首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Rail tracks undergo degradation owing to particle breakage and fouling of ballast by various fines including coal and subgrade soil. As the ballast becomes fouled, its strength and drainage capacity are compromised, sometimes resulting in differential settlement and reduced track stability. This paper demonstrates a continuum mechanics based framework to evaluate the detrimental effect of fines on the strength, deformation and degradation of coal-fouled ballast under monotonic loading. An elastoplastic constitutive model that considers the effect of fines content and energy consumption associated with particle breakage during shearing is presented. This multiphase constitutive model is developed within a critical state framework based on a kinematic-type yield locus and a modified stress-dilatancy approach. A general formulation for the rate of ballast breakage and coal particle breakage during triaxial shearing is presented and incorporated into the plastic flow rule to accurately predict the stress–strain response of coal-fouled ballast at various confining pressures. The behaviour of ballast at various levels of fouling is analysed and validated by experimental data.  相似文献   

2.
In a number of recent case studies, the liquefaction of silty sands has been reported. To investigate the undrained shear and deformation behaviour of Chlef sand–silt mixtures, a series of monotonic and stress-controlled cyclic triaxial tests were conducted on sand encountered at the site. The aim of this laboratory investigation is to study the influence of silt contents, expressed by means of the equivalent void ratio on undrained residual shear strength of loose, medium dense and dense sand–silt mixtures under monotonic loading and liquefaction potential under cyclic loading. After an earthquake event, the prediction of the post-liquefaction strength is becoming a challenging task in order to ensure the stability of different types of earth structures. Thus, the choice of the appropriate undrained residual shear strength of silty sandy soils that are prone to liquefaction to be used in engineering practice design should be established. To achieve this, a series of undrained triaxial tests were conducted on reconstituted saturated silty sand samples with different fines contents ranging from 0 to 40 %. In all tests, the confining pressure was held constant at 100 kPa. From the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not characterize the actual behaviour of the soil as well. The equivalent void ratio expressing the fine particles participation in soil strength is then introduced. A linear relationship between the undrained shear residual shear strength and the equivalent void ratio has been obtained for the studied range of the fines contents. Cyclic test results confirm that the increase in the equivalent void ratio and the fines content accelerates the liquefaction phenomenon for the studied stress ratio and the liquefaction resistance decreases with the increase in either the equivalent void ratio or the loading amplitude level. These cyclic tests results confirm the obtained monotonic tests results.  相似文献   

3.
The effect of non-plastic fines (silt) on the undrained monotonic response of saturated and isotropically consolidated sand specimens prepared to various measures of their density was studied in detail through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. Specimens of 50 mm in diameter and 100 mm in height were tested at a rate of loading of 0.6 mm/min for this purpose. The limiting silt content and the relative density of a specimen were found to influence the undrained monotonic response of sand–silt mixtures to a great extent. Undrained monotonic response was observed to be independent of silt content at very high relative densities; however the presence of fines significantly influenced this response of loose to medium dense specimens. Individual and combined analyses of undrained monotonic peak strengths which are closely related to the liquefaction related problems have been done in this paper to assess the variation patterns.  相似文献   

4.
This study explores the link between the monotonic and cyclic undrained behaviour of sands using the discrete element method (DEM). It is shown that DEM can effectively capture the flow deformation of sands sheared under both monotonic and cyclic undrained loading conditions. When subjected to cyclic shearing, flow-type failure is observed for a loose sample, while cyclic mobility is observed for a dense sample. A strong correlation between the monotonic and cyclic loading behaviour that has been revealed experimentally is also confirmed in DEM simulations: (a) flow deformation occurs in the compressive loading direction when the cyclic stress path intersects the monotonic compression stress path prior to the monotonic extension stress path, and vice versa; (b) the onset of flow deformation in q\(p^{\prime }\) space is located in the zone bounded by the critical state line and the instability line determined from monotonic simulations. Hill’s condition of instability is shown to be effective to describe the onset of flow failure. Micro-mechanical analyses reveal that flow deformation is initiated when the index of redundancy excluding floating particles drops to below 1.0 under both monotonic and cyclic loading conditions. Flow deformation induced by either monotonic or cyclic loading is characterized by an abrupt change of structural fabric which is highly anisotropic. The reason why the dense sample dilated during monotonic loading but showed cyclic mobility (temporary liquefaction) during cyclic loading is attributed to the repeating reversal of loading direction, which leads to the periodic change of microstructure.  相似文献   

5.

The published literature has revealed conflicting results regarding the effect of low plastic fines fraction (Ip?≤?5.0%) on the mechanical behavior of sandy soils. For this reason, the use of different sample initial structures as (initial relative density approach, global void ratio index approach, etc.) could explain these different mechanical responses of granular materials. Thus, it is necessary to evaluate the quantitative aspect of the low plastic fines effects on the undrained monotonic response of sand-silt mixtures using the global void ratio approach. To achieve this goal, an experimental testing program through controlled monotonic triaxial tests was carried out on reconstituted saturated Chlef sand containing from 0 to 50% silt with an interval of 10% at three global void ratios (e?=?0.64, 0.66 and 0.68) and subjected to constant confining pressure (σ'3?=?100 kPa). The different samples were reconstituted using two different preparation techniques: DFP and MT. The obtained results show that the low plastic fines content appears as a very relevant parameter in the characterization of the mechanical response of sand-silt mixture samples reconstituted at constant global void ratios, where the steady state shear strength and instability shear strength decreased with the increase in low plastic fines content up to the limiting fines contents (Fc?=?40% and Fc?=?10%) considering both studied initial structures (Dry funnel pluviation and Moist tamping), respectively. Beyond these thresholds fines contents, a reverse trend was observed for all parameters under study. Moreover, the test results indicate that the brittleness index, flow potential (Vf), friction index, equivalent void ratio (e*) and equivalent relative density (Dr*) could be considered as reliable parameters in the prediction of the mechanical behavior of the silty sand soils under study.

  相似文献   

6.
Undrained Cyclic and Monotonic Strength of Sand-Silt Mixtures   总被引:1,自引:0,他引:1  
In an attempt to correlate the monotonic peak strength and the cyclic strength of sand-silt mixtures over a wide range of parameters and to clarify some of the existing confusing conclusions in the literature regarding the undrained strength response of sand-silt mixtures, a series of stress controlled cyclic and strain controlled monotonic triaxial tests was carried out on sand-silt mixture specimens of 50 mm diameter and 100 mm height with varying silt content. In these experiments, various measures of sample density was adopted through different approaches such as constant gross void ratio approach, constant relative density approach, constant sand skeleton void ratio approach, and constant interfine void ratio approach. Also the effect of relative density and confining pressure on these strengths was studied. It is observed that the limiting fines content and the relative density of a specimen play the key role in deciding the cyclic and monotonic resistance of sand-silt mixtures when studied through any approach. For any silt content with relative density more than 70%, cyclic and monotonic resistances are observed to be independent of silt content. When the undrained cyclic strengths of these specimens are plotted against their respective undrained monotonic peak strengths, it is observed that there exists a definite exponential relationship between the two with an excellent correlation coefficient. An expression is proposed in this regard to help engineers assess the cyclic strength of sand-silt mixtures from monotonic test results.  相似文献   

7.
In the era of high speed trains, it is very important to ensure the stability of rail tracks under adverse conditions including the fouling of ballast. Fouling of ballast from unstable and saturated soft subgrade soil is one of the major reasons for track deterioration. The reported results of a number of large-scale laboratory experiments on the shear behaviour of ballast and fouled ballast are analysed, herein. It was observed that fines have a significant influence on the shear behaviour of ballast. Shear strength increases and dilatancy decreases with the addition of fines. In this paper, a semi-empirical mathematical model has been proposed to capture the dilatancy of ballast fouled with fines during shearing. The empirical constants a, b and c proposed in the model are a function of the fines content Void Contamination Index (VCI). The results of the model have been compared with the laboratory experiments and are found to be in good agreement.  相似文献   

8.
孙逸飞  沈扬 《岩土力学》2018,39(4):1219-1226
分数阶微分理论在土体静力黏弹性本构模型中得到了广泛应用,然而,其在动力弹塑性模型中的应用尚不多见。为此,基于分数阶微积分理论分析了粗粒料在循环荷载下的变形特性,提出了粗粒料在循环荷载下的分数阶应变率;并以此为基础,进一步建立了粗粒料受静动力荷载作用下的边界面塑性力学本构模型。所提出模型包含10个参数,均可以运用常规三轴试验获得。为了验证所提出模型,选取了几种已有不同文献中的不同粗粒料试验数据进行了模拟,发现,所提出的模型可以较好地模拟粗粒料在静动力加载下的应力-应变行为,对于循环荷载下的长期变形也能较好地预测。  相似文献   

9.
Summary Naturally-occurring road construction materials generally contain a greater amount of fines, and the fines have a higher plasticity than traditional materials such as a crushed rock aggregates. This makes their behaviour more difficult to understand and predict since soil suction and fabric become important controlling factors. The concepts of suction and fabric are outlined, and their role in controlling the behaviour of road construction materials is illustrated by a fundamental laboratory study of a lateritic gravel and two calcrete gravels. These materials have successfully been used as road base construction materials in low-volume bituminous-surfaced roads in Kenya and Botswana. It is concluded that the presence of fines can be an advantage, since they allow significant suctions to develop and also reduce the permeability.  相似文献   

10.
Two strong earthquakes occurred in the region of Chlef (north western part of Algeria) during the last century. From the geological context, there were several great masses of sandy soil ejections on to the ground surface level and severe damages to civil and hydraulic structures. These damages were due to the soil liquefaction phenomenon. The objective of this laboratory investigation is to study the effect of low plastic fines and gradation characteristics on the undrained shear strength (liquefaction resistance) response of sand-silt mixture samples. For this purpose, a series of undrained monotonic triaxial tests were carried out on reconstituted saturated silty sand samples with different fines content ranging from 0 to 50?% at two initial relative densities (Dr?=?20 and 91?%). The initial confining pressure was kept at 100?kPa. The evaluation of the data indicates that the undrained shear strength at the peak (qpeak) can be correlated to the undrained residual strength (Sus), the excess pore pressure (Δu), the fines content (Fc) and the intergranular void ratio (es). The test results indicate also that the undrained shear strength at the peak decreases with the increment of the coefficient of uniformity and fines content as well as with the decrement of the mean grain size in the range of 0–50?% fines content for both relative densities (Dr?=?20 and 91?%).  相似文献   

11.
State parameter defined using void ratio, e, and the steady-state line has been shown to be effective in predicting the undrained behaviour of sand. However, steady-state line for sand with fines is dependent on fines content. To overcome this problem, the concept of equivalent granular void ratio, e*, has been well investigated. However, the conversion from e to e* has been essentially a back-analysis process. A methodology for converting e to e* without the need of a back-analysis process was first presented. The concept of equivalent granular state parameter, ψ*, defined in terms of e*, and equivalent granular steady-state line was then developed. An extensive experimental study was conducted to investigate whether ψ* can capture the effects of fines content, and thus can be used to correlate undrained behaviour of sand–fines mixtures without the need of separately considering the effects of fines content. This study suggested that the effective stress path and deviatoric stress–strain responses in undrained shearing can be correlated with the ψ* value at the start of undrained shearing irrespective of fines content.  相似文献   

12.
Fluid flow through porous media is inherently associated with the detachment and migration of fine particles. The migration of fine particles and ensuing clogging is the main reason of flow rate decrease in porous media. Nanoparticle coating can be a promising method to prevent fines’ detachment and migration by changing electrical surface forces between the pore wall surface and the fine particles. In this study, the attraction and adhesion forces of the nanoparticle-coated surface are measured by atomic force microscope. The effect of the nanoparticle coating on the fines adsorption efficiency is then investigated. The results show that there is an increase in the adhesion force on the nanoparticle-coated surface and the significant improvement of the fines adsorption capacity by the nanoparticle coating. The research results are relevant to other research areas whenever migrating fines cause engineering problems.  相似文献   

13.
大量低产低效井严重阻碍我国煤层气产业发展,其中,煤粉沉降导致的裂缝堵塞、管柱结块是气井稳产时间短、产气量降低甚至不产气的重要因素。系统梳理国内外煤层气井产出煤粉物质组成、生成机理、悬浮运移和产出控制等研究最新进展,总结煤粉凝聚–沉降及分散行为控制机理及关键问题,提出研究展望。煤粉问题伴随煤层气勘探开发全过程,涉及地质选区评价、工程压裂施工和排采管理控制的各个方面。煤粉包括因煤体结构破坏生成的原生煤粉和工程施工形成的次生煤粉,在气井产出中以有机碎屑和黏土矿物组成的混合物为主,部分样品黏土矿物含量高。煤粉悬浮运移受控于储层条件下煤岩结构和表面性质、nm~μm级煤粉颗粒的相互作用、有机质和黏土矿物的作用、通道内的气水流动等因素。煤粉能够适度稳定产出是排采管控的关键,涉及地层水环境对煤粉表面润湿性、表面电性和空间位阻效应的影响及作用机制,以及分散剂离子加入对煤层气的解吸和渗流能力影响等。围绕煤粉“黏附–润湿–凝聚–沉降全过程开展实验模拟”和“煤粉分散稳定性优化及流动实验”研究,以及煤粉理化性质精细表征、凝聚沉降机理分析和分散行为界定,提出适合煤粉稳定运移控制的流速,形成保持煤粉悬浮产出的基础性依据,为保障煤层气–水–煤粉稳定高效产出提供理论和技术支撑。   相似文献   

14.
This experimental study deals with the effect of the overconsolidation ratio on the monotonic undrained shear behavior of silty sand. The study is based on the undrained monotonic triaxial tests for the overconsolidation ratios (OCR?=?1, 2, 4, and 8), with different silt contents ranging from 0% to 40%. The laboratory tests were carried out at an initial relative density of Dr?=?50%. The paper is composed of two parts. The first one presents the tested soils; the second one gives an analysis of the test results and discusses the influence of the overconsolidation ratio on the shear strength of the soil. The test results indicate that the shear strength of the soil increases with the increase of the overconsolidation ratio resulting in an increase of soil dilatancy. The increase in the amount of fines from 0% to 40% increases the phase of the contractancy and consequently reducing the phase of dilatancy of the tested material  相似文献   

15.
Void ratio has been used as a state variable for predicting the liquefaction behaviour of soils under the critical state, sometimes also referred to as the steady state, framework. Recent publications show that void ratio may not be a good parameter for characterising sand with fines because the steady state line (or curve) in the e-log(p′) space moves downward with increase in fines content until it reaches a threshold value referred to as the threshold fines content (TFC). Recently, an alternative state variable, referred to as the equivalent granular void ratio, has been proposed to resolve this problem. To calculate this alternative state variable, an additional parameter ‘b’ is needed. This parameter ‘b’ represents the fraction of fines that actively participate in the force structure of the solid skeleton. However, predicting the ‘b’ value is problematic. This paper examines the factors affecting the ‘b’ value based on published work on binary packing. This leads to a simple semi-empirical equation for predicting the ‘b’ value based on fines size and fines content. The proposed equations were evaluated with published data sets. Then, the concept of an equivalent granular steady state line is proposed. This concept was used to predict the location of SSLs for sand with different fines content from either the SSL of clean sand or the SSL of sand with a given fines content. The predictions agree well with experimental results.  相似文献   

16.
The Effects of Fines on the Behaviour of a Sand Mixture   总被引:1,自引:0,他引:1  
Intergranular void ratio, e s, can be used as an alternative indicator to assess the mechanical properties of composite matrix of coarse and fine grains. In this paper, an intensive laboratory study of saturated coarse rotund sand and fine angular sand mixtures with various mix ratios is investigated by a series of oedometer and direct shear tests. Oedometer tests performed on the mixtures show that fines percentages and stress conditions affect the compression behaviours. Tests indicated that, up to a fraction of fines, which is named as transition fines content (FCt), compression behaviour of the mixture is mainly governed by the sand grains. As the percentage of fines exceeds FCt finer grains govern the compression. Performed direct shear tests revealed that there is a relationship between the FCt and shear strength, which is harmonic with the oedometer test results.  相似文献   

17.
Hu  Nian  Yu  Hai-Sui  Yang  Dun-Shun  Zhuang  Pei-Zhi 《Acta Geotechnica》2020,15(5):1125-1151

This paper presents a fabric tensor-based bounding surface model accounting for anisotropic behaviour (e.g. the dependency of peak strength on loading direction and non-coaxial deformation) of granular materials. This model is developed based on a well-calibrated isotropic bounding surface model. The yield surface is modified by incorporating the back stress which is proportional to a contact normal-based fabric tensor for characterising fabric anisotropy. The evolution law of the fabric tensor, which is dependent on both rates of the stress ratio and the plastic strain, rules that the material fabric tends to align with the loading direction and evolves towards a unique critical state fabric tensor under monotonic shearing. The incorporation of the evolution law leads to a rotational hardening of the yield surface. The anisotropic critical state is assumed to be independent of the initial values of void ratio and fabric tensor. The critical state fabric tensor has the same intermediate stress ratio (i.e. b value) and principal directions as the critical state stress tensor. A non-associated flow rule in the deviatoric plane is adopted, which is able to predict the non-coaxial flow naturally. The stress–strain relation and fabric evolution of model predictions show a satisfactory agreement with DEM simulation results under monotonic shearing with different loading directions. The model is also validated by comparing with laboratory test results of Leighton Buzzard sand and Toyoura sand under various loading paths. The comparison results demonstrate encouraging applicability of the model for predicting the anisotropic behaviour of granular materials.

  相似文献   

18.
19.
This paper presents an extension to the concepts and ideas put forward in three articles by the first author and his colleagues during the 1966–1967 period [1].An isotropic-kinematic hardening rule for sand is proposed applicable to both monotonic and cyclic loading conditions. It is based on the theory of bounding surface plasticity incorporating, as in the previous studies, a non-associated flow rule. A three dimensional formulation of the constitutive relation is provided and a comparison of the predicted behaviour and observed responses for a number of undrained loading programs is presented.  相似文献   

20.
Acta Geotechnica - Fabric anisotropy and fines content (fc) in sands modify significantly their mechanical behaviour, particularly as related to static liquefaction under undrained conditions. The...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号