防洪能力进行划分;实现了在给定水位条件下,对洪水淹没范围提取与统计计算,建立了洪水水位高程和淹没面积关系公式,并用于洪水淹没快速预测;运用ArcScene,对水位抬升的"无源渐进淹没"情况进行了三维模拟。  相似文献   

14.
Yang  Lijiao  Kajitani  Yoshio  Tatano  Hirokazu  Jiang  Xinyu 《Natural Hazards》2016,83(1):411-423

This study proposes a probabilistic methodology for estimating the business interruption loss of industrial sectors as an extension of current methodology. The functional forms and parameters are selected and calibrated based on survey data obtained from businesses located in the inundated area at the time of the 2000 Tokai Heavy Rain in Japan. The Tokai Heavy Rain was a rare event that hit a densely populated and industrialized area. In the estimation of business interruption losses, functional fragility curves and accelerated failure time models are selected to estimate the extent of damage to production capacity and production recovery time. Significant explanatory variables, such as inundation depth, distinct vulnerability, and the resilience characteristics of each sector, as well as the accuracy of fit of the model, are analyzed in the study. The function obtained and the estimated parameters can be utilized as benchmarks in estimating the probabilistic distribution of business interruption losses, especially in the case of urban flood disasters.

  相似文献   

15.
Large national budgets are required for flood damage reduction projects, making it critical to ensure that public money used therein be spent efficiently. Accordingly, reliable assessment of flood damage is a critical issue in analysis of the economic aspects of flood damage reduction projects. To this end, this study aims to provide a GIS (geographical information system)-based technique for distributed flood damage assessment. We consider two aspects of flood damage assessment from an engineering and economic perspective, i.e. flood inundation analysis and multi-dimensional flood damage analysis (MD-FDA). To perform this assessment, we used a GIS-based framework and data processing method to assess damages. The proposed methodology was applied to flood control channel projects for flood disaster prevention in the Anyang Stream Basin in Korea and presents detailed GIS data processing and assessment results. Findings from this study may contribute to the improvement of usability of MD-FDA and may provide research directions for integrating economic and engineering factors. This distributed technique will also assist in the decision-making process when evaluating the economic feasibility of flood damage reduction projects for structural and non-structural measures.  相似文献   

16.
Applied flood risk analyses, especially in urban areas, very often pose the question how detailed the analysis needs to be in order to give a realistic figure of the expected risk. The methods used in research and practical applications range from very basic approaches with numerous simplifying assumptions up to very sophisticated, data and calculation time demanding applications both on the hazard and on the vulnerability part of the risk. In order to shed some light on the question of required model complexity in flood risk analyses and outputs sufficiently fulfilling the task at hand, a number of combinations of models of different complexity both on the hazard and on the vulnerability side were tested in a case study. The different models can be organized in a model matrix of different complexity levels: On the hazard side, the approaches/models selected were (A) linear interpolation of gauge water levels and intersection with a digital elevation model (DEM), (B) a mixed 1D/2D hydraulic model with simplifying assumptions (LISFLOOD-FP) and (C) a Saint-Venant 2D zero-inertia hyperbolic hydraulic model considering the built environment and infrastructure. On the vulnerability side, the models used for the estimation of direct damage to residential buildings are in order of increasing complexity: (I) meso-scale stage-damage functions applied to CORINE land cover data, (II) the rule-based meso-scale model FLEMOps+ using census data on the municipal building stock and CORINE land cover data and (III) a rule-based micro-scale model applied to a detailed building inventory. Besides the inundation depths, the latter two models consider different building types and qualities as well as the level of private precaution and contamination of the floodwater. The models were applied in a municipality in east Germany, Eilenburg. It suffered extraordinary damage during the flood of August 2002, which was well documented as were the inundation extent and depths. These data provide an almost unique data set for the validation of flood risk analyses. The analysis shows that the combination of the 1D/2D model and the meso-scale damage model FLEMOps+ performed best and provide the best compromise between data requirements, simulation effort, and an acceptable accuracy of the results. The more detailed approaches suffered from complex model set-up, high data requirements, and long computation times.  相似文献   

17.
Zhang  Yue  Wang  Ying  Zhang  Yunxia  Luan  Qingzu  Liu  Heping 《Natural Hazards》2021,105(1):967-981

Flash flooding is one of the most devastating natural disasters in China. A quantitative flash flood hazard assessment is important for saving human lives and reducing economic losses. In this study, integrated rainfall–runoff modeling (HEC-HMS) and hydraulic modeling (FLO-2D) schemes were used to assess flash flood inundation areas and depths under 5-year, 10-year, 25-year, 50-year, 100-year, 200-year, 500-year and 1000-year rainfall scenarios in a mountainous basin (Hadahe River Basin, HRB) in northern China. The overall flash flood hazard in HRB is high. Under the eight rainfall scenarios, the total flooded area ranged from 6 to 8.73 km2; the flash flood inundation areas with depths of 1–2 m, 2–3 m, and over 3 m was 1.53–2.69 km2, 0.63–1.44 km2 and 0.33–1.11 km2, respectively; and these areas accounted for 25.5–30.8%, 10.5–16.5% and 5.5–12.7% of the whole flooded area. The total flooded area increases rapidly with the return period increasing from 5 to 200 years, and the increase gradient slows when the return period is greater than 200 years. In the downstream area of HRB, the flash flood area with inundation depths greater than 1 m accounted for 54–71% of the flooded area under the eight scenarios. In comparison to other areas in the HRB, the downstream area is at the highest risk given its extensive inundation and substantial property exposure. The quantitative hazard assessment framework presented in this study can be applied in other mountainous basins for flash flood defense and disaster management purposes.

  相似文献   

18.
张腾  陈建平  张静 《江苏地质》2020,44(4):434-441
根据暴雨洪涝灾害致灾因子危险性、孕灾环境敏感性、承载体易损性和防灾减灾能力4个一级因子,以山东地区为研究对象,综合考虑降雨、地形地势、河网密度、植被、人口和经济实力、道路交通信息等因子进行风险区划与分析。利用地理信息系统软件(ArcGIS)将上述因子进行归一化来获得标准化的多源栅格数据,结合层次分析法和自然断点法确定相关指标的权重,建立了暴雨洪涝灾害的风险评估模型,最后得到了山东地区暴雨洪涝灾害综合风险区划等级评估图。对研究区进行定性和定量分析后得出结论,山东地区暴雨洪涝灾害发生的高风险区在鲁中西部、鲁南及山东半岛东部沿海部分地区,此结论与历史数据基本吻合。研究结果为预防山东暴雨洪涝灾害提供了参考信息。  相似文献   

19.
The 2004 tsunami that struck the Sumatra coast gave a warning sign to Malaysia that it is no longer regarded as safe from a future tsunami attack. Since the event, the Malaysian Government has formulated its plan of action by developing an integrated tsunami vulnerability assessment technique to determine the vulnerability levels of each sector along the 520-km-long coastline of the north-west coast of Peninsular Malaysia. The scope of assessment is focused on the vulnerability of the physical characteristics of the coastal area, and the vulnerability of the built environment in the area that includes building structures and infrastructures. The assessment was conducted in three distinct stages which stretched across from a macro-scale assessment to several local-scale and finally a micro-scale assessment. On a macro-scale assessment, Tsunami Impact Classification Maps were constructed based on the results of the tsunami propagation modelling of the various tsunami source scenarios. At this stage, highly impacted areas were selected for an assessment of the local hazards in the form of local flood maps based on the inundation modelling output. Tsunami heights and flood depths obtained from these maps were then used to produce the Tsunami Physical Vulnerability Index (PVI) maps. These maps recognize sectors within the selected areas that are highly vulnerable to a maximum tsunami run-up and flood event. The final stage is the development of the Structural Vulnerability Index (SVI) maps, which may qualitatively and quantitatively capture the physical and economic resources that are in the tsunami inundation zone during the worst-case scenario event. The results of the assessment in the form of GIS-based Tsunami-prone Vulnerability Index (PVI and SVI) maps are able to differentiate between the various levels of vulnerability, based on the tsunami height and inundation, the various levels of impact severity towards existing building structures, property and land use, and also indicate the resources and human settlements within the study area. Most importantly, the maps could help planners to establish a zoning scheme for potential coastline development based on its sensitivity to tsunami. As a result, some recommendations on evacuation routes and tsunami shelters in the potentially affected areas were also proposed to the Government as a tool for relief agencies to plan for safe evacuation.  相似文献   

20.
This study presents the methodology and procedure for risk assessment of flood disasters in central Liaoning Province, which was supported by geographical information systems (GIS) and technology of natural disaster risk assessment. On the basis of the standard formulation of natural disaster risk and flood disaster risk index, of which weights were developed using combined weights of entropy, the relative membership degree functions of variable fuzzy set (VFS) theory were calculated using improved set pair analysis, while level values were calculated using VFSs, including hazard levels, exposure levels, vulnerability levels and restorability levels, and the flood risk level for each assessment unit was obtained using the natural disaster index method. Consequently, integrated flood risk map was carried out by GIS spatial analysis technique. The results show that the southwestern and central parts of the study area possess higher risk, while the northwestern and southeastern parts possess lower risk. The results got by the assessment model fits the area of historical flood data; this study offer new insights and possibility to carry out an efficient way for flood disaster prevention and mitigation. The study also provides scientific reference in flood risk management for local and national governmental agencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号