首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Artificial neural network (ANN) models provide huge potential for simulating nonlinear behaviour of hydrological systems. However, the potential of ANN is yet to be fully exploited due to the problems associated with improving the model generalization performance. Generalization refers to the ability of a neural network to correctly process input data that have not been used for calibrating the neural network model. In the hydrological context, better generalization performance implies higher precision of forecasting. The primary objectives of this study are to explore new measures for improving the generalization performance of an ANN-based rainfall–runoff model, and to evaluate the applicability of the new measures. A modified neural network model (entitled goal programming (GP) neural network) for modelling the rainfall–runoff process has been developed, in which three enhancements are made as compared to the widely-used backpropagation (BP) network. The three enhancements are (a) explicit integration of hydrological prior knowledge into the neural network learning; (b) incorporation of a modified training objective function; and (c) reduction of network sensitivity to input errors. Seven watersheds across a range of climatic conditions and watershed areas in China were selected for examining the alternative networks. The results demonstrate that the GP consistently outperformed the BP both in the calibration and verification periods and three proposed measures yielded improvement of performance.  相似文献   

2.
Various types of neural networks have been proposed in previous papers for applications in hydrological events. However, most of these applied neural networks are classified as static neural networks, which are based on batch processes that update action only after the whole training data set has been presented. The time variate characteristics in hydrological processes have not been modelled well. In this paper, we present an alternative approach using an artificial neural network, termed real‐time recurrent learning (RTRL) for stream‐flow forecasting. To define the properties of the RTRL algorithm, we first compare the predictive ability of RTRL with least‐square estimated autoregressive integrated moving average models on several synthetic time‐series. Our results demonstrate that the RTRL network has a learning capacity with high efficiency and is an adequate model for time‐series prediction. We also investigated the RTRL network by using the rainfall–runoff data of the Da‐Chia River in Taiwan. The results show that RTRL can be applied with high accuracy to the study of real‐time stream‐flow forecasting networks. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
郭燕  赖锡军 《湖泊科学》2020,32(3):865-876
湖泊水位是维持其生态系统结构、功能和完整性的基础.鄱阳湖受流域"五河"和长江来水双重影响,水位变化复杂.为了准确预测鄱阳湖水位变化,采用长短时记忆神经网络方法(LSTM)构建了鄱阳湖水位预测模型.该模型以赣江、抚河、信江、饶河和修水"五河"入湖流量和长江干流流量作为输入条件,预测鄱阳湖湖区不同代表站(湖口、星子、都昌、吴城和康山)的水位过程.研究以1956—1980年的水文时间序列数据作为训练集,1981—2000年作为验证集,探讨了LSTM模型输入时间窗、隐藏神经元数目、初始学习率等模型参数对预测精度的影响,并确定了鄱阳湖水位预测模型的最优参数.结果表明,采用LSTM神经网络方法可基于流域"五河"和长江来水量历时数据合理预测鄱阳湖不同湖区的水位过程,五站水位预测的均方根误差为0.41~0.50 m,纳什效率系数和决定系数达0.96~0.98.为考察模型训练数据集对鄱阳湖水位预测结果的影响,进一步选取了随机5年(1956—1960年)的资料和5个典型水文年(1954年、1973年、1974年、1977年和1978年)的日均流量资料来训练模型.结果显示随机5年资料作为训练数据的预测精度要差于典型年水文资料训练得到的模型,尤其是洪、枯水位的预测;由于典型水文年数据量仍远低于20年的资料,故其总体预测精度要略低于采用20年资料训练的模型.建议应用这类基于数据驱动的模型时,应该尽可能多选取具有代表性的资料来训练.  相似文献   

4.
冯德益  汪德馨 《地震》1994,(4):23-29
本文把神经网络方法引进地震预报研究当中。使用地震频次,最大震级,平均震级,等价地震次数等多项地震活动性指标作为神经网络的输入,未来时段内的最大地震震级作为其输出,可以对某一固定地区的最大地震震级作出中近期预报。选用的神经网络模型为含两个中间层的前向模型,并采用BP算法。所得结果表明,用神经网络方法可以在一定精度范围内使震级预报的内检符合率达到100%,在本文的例子中,外推预报准确率达到60%以上。  相似文献   

5.
ABSTRACT

In this paper, a mid- to long-term runoff forecast model is developed using an ideal point fuzzy neural network–Markov (NFNN-MKV) hybrid algorithm to improve the forecasting precision. Combining the advantages of the new fuzzy neural network and the Markov prediction model, this model can solve the problem of stationary or volatile strong random processes. Defined error statistics algorithms are used to evaluate the performance of models. A runoff prediction for the Si Quan Reservoir is made by utilizing the modelling method and the historical runoff data, with a comprehensive consideration of various runoff-impacting factors such as rainfall. Compared with the traditional fuzzy neural networks and Markov prediction models, the results show that the NFNN-MKV hybrid algorithm has good performance in faster convergence, better forecasting accuracy and significant improvement of neural network generalization. The absolute percentage error of the NFNN-MKV hybrid algorithm is less than 7.0%, MSE is less than 3.9, and qualification rate reaches 100%. For further comparison of the proposed model, the NFNN-MKV model is employed to estimate (training and testing for 120-month-ahead prediction) and predict river discharge for 156 months at Weijiabao on the Weihe River in China. Comparisons among the results of the NFNN-MKV model, the WNN model and the SVR model indicate that the NFNN-MKV model is able to significantly increase prediction accuracy.
Editor D. Koutsoyiannis; Associate editor Y. Gyasi-Agyei  相似文献   

6.
《水文科学杂志》2013,58(4):588-598
Abstract

The main aim of this study is to develop a flow prediction method, based on the adaptive neural-based fuzzy inference system (ANFIS) coupled with stochastic hydrological models. An ANFIS methodology is applied to river flow prediction in Dim Stream in the southern part of Turkey. Application is given for hydrological time series modelling. Synthetic series, generated through autoregressinve moving-average (ARMA) models, are then used for training data sets of the ANFIS. It is seen that the extension of input and output data sets in the training stage improves the accuracy of forecasting by using ANFIS.  相似文献   

7.
气象因子是影响湖泊富营养化的重要因素,而湖泊富营养化对人群健康、生态系统和社会经济等均有负面影响.本文基于统计资料及遥感数据,结合Morlet小波分析和BP多层前馈神经网络(BP神经网络)构建了不同时间尺度下的小波神经网络耦合模型,分析了19862011年云南星云湖水华强度变化与月降雨量、月平均气温、月平均风速、月日照...  相似文献   

8.
利用神经网络算法挖掘海量数据的规律已成为科技发展的一种趋势,本文针对卫星信号的天顶对流层延迟进行建模.对流层延迟是影响卫星定位精度的重要因素之一,建立精密区域对流层模型对高精度定位有着重要的意义.对区域测站对流层延迟数据的分析,考虑到实时建模中传统BP(Back Propagation)神经网络计算量大,易出现"过拟合"现象、不稳定等因素,通过改进的BP神经网络建立了区域精密对流层模型.详细介绍了新模型的建立过程,并与常用的对流层区域实时模型进行了对比.还讨论了建模测站数目对预报精度的影响.相比现有的其他对流层延迟模型,基于改进的BP神经网络构建的区域精密对流层延迟模型无论在拟合和预报方面都有较好的精度,且随着测站数目的增加模型精度趋于平稳.改进的模型参数较少,可以进行实时的区域精密对流层延迟改正;需要播发的信息量小,适用于连续运行参考站系统(Continuously Operating Reference Stations,CORS)的应用.研究表明:改进的BP神经网络模型能够更好的充分利用大规模历史数据描述卫星信号对流层延迟的空间分布情况,适用于实时大区域精密对流层建模.基于日本地区2005年近1000多个测站的NCAR(National Center Atmospheric Research)对流层数据进行区域对流层延迟建模,结果表明改进的BP神经网络模型在拟合和预报精度上都有较大提升,RMSE(Root Mean Square Error)分别为:7.83 mm和8.52 mm,而四参数模型拟合、预报RMSE分别18.03 mm和16.60 mm.  相似文献   

9.
In this paper, an early stopped training approach (STA) is introduced to train multi-layer feed-forward neural networks (FNN) for real-time reservoir inflow forecasting. The proposed method takes advantage of both Levenberg–Marquardt Backpropagation (LMBP) and cross-validation technique to avoid underfitting or overfitting on FNN training and enhances generalization performance. The methodology is assessed using multivariate hydrological time series from Chute-du-Diable hydrosystem in northern Quebec (Canada). The performance of the model is compared to benchmarks from a statistical model and an operational conceptual model. Since the ultimate goal concerns the real-time forecast accuracy, overall the results show that the proposed method is effective for improving prediction accuracy. Moreover it offers an alternative when dynamic adaptive forecasting is desired.  相似文献   

10.
Abstract

The accurate prediction of hourly runoff discharge in a watershed during heavy rainfall events is of critical importance for flood control and management. This study predicts n-h-ahead runoff discharge in the Sandimen basin in southern Taiwan using a novel hybrid approach which combines a physically-based model (HEC-HMS) with an artificial neural network (ANN) model. Hourly runoff discharge data (1200 datasets) from seven heavy rainfall events were collected for the model calibration (training) and validation. Six statistical indicators (i.e. mean absolute error, root mean square error, coefficient of correlation, error of time to peak discharge, error of peak discharge and coefficient of efficiency) were employed to evaluate the performance. In comparison with the HEC-HMS model, the single ANN model, and the time series forecasting (ARMAX) model, the developed hybrid HEC-HMS–ANN model demonstrates improved accuracy in recursive n-h-ahead runoff discharge prediction, especially for peak flow discharge and time.  相似文献   

11.
ABSTRACT

The rainfall–runoff process is governed by parameters that can seldom be measured directly for use with distributed models, but are rather inferred by expert judgment and calibrated against historical records. Here, a comparison is made between a conceptual model (CM) and an artificial neural network (ANN) for their ability to efficiently model complex hydrological processes. The Sacramento soil moisture accounting model (SAC-SMA) is calibrated using a scheme based on genetic algorithms and an input delay neural network (IDNN) is trained for variable delays and hidden layer neurons which are thoroughly discussed. The models are tested for 15 ephemeral catchments in Crete, Greece, using monthly rainfall, streamflow and potential evapotranspiration input. SAC-SMA performs well for most basins and acceptably for the entire sample with R2 of 0.59–0.92, while scoring better for high than low flows. For the entire dataset, the IDNN improves simulation fit to R2 of 0.70–0.96 and performs better for high flows while being outmatched in low flows. Results show that the ANN models can be superior to the conventional CMs, as parameter sensitivity is unclear, but CMs may be more robust in extrapolating beyond historical record limits and scenario building.
EDITOR M.C. Acreman; ASSOCIATE EDITOR not assigned  相似文献   

12.
Abstract

Accurate forecasting of streamflow is essential for the efficient operation of water resources systems. The streamflow process is complex and highly nonlinear. Therefore, researchers try to devise alterative techniques to forecast streamflow with relative ease and reasonable accuracy, although traditional deterministic and conceptual models are available. The present work uses three data-driven techniques, namely artificial neural networks (ANN), genetic programming (GP) and model trees (MT) to forecast river flow one day in advance at two stations in the Narmada catchment of India, and the results are compared. All the models performed reasonably well as far as accuracy of prediction is concerned. It was found that the ANN and MT techniques performed almost equally well, but GP performed better than both these techniques, although only marginally in terms of prediction accuracy in normal and extreme events.

Citation Londhe, S. & Charhate, S. (2010) Comparison of data-driven modelling techniques for river flow forecasting. Hydrol. Sci. J. 55(7), 1163–1174.  相似文献   

13.
The main objective of this study was to fit and recognize spatial distribution patterns of grassland insects using various neural networks, and to analyze the feasibility of neural networks for detecting spatial distribution patterns of grassland insects. BP neural network, Learning vector quantization (LVQ) neural network, linear neural network and Fisher’s linear discriminant analysis were used to fit and recognize spatial distribution patterns at different ecological scales. Various comparisons and analysis were conducted. The results showed that BP, LVQ and linear neural networks were better algorithms for recognizing spatial distribution patterns of grassland insects. BP neural network was the best algorithm to fit spatial distribution patterns. BP network may be used to recognize the spatial details of distribution patterns, and the recognition performance of BP network became better as the increase of the number of hidden layers and neurons. Performance of linear neural network for pattern recognition was similar to linear discrimination method. Linear neural network would yield better performance in finding the general trends of distribution patterns. Recognition performance of LVQ network was just between BP network and linear network. It was found that recognition performance of neural networks depended upon not only the ecological scale but also the criterion for classification. Under the uniform criterion, recognition efficiency of linear methods tended to be weak as ecological scale became to be coarser. A joint use of neural networks was suggested in order to achieve both overall and detailed understanding on spatial distribution patterns.  相似文献   

14.
控制路基沉降是公路工程中的一个关键技术问题,而路基沉降与其影响因素之间存在着线性、非线性关系。当输入自变量较多时,用传统神经网络建模容易出现过拟合现象,导致网络模型预测精度较低。针对此问题,本文用遗传算法对神经网络模型的权值和阈值进行优化,同时讨论遗传参数的设定对输出结果的影响。通过对成南高速的实测数据进行仿真,试验结果表明:优化后的BP神经网络具有较高的预测精度,预测效果明显优于传统神经网络模型的输出结果,该预测方法可作为高速公路路基长期沉降预测的一种有效辅助手段。  相似文献   

15.
准确判定极震区烈度是震后应急工作高效开展的重要基础。收集1966—2017年发生在中国大陆地区MS 5.0以上有详细烈度记录的地震事件322例,选取与极震区烈度有关的7个因子进行主成分分析,将提取的主成分确定为BP神经网络的输入,极震区烈度为输出,在遗传算法优化的基础上,构建用于极震区烈度预测的BP神经网络模型。结果显示,与传统模型相比,神经网络模型在预测误差分布、精度和预测结果正确率等方面都具有明显的优越性。  相似文献   

16.
Abstract

A wavelet-neural network (WNN) hybrid modelling approach for monthly river flow estimation and prediction is developed. This approach integrates discrete wavelet multi-resolution decomposition and a back-propagation (BP) feed-forward multilayer perceptron (FFML) artificial neural network (ANN). The Levenberg-Marquardt (LM) algorithm and the Bayesian regularization (BR) algorithm were employed to perform the network modelling. Monthly flow data from three gauges in the Weihe River in China were used for network training and testing for 48-month-ahead prediction. The comparison of results of the WNN hybrid model with those of the single ANN model show that the former is able to significantly increase the prediction accuracy.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Wei, S., Yang, H., Song, J.X., Abbaspour, K., and Xu, Z.X., 2013. A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrological Sciences Journal, 58 (2), 374–389.  相似文献   

17.
Abstract

Measurements made in the past few decades undeniably indicate change in the climate. The most visible sign of global climate change is air temperature, while less visible indicators include changes in river water temperatures. Changes in river temperature can significantly affect the environment, primarily the biosphere. The physical, biological and chemical characteristics of the river are directly affected by water temperature, although estimation of this relationship presents a complex problem. Although river temperature is influenced by hydrological and meteorological factors, the purpose of this study is to model daily water temperature using only one known parameter, mean air temperature. The relationship between the daily mean air and daily water temperature of the River Drava in Croatia is analysed using linear regression, stochastic modelling or nonlinear regression and multilayer perceptron (MLP) feed-forward neural networks. The results indicate that the MLP models are much better models which can be used for the estimation and prediction of daily mean river temperature.
Editor D. Koutsoyiannis; Associate editor M. Acreman  相似文献   

18.
《水文科学杂志》2013,58(5):896-916
Abstract

The performances of three artificial neural network (NN) methods for combining simulated river flows, based on three different neural network structures, are compared. These network structures are: the simple neural network (SNN), the radial basis function neural network (RBFNN) and the multi-layer perceptron neural network (MLPNN). Daily data of eight catchments, located in different parts of the world, and having different hydrological and climatic conditions, are used to enable comparisons of the performances of these three methods to be made. In the case of each catchment, each neural network combination method synchronously uses the simulated river flows of four rainfall—runoff models operating in design non-updating mode to produce the combined river flows. Two of these four models are black-box, the other two being conceptual models. The results of the study show that the performances of all three combination methods are, on average, better than that of the best individual rainfall—runoff model utilized in the combination, i.e. that the combination concept works. In terms of the Nash-Sutcliffe model efficiency index, the MLPNN combination method generally performs better than the other two combination methods tested. For most of the catchments, the differences in the efficiency index values of the SNN and the RBFNN combination methods are not significant but, on average, the SNN form performs marginally better than the more complex RBFNN alternative. Based on the results obtained for the three NN combination methods, the use of the multi-layer perceptron neural network (MLPNN) is recommended as the appropriate NN form for use in the context of combining simulated river flows.  相似文献   

19.
Abstract

Artificial neural networks (ANN) are nonlinear models widely investigated in hydrology due to their properties of universal approximation and parsimony. Their performance during the training phase is very good, and their ability to generalize can be improved by using regularization methods such as early stopping and cross-validation. In our research, two kinds of generic models are implemented: the feed-forward model and the recurrent model. At first glance, the feed-forward model would seem to be more effective than the recurrent one on non-stationary datasets, because measured information on the state of the system (measured discharge) is used as input, thereby implementing a kind of data assimilation. This study investigates the feasibility and effectiveness of data assimilation and adaptivity when implemented in both feed-forward and recurrent neural networks. Based on the IAHS Workshop held in Göteborg, Sweden (July 2013), the hydrological behaviour of two watersheds of different sizes and different kind of non-stationarity will be modelled: (a) the Fernow watershed (0.2 km2) in the USA, affected by significant modifications in land cover during the study period, and (b) the Durance watershed (2170 km2) in France, affected by an increase in temperature that is causing a decrease in the extent of glaciers. Two methods were applied to evaluate the ability of ANN to adapt on the test set: (i) adaptivity using observed data to adapt parameter values in real time; and (ii) data assimilation using observed data to modify inaccurate inputs in real time. The goal of the study is thus re-analysis and not forecasting. This study highlights how effective the feed-forward model is compared to the recurrent model for dealing with non-stationarity. It also shows that adaptivity and data assimilation improve the recurrent model considerably, whereas improvement is marginal for the feed-forward model in the same conditions. Finally, this study suggests that adaptivity is effective in the case of changing conditions of the watershed, whereas data assimilation is better in the case of climate change (inputs modification).  相似文献   

20.
《水文科学杂志》2013,58(1):114-118
Abstract

A reliable flood warning system depends on efficient and accurate forecasting technology. A systematic investigation of three common types of artificial neural networks (ANNs) for multi-step-ahead (MSA) flood forecasting is presented. The operating mechanisms and principles of the three types of MSA neural networks are explored: multi-input multi-output (MIMO), multi-input single-output (MISO) and serial-propagated structure. The most commonly used multi-layer feed-forward networks with conjugate gradient algorithm are adopted for application. Rainfall—runoff data sets from two watersheds in Taiwan are used separately to investigate the effectiveness and stability of the neural networks for MSA flood forecasting. The results indicate consistently that, even though the MIMO is the most common architecture presented in ANNs, it is less accurate because its multi-objectives (predicted many time steps) must be optimized simultaneously. Both MISO and serial-propagated neural networks are capable of performing accurate short-term (one- or two-step-ahead) forecasting. For long-term (more than two steps) forecasts, only the serial-propagated neural network could provide satisfactory results in both watersheds. The results suggest that the serial-propagated structure can help in improving the accuracy of MSA flood forecasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号