首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

Hydrological drought durations (lengths) in the Canadian prairies were modelled using the standardized hydrological index (SHI) sequences derived from the streamflow series at annual, monthly and weekly time scales. The rivers chosen for the study present high levels of persistence (as indicated by values exceeding 0.95 for lag-1 autocorrelation in weekly SHI sequences), because they encompass large catchment areas (2210–119 000 km2) and traverse, or originate in, lakes. For such rivers, Markov chain models were found to be simple and efficient tools for predicting the drought duration (year, month, or week) based on annual, monthly and weekly SHI sequences. The prediction of drought durations was accomplished at threshold levels corresponding to median flow (Q50) (drought probability, q?=?0.5) to Q95 (drought probability, q?=?0.05) exceedence levels in the SHI sequences. The first-order Markov chain or the random model was found to be acceptable for the prediction of annual drought lengths, based on the Hazen plotting position formula for exceedence probability, because of the small sample size of annual streamflows. On monthly and weekly time scales, the second-order Markov chain model was found to be satisfactory using the Weibull plotting position formula for exceedence probability. The crucial element in modelling drought lengths is the reliable estimation of parameters (conditional probabilities) of the first- and second-order persistence, which were estimated using the notions implicit in the discrete autoregressive moving average class of models. The variance of drought durations is of particular significance, because it plays a crucial role in the accurate estimation of persistence parameters. Although, the counting method of the estimation of persistence parameters was found to be unsatisfactory, it proved useful in setting the initial values and also in subsequent adjustment of the variance-based estimates of persistence parameters. At low threshold levels corresponding to q < 0.20, even the first-order Markov chain can be construed as a satisfactory model for predicting drought durations based on monthly and weekly SHI sequences.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Sharma, T.C. and Panu, U.S., 2012. Prediction of hydrological drought durations based on Markov chains in the Canadian prairies. Hydrological Sciences Journal, 57 (4), 705–722.  相似文献   

2.
ABSTRACT

Ten notable meteorological drought indices were compared on tracking the effect of drought on streamflow. A 730-month dataset of precipitation, temperature and evapotranspiration for 88 catchments in Oregon, USA, representing pristine conditions, was used to compute the drought indices. These indices were correlated with the monthly streamflow datasets of the minimum, maximum and mean discharge, and the discharge monthly fluctuation; it was revealed that the 3-month Z-score drought index (Z3) has the best association with the four streamflow variables. The Mann-Kendall trend detection test applied to the latter index time series mainly highlighted a downward trend in the autumn and winter drought magnitude (DM) and an upward trend in the spring and summer DM (p = 0.05). Finally, the Pettitt test indicated an abrupt decline in the annual and autumn DM, which began in 1984 and 1986, respectively.  相似文献   

3.
Abstract

The standardized series of monthly and weekly flow sequences, referred to as standardized hydrological index (SHI) series, from five rivers in the Canadian prairies were subjected to return period (Tr) analysis of drought length (L). The SHI series were truncated at drought probability levels q ranging from 0.5 to 0.05 with the intention of deducing drought events and corresponding drought lengths. The values of L were fitted to the Pearson 3, the gamma (2-parameter), the exponential (1-parameter), the Weibull 3 and the Weibull (2-parameter) probability density functions (pdfs). A priori assignment of one week or one month for the location parameter in the Pearson 3 pdf proved logical and also facilitated the rapid estimation of other parameters using either the method of moments or the method of maximum likelihood. The Pearson 3 turns out to be the most suitable pdf to describe and to estimate return periods of drought lengths. At the monthly and weekly time scales, it was inferred that the sample size (T, months or weeks) of SHI series could be treated equivalent to the return period of the largest recorded drought length. At the annual time scale, however, the sample size (T, years) should be modified using either the Hazen or the Gringorten plotting position formula to reflect the actual return period of the largest recorded drought length in years.
Editor D. Koutsoyiannis; Associate editor E. Gargouri  相似文献   

4.
Abstract

A hydrological drought magnitude (M T ) expressed in standardized terms is predicted on annual, monthly and weekly time scales for a sampling period of T years in streamflow data from the Canadian prairies. The drought episodes are considered to follow the Poisson law of probability and, when coupled with the gamma probability distribution function (pdf) of drought magnitude (M) in the extreme number theorem, culminate in a relationship capable of evaluating the expected value, E(M T ). The parameters of the underlying pdf of M are determined based on the assumption that the drought intensity follows a truncated normal pdf. The E(M T ) can be evaluated using only standard deviation (σ), lag-1 autocorrelation (ρ) of the standardized hydrological index (SHI) sequence, and a weighting parameter Φ (ranging from 0 to 1) to account for the extreme drought duration (L T ), as well as the mean drought duration (Lm ), in a characteristic drought length (Lc ). The SHI is treated as standard normal variate, equivalent to the commonly-used standardized precipitation index. A closed-form relationship can be used for the estimation of first-order conditional probabilities, which can also be estimated from historical streamflow records. For all rivers, at the annual time scale, the value of Φ was found equal to 0.5, but it tends to vary (in the range 0 to 1) from river to river at monthly and weekly time scales. However, for a particular river, the Φ value was nearly constant at monthly and weekly time scales. The proposed method estimates E(M T ) satisfactorily comparable to the observed counterpart. At the annual time scale, the assumption of a normal pdf for drought magnitude tends to yield results in close proximity to that of a gamma pdf. The M T , when transformed into deficit-volume, can form a basis for designing water storage facilities and for planning water management strategies during drought periods.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Sharma, T.C. and Panu, U.S., 2013. A semi-empirical method for predicting hydrological drought magnitudes in the Canadian prairies. Hydrological Sciences Journal, 58 (3), 549–569.  相似文献   

5.
Abstract

Possible changes in drought under future climate scenarios may pose unprecedented challenges for water resources, as well as other environmental and societal issues, and need assessment to quantify their associated risk. Two weather generators, based upon (a) the Neyman-Scott Rectangular Pulses (NSRP) model as implemented by the United Kingdom Climate Projections 09 (UKCP09) study, and (b) the generalized linear model (GLM) approach, are used to investigate potential variations in drought conditions for six catchments in the UK under climate projections. The results show that both weather generators provide rainfall simulations having satisfactory monthly statistics. However, the rainfall series from the UKCP09 weather generators lack inter-annual variability, whereas the GLM simulations, which include non-stationary global circulation model (GCM) outputs as driving variables, seem to have a more appropriate representation of the observed drought conditions. For drought projections in the 2080s, the UKCP09 simulations provide repetitive patterns without much temporal variation, similar to the results in the control period. This study suggests that for the drought index considered here (a 3-month drought severity index) the GLM approach appears to be a more appropriate model for drought study on inter-annual scales in comparison with the UKCP09 weather generator.

Editor D. Koutsoyiannis

Citation Chun, K.P., Wheater, H.S., and Onof, C., 2013. Comparison of drought projections using two UK weather generators. Hydrological Sciences Journal, 58 (2), 295–309.  相似文献   

6.
ABSTRACT

An appropriate streamflow forecasting method is a prerequisite for implementation of efficient water resources management in the water-limited, arid regions that occupy much of Iran. In the current research, monthly streamflow forecasting was combined with three data-driven methods based on large input datasets involving 11 precipitation stations, a natural streamflow, and four climate indices through a long period. The major challenges of rainfall–runoff modelling are generally attributed to complex interacting processes, the large number of variables, and strong nonlinearity. The sensitivity of data-driven methods to the dimension of input/output datasets would be another challenge, so large datasets should be compressed into independently standardized principal components. In this study, three pre-processing techniques were applied: singular value decomposition (SVD) provided more efficient forecasts in comparison to principal component analysis (PCA) and average values of inputs in all networks. Among the data-driven methods, the multi-layer perceptron (MLP) with 1-month lag-time outperformed radial basis and fuzzy-based networks. In general, an increase in monthly lag-time of streamflow forecasting resulted in a decline in forecasting accuracy. The results reveal that SVD was highly effective in pre-processing of data-driven evaluations.  相似文献   

7.
《水文科学杂志》2013,58(6):1114-1124
Abstract

Droughts may be classified as meteorological, hydrological or agricultural. When meteorological drought appears in a region, agricultural and hydrological droughts follow. In this study, the standardized precipitation index (SPI) was applied for meteorological drought analysis at nine stations located around the Lakes District, Turkey. Analyses were performed on 3-, 6-, 9- and 12-month-long data sets. The SPI drought classifications were modelled by Adaptive Neural-Based Fuzzy Inference System (ANFIS) and Fuzzy Logic, which has the advantage that, in contrast to most of the time series modelling techniques, it does not require the model structure to be known a priori. Comparison of the observed values and the modelling results shows a better agreement with SPI-12 and ANFIS models than with fuzzy logic models.  相似文献   

8.
Ani Shabri 《水文科学杂志》2013,58(7):1275-1293
Abstract

This paper investigates the ability of a least-squares support vector machine (LSSVM) model to improve the accuracy of streamflow forecasting. Cross-validation and grid-search methods are used to automatically determine the LSSVM parameters in the forecasting process. To assess the effectiveness of this model, monthly streamflow records from two stations, Tg Tulang and Tg Rambutan of the Kinta River in Perak, Peninsular Malaysia, were used as case studies. The performance of the LSSVM model is compared with the conventional statistical autoregressive integrated moving average (ARIMA), the artificial neural network (ANN) and support vector machine (SVM) models using various statistical measures. The results of the comparison indicate that the LSSVM model is a useful tool and a promising new method for streamflow forecasting.

Editor D. Koutsoyiannis; Associate editor L. See

Citation Shabri, A. and Suhartono, 2012. Streamflow forecasting using least-squares support vector machines. Hydrological Sciences Journal, 57 (7), 1275–1293.  相似文献   

9.
Abstract

An artificial neural network, mid- to long-term runoff forecasting model of the Nenjiang basin was established by deciding predictors using the physical analysis method, combined with long-term hydrological and meteorological information. The forecasting model was gradually improved while considering physical factors, such as the main flood season and non-flood season by stage, runoff sources and hydrological processes. The average relative errors in the simulation tests of the prediction model were 0.33 in the main flood season and 0.26 in the non-flood season, indicating that the prediction accuracy during the non-flood season was greater than that in the main flood season. Based on these standards, forecasting accuracy evaluation was conducted by comparing forecasting results with actual conditions: for 2001 to 2003 data, the pass rate of forecasting in the main flood season was 50%, while it was 93% in the non-flood season; for 2001–2010, the respective values were 45% and 72%. The accuracy of prediction was found to decrease as the length of record increases.

Editor D. Koutsoyiannis, Associate editor A. Viglione

Citation Li, H.-Y. Tian, L., Wu, Y., and Xie, M., 2013. Improvement of mid- to long-term runoff forecasting based on physical causes: application in Nenjiang basin, China. Hydrological Sciences Journal, 58 (7), 1414–1422.  相似文献   

10.
Abstract

The method of fragments is applied to the generation of synthetic monthly streamflow series using streamflow data from 34 gauging stations in mainland Portugal. A generation model based on the random sampling of the log-Pearson Type III distribution was applied to each sample to generate 1200 synthetic series of annual streamflow with an equal length to that of the sample. The synthetic annual streamflow series were then disaggregated into monthly streamflows using the method of fragments, by three approaches that differed in terms of the establishment of classes and the selection of fragments. The results of the application of such approaches were compared in terms of the capacity of the method to preserve the main monthly statistical parameters of the historical samples.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Silva, A.T. and Portela, M.M., 2012. Disaggregation modelling of monthly streamflows using a new approach of the method of fragments. Hydrological Sciences Journal, 57 (5), 942–955.  相似文献   

11.
Abstract

The identification of Atlantic Ocean (AO) climatic drivers may prove valuable in long lead-time forecasting of streamflow in the Adour-Garonne basin in southwestern France. Previous studies have identified the Atlantic Multidecadal Oscillation (AMO) and the North Atlantic Oscillation (NAO) as drivers of European hydrology. The current research applied the singular value decomposition (SVD) statistical method to AO sea-surface temperatures (SSTs) to identify the primary AO climatic drivers of the Adour-Garonne basin streamflow. Annual and seasonal streamflow volumes were selected as the hydrological response, while average AO SSTs were calculated for three different 6-month averages (January–June, April–September and July–December) for the year preceding streamflow. The results identified a region along the Equator as the probable driver of the basin streamflow. Additional analysis evaluated the influence of the AMO and NAO on Adour-Garonne basin streamflow.

Editor Z.W. Kundzewicz; Associate editor H. Aksoy

Citation Oubeidillah, A.A., Tootle, G. and Anderson, S.-R., 2012. Atlantic Ocean sea-surface temperatures and regional streamflow variability in the Adour-Garonne basin, France. Hydrological Sciences Journal, 57 (3), 496–506.  相似文献   

12.
ABSTRACT

Reliable seasonal forecasting of water resources variability may be of great value for agriculture and energy management in Ethiopia. This work aims to develop statistical forecasting of seasonal total water storage (TWS) anomalies in Ethiopia using sea-surface temperature and sea-level pressure indices. Because of the spatial and temporal variability of TWS over the country, Ethiopia is divided into four regions each having similar TWS dynamics. Periods of long-term water deficit observed in GRACE TWS products for the region are found to coincide with periods of meteorological drought. Multiple linear regression is employed to generate seasonal forecasting models for each region. We find that the skill of the resulting models varies from region to region, with R 2 from 0.33 to 0.73 and correlation from 0.27 to 0.77 between predicted and observed values (using leave-one-out cross-validation). The skill of the models is better than the climatology in all regions.  相似文献   

13.
Abstract

Two entities of importance in hydrological droughts, viz. the longest duration, LT , and the largest magnitude, MT (in standardized terms) over a desired time period (which could also correspond to a specific return period) T, have been analysed for weekly flow sequences of Canadian rivers. Analysis has been carried out in terms of week-by-week standardized values of flow sequences, designated as SHI (standardized hydrological index). The SHI sequence is truncated at the median level for identification and evaluation of expected values of the above random variables, E(LT ) and E(MT ). SHI sequences tended to be strongly autocorrelated and are modelled as autoregressive order-1, order-2 or autoregressive moving average order-1,1. The drought model built on the theorem of extremes of random numbers of random variables was found to be less satisfactory for the prediction of E(LT ) and E(MT ) on a weekly basis. However, the model has worked well on a monthly (weakly Markovian) and an annual (random) basis. An alternative procedure based on a second-order Markov chain model provided satisfactory prediction of E(LT ). Parameters such as the mean, standard deviation (or coefficient of variation), and lag-1 serial correlation of the original weekly flow sequences (obeying a gamma probability distribution function) were used to estimate the simple and first-order drought probabilities through closed-form equations. Second-order probabilities have been estimated based on the original flow sequences as well as SHI sequences, utilizing a counting method. The E(MT ) can be predicted as a product of drought intensity (which obeys the truncated normal distribution) and E(LT ) (which is based on a mixture of first- and second-order Markov chains).

Citation Sharma, T. C. & Panu, U. S. (2010) Analytical procedures for weekly hydrological droughts: a case of Canadian rivers. Hydrol. Sci. J. 55(1), 79–92.  相似文献   

14.
Abstract

A study of rainfall trends and temporal variations within seven sub-basins of Uganda spanning from 1940 to 2009 has been made. Rainfall climatologies are constructed from observational data, using 36 station records which reflect hydroclimatic conditions. Long-term changes in rainfall characteristics were determined by non-parametric tests (Mann-Kendall and Sen’s T tests), coefficient of variation (CV), precipitation concentration index and drought severity index. Magnitude of change was estimated by applying Sen’s estimator of slope. Decadal variability of rainfall with marked seasonal cycles is evident. Temporal variability of drought patterns is detected. Variations in annual rainfall are low with no significant trends observed in the main drainage sub-basins. Significant trends occur in October, November, December and January. A noticeable decrease in the annual total rainfall was observed mostly in northwestern and southwestern sub-basins. Rainfall trend in the second normal of June–July–August (JJA) was decreasing in all the main drainage sub-basins.

Editor Z.W. Kundzewicz; Associate editor S. Yue

Citation Nsubuga, F.W.N., Botai, O.J., Olwoch, J.M., Rautenbach, C.J.deW., Bevis, Y., and Adetunji, A.O., 2014. The nature of rainfall in the main drainage sub-basins of Uganda. Hydrological Sciences Journal, 59 (2), 278–299.  相似文献   

15.
ABSTRACT

A two-parameter monthly water balance model to simulate runoff can be used for a water resources planning programme and climate impact studies. However, the model estimates two parameters of transformation of time scale (c) and of the field capacity (SC) by a trial-and-error method. This study suggests a modified methodology to estimate the parameters c and SC using the meteorological and geological conditions. The modified model is compared with the Kajiyama formula to simulate the runoff in the Han River and International Hydrological Programme representative basins in South Korea. We show that the estimated c and SC can be used as the initial or optimal values for the monthly runoff simulation study in the model.
EDITOR M.C. Acreman; ASSOCIATE EDITOR S. Kanae  相似文献   

16.
Abstract

A wavelet-neural network (WNN) hybrid modelling approach for monthly river flow estimation and prediction is developed. This approach integrates discrete wavelet multi-resolution decomposition and a back-propagation (BP) feed-forward multilayer perceptron (FFML) artificial neural network (ANN). The Levenberg-Marquardt (LM) algorithm and the Bayesian regularization (BR) algorithm were employed to perform the network modelling. Monthly flow data from three gauges in the Weihe River in China were used for network training and testing for 48-month-ahead prediction. The comparison of results of the WNN hybrid model with those of the single ANN model show that the former is able to significantly increase the prediction accuracy.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Wei, S., Yang, H., Song, J.X., Abbaspour, K., and Xu, Z.X., 2013. A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrological Sciences Journal, 58 (2), 374–389.  相似文献   

17.
Abstract

To enable assessment of risks of water management to riparian ecosystems at a regional scale, we developed a quantile-regression model of abundance of broadleaf cottonwoods (Populus deltoides and P. fremontii) as a function of flood flow attenuation. To test whether this model was transferrable to narrowleaf cottonwood (Populus angustifolia), we measured narrowleaf abundance along 39 river reaches in northwestern Colorado, USA. The model performed well for narrowleaf in all 32 reaches where reservoir storage was <75% of mean annual flow. Field data did not fit the model at four of seven reaches where reservoir storage was >90% of mean annual flow. In these four reaches, narrowleaf was abundant despite peak flow attenuation of 45–61%. Poor model performance in these four reaches may be explained in part by a pulse of narrowleaf cottonwood expansion as a response to channel narrowing and in part by differences between narrowleaf and broadleaf cottonwood response to floods and drought.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Wilding, T.K., Sanderson, J.S., Merritt, D.M., Rood, S.B., and Poff, N.L., 2014. Riparian responses to reduced flood flows: comparing and contrasting narrowleaf and broadleaf cottonwoods. Hydrological Sciences Journal, 59 (3–4), 605–617.  相似文献   

18.
ABSTRACT

Among various strategies for sediment reduction, venting turbidity currents through dam outlets can be an efficient way to reduce suspended sediment deposition. The accuracy of turbidity current arrival time forecasts is crucial for the operation of reservoir desiltation. A turbidity current arrival time (TCAT) model is proposed. A multi-objective genetic algorithm (MOGA), a support vector machine (SVM) and a two-stage forecasting technique are integrated to obtain more effective long lead-time forecasts of inflow discharge and inflow sediment concentration. The multi-objective genetic algorithm (MOGA) is applied for determining the optimal inputs of the forecasting model, support vector machine (SVM). The two-stage forecasting technique is implemented by adding the forecasted values to candidate inputs for improving the long lead-time forecasting. Then, the turbidity current arrival time from the inflow boundary to the reservoir outlet is calculated. To demonstrate the effectiveness of the TCAT model, it is applied to Shihmen Reservoir in northern Taiwan. The results confirm that the TCAT model forecasts are in good agreement with the observed data. The proposed TCAT model can provide useful information for reservoir sedimentation management during desilting operations.  相似文献   

19.
Abstract

Seasonality is an important hydrological signature for catchment comparison. Here, the relevance of monthly precipitation–runoff polygons (defined as scatter points of 12 monthly average precipitation–runoff value pairs connected in the chronological monthly sequence) for characterizing seasonality patterns was investigated to describe the hydrological behaviour of 10 catchments spanning a climatic gradient across the northern temperate region. Specifically, the research objectives were to: (a) discuss the extent to which monthly precipitation–runoff polygons can be used to infer active hydrological processes in contrasting catchments; (b) test the ability of quantitative metrics describing the shape, orientation and surface area of monthly precipitation–runoff polygons to discriminate between different seasonality patterns; and (c) examine the value of precipitation–runoff polygons as a basis for catchment grouping and comparison. This study showed that some polygon metrics were as effective as monthly average runoff coefficients for illustrating differences between the 10 catchments. The use of precipitation–runoff polygons was especially helpful to look at the dynamics prevailing in specific months and better assess the coupling between precipitation and runoff and their relative degree of seasonality. This polygon methodology, linked with a range of quantitative metrics, could therefore provide a new simple tool for understanding and comparing seasonality among catchments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Ali, G., Tetzlaff, D., Kruitbos, L., Soulsby, C., Carey, S., McDonnell, J., Buttle, J., Laudon, H., Seibert, J., McGuire, K., and Shanley, J., 2013. Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal, 59 (1), 56–72.  相似文献   

20.
Abstract

Hydrological models are commonly used to perform real-time runoff forecasting for flood warning. Their application requires catchment characteristics and precipitation series that are not always available. An alternative approach is nonparametric modelling based only on runoff series. However, the following questions arise: Can nonparametric models show reliable forecasting? Can they perform as reliably as hydrological models? We performed probabilistic forecasting one, two and three hours ahead for a runoff series, with the aim of ascribing a probability density function to predicted discharge using time series analysis based on stochastic dynamics theory. The derived dynamic terms were compared to a hydrological model, LARSIM. Our procedure was able to forecast within 95% confidence interval 1-, 2- and 3-h ahead discharge probability functions with about 1.40 m3/s of range and relative errors (%) in the range [–30; 30]. The LARSIM model and the best nonparametric approaches gave similar results, but the range of relative errors was larger for the nonparametric approaches.

Editor D. Koutsoyiannis; Associate editor K. Hamed

Citation Costa, A.C., Bronstert, A. and Kneis, D., 2012. Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach. Hydrological Sciences Journal, 57 (1), 10–25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号