首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elongate and deformed garnets from Glenelg, NW Scotland, occurwithin a thin shear zone transecting an eclogite body that hasundergone partial retrogression to amphibolite facies at circa700°C. Optical microscopy, back-scattered electron imaging,electron probe microanalysis and electron back-scatter diffractionreveal garnet sub-structures that are developed as a functionof strain. Subgrains with low-angle misorientation boundariesoccur at low strain and garnet orientations are dispersed, aroundrational crystallographic axes, across these boundaries. Towardshigh-strain areas, boundary misorientations increase and thereis a loss of crystallographic control on misorientations, whichtend towards random. In high-strain areas, a polygonal garnetmicrostructure is developed. The garnet orientations are randomlydispersed around the original single-crystal orientation. Somegarnet grains are elongate and Ca-rich garnet occurs on thefaces of elongate grains oriented normal to the foliation. Commonly,the garnet grains are admixed with matrix minerals, and, wherein contact with other phases, garnet is well faceted. We suggestthat individual garnet porphyroclasts record an evolution fromlow-strain conditions, where dislocation creep and recoveryaccommodated deformation, through increasing strain, where dynamicrecrystallization occurred by subgrain rotation, to higheststrains, where recrystallized grains were able to deform bydiffusion creep assisted grain boundary sliding with associatedrotations. KEY WORDS: diffusion creep; EBSD; garnet; plastic deformation; recrystallization  相似文献   

2.
In this study, the chemistry and microstructure of garnet aggregates within a metamorphic vein are investigated. Garnet‐bearing veins in the Sanbagawa metamorphic belt, Japan, occur subparallel to the foliation of a host mafic schist, but some cut the foliation at low angle. Backscattered electron image and compositional mapping using EPMA and crystallographic orientation maps from electron‐backscattered diffraction (EBSD) reveal that numerous small garnet (10–100 μm diameter) coalesce to form large porphyroblasts within the vein. Individual small garnet commonly exhibits xenomorphic shape at garnet/garnet grain boundaries, whereas it is idiomorphic at garnet/quartz boundaries. EBSD microstructural analysis of the garnet porphyroblasts reveals that misorientation angles of neighbour‐pair garnet grains within the vein have a random distribution. This contrasts with previous studies that found coalescence of garnet in mica schist leads to an increased frequency of low angle misorientation boundaries by misorientation‐driven rotation. As garnet nucleated with random orientation, the difference in misorientation between the two studies is due to the difference in the extent of grain rotation. A simple kinetic model that assumes grain rotation of garnet is rate‐limited by grain boundary diffusion creep of matrix quartz, shows that (i) the substantial rotation of a fine garnet grain could occur for the conditions of the Sanbagawa metamorphism, but (ii) the rotation rate drastically decreased as garnet grains formed large clusters during growth. Therefore, the random misorientation distribution of garnet porphyroblasts in the Sanbagawa vein is interpreted as follows: (i) garnet within the vein grew so fast that substantial grain rotation did not occur through porphyroblast formation, and thus (ii) random orientations at the nucleation stage were preserved. The extent of misorientation‐driven rotation indicated by deviation from random orientation distribution may be useful to constrain the growth rate of constituent grains of porphyroblast that formed by multiple nucleation and coalescence.  相似文献   

3.
Within a mica schist from the coesite-bearing Brossasco-Isasca Unit (Western Alps), microstructural analysis shows that Alpine garnet grains are aligned with the crenulated foliation. Garnet crystallographic orientation was analysed with electron backscatter diffraction (EBSD): the obtained crystallographic dispersion patterns and distribution patterns of misorientation axes suggest a strong parallelism of {110} garnet planes with a 56°W-dipping foliation. The data are interpreted as evidence for an epitaxial growth of garnet upon (001) biotite planes, sometime during and/or after dispersion of the biotite/garnet crystals from their initially foliation-parallel orientation by rotation about the Alpine crenulation axis. This interpretation is based on the comparison of the measured EBSD data with: (i) theoretical dispersion trajectories of garnet crystallographic data, (ii) numerically modelled pole figures, and (iii) numerically modelled misorientation axis distribution patterns. Our data suggest that epitaxial growth of garnet upon biotite is allowed by distortion of the pseudohexagonal basal oxygen ring structure on (001) biotite surfaces, and that distortion is driven by introduction of missing ions. Our data further suggest that the spatial distribution of precursor phases influences the distribution patterns of garnet within mica schists.  相似文献   

4.
In polycrystalline aggregates of olivine with mean grain sizes above 35 μm plus a low basaltic melt fraction, both wetted and melt-free grain boundaries are observed after equilibration times at high pressures and temperatures of between 15 and 25 days. In order to assess a possible dependence of the wetting behaviour on the relative orientation of neighbouring grains, a SEM based technique, electron backscatter diffraction (EBSD), is used to determine grain orientations. From the grain orientations relative orientations of neighbouring grains are calculated, which are expressed as misorientation axis/angle pairs. The distribution of misorientation angles and axes of melt-free grain boundaries differ significantly from a purely random distribution, whereas those of wetted grain boundaries are statistically indistinguishable from the random distribution. The relative orientation of two neighbouring grains therefore influences the character of their common grain boundary. However, no clustering towards special (coincident site lattice) misorientation axes is observed, with the inference that the energy differences between special and general misorientations are too small to lead to the development of preferred misorientations during grain growth. Received: 8 December 1997 / Revised, accepted: 6 April 1998  相似文献   

5.
Two types of garnet porphyroblast occur in the Schneeberg Complex of the Italian Alps. Type 1 porphyroblasts form ellipsoidal pods with a centre consisting of unstrained quartz, decussate mica and small garnet grains, and a margin containing large garnet grains. Orientation contrast imaging using the scanning electron microscope shows that the larger marginal garnet grains comprise a number of orientation subdomains. Individual garnet grains without subdomains are small (< 50 µm), faceted and idioblastic, and have simple zoning profiles with Ca‐rich cores and Ca‐poor rims. Subdomains of larger garnet grains are similar in size to the individual, small garnet grains. Type 2 porphyroblasts comprise only ellipsoidal garnet, with small subdomains in the centre and larger subdomains at the margin. Each subdomain has its own Ca high, Ca dropping towards subdomain boundaries. Garnet grains, with or without subdomains, all have the same Ca‐poor composition at rims in contact with other minerals. The compositional zonation patterns are best explained by simultaneous, multiple nucleation, followed by growth and amalgamation of individual garnet grains. The range of individual garnet and garnet subdomain sizes can be explained by a faster growth rate at the porphyroblast margin than in the centre. The difference between Type 1 and Type 2 porphyroblasts is probably related to the growth rate differential across the porphyroblast. Electron backscatter diffraction shows that small, individual garnet grains are randomly oriented. Large marginal garnet grains and subdomain‐bearing garnet grains have a strong preferred orientation, clustering around a single garnet orientation. Misorientations across subdomain boundaries are small and misorientation axes are randomly oriented with respect to crystallographic orientations. The only explanation that fits the observational data is that individual garnet grains rotated towards coincident orientations once they came into contact with each other. This process was driven by the reduction of subdomain boundary energy associated with misorientation loss. Rotation of garnet grains was accommodated by diffusion in the subdomain boundary and diffusional creep and rigid body rotation of other minerals (quartz and mica) around the garnet. An analytical model, in which the kinetics of garnet rotation are controlled by the rheology of surrounding quartz, suggests that, at the conditions of metamorphism, the rotation required to give a strong preferred orientation can occur on a similar time‐scale to that of porphyroblast growth.  相似文献   

6.
The petrological significance of misorientations between grains   总被引:4,自引:1,他引:4  
Misorientation analysis quantifies microstructural features in tectonites, metamorphic and igneous rocks, and allows hypotheses on their formation to be tested. The misorientation between two lattices can be expressed by a rotation axis and rotation angle. For lattices with symmetry, it is conventional to take the minimum angle that enables one lattice to be rotated into the other. For a group of lattice measurements two types of misorientation distribution can be calculated. Selecting random pairs of grains gives the random-pair misorientation distribution. Selecting neighbouring pairs gives the neighbour-pair misorientation distribution. The forms of both distributions are visualised using histograms or cumulative frequency diagrams. They are strongly influenced by any overall crystallographic preferred orientation and by intrinsic crystal symmetry. In many rocks, the random-pair misorientation distribution and neighbour-pair misorientation distribution are statistically significantly different (quantified using the Kolmogorov-Smirnov test). Differences between the random-pair misorientation distribution and neighbour-pair misorientation distribution imply that adjacent grains have physically interacted or are inherited from a precursor microstructure. Interactions include (1) reduction in surface energy by lattice alignment. We show this may have occurred in garnet clusters in schist, and olivine in a cumulate. It is well-known in metals and may be a common geological process. (2) Nucleation, where those nuclei have influenced the orientation of adjacent nuclei. (3) Mechanical rotations of facetted grains in compacting crystal mushes, so that faces become parallel. (4) Growth twinning. Inheritance includes (1) subgrain rotation recrystallisation in tectonites deforming by crystal plastic processes. (2) Mechanical and transformation-related twinning. (3) Domainal microstructures, e.g. where grains have formed from a few large original grains, may give rise to spurious correlations when the orientation data cover more than one domain. With this proviso, misorientation analysis can be used to investigate many important microstructural processes.  相似文献   

7.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   

8.
Crystallographic orientation data from pure albite domains in a low-grade sheared metagabbro from the Combin Zone of the western Italian Alps were measured by electron backscatter diffraction. Crystallographic preferred orientations (CPOs) in four high-strain domains are non-random and have a triclinic symmetry. The clusters of [100], [010] and [001] show an angular relationship that corresponds to that of the albite crystal lattice. However, the orientations of axis clusters to the kinematic axes vary from domain to domain. CPOs from a low-strain domain also show clustered axes with triclinic symmetry, but with more intense clustering than those in the high-strain domains. Grain misorientation distributions are presented both for the low-strain domain and one of the high-strain domains. In the high-strain domain, the distribution of misorientation angles between neighbouring grains displays a peak at about 70°. The equivalent distribution in the low-strain domain has a peak at 30°. For both domains, the misorientation axis distributions, between neighbouring and non-neighbouring grains, are random, except for some of axes with 160–180° misorientation that exhibit a slight concentration around [010]. The diversity of CPOs among the domains suggests that these CPOs could not be produced by dislocation creep. They are likely to have been inherited from plagioclase parents, as a result of host control on the nucleation of the new albite grains. These CPOs do not contain any direct information about the deformation kinematics. We interpret that deformation of these domains occurred by granular flow. Crystallographic axis dispersion due to grain boundary sliding (GBS) caused weakening of CPOs, modification of misorientation angle distributions and randomisation of misorientation axis distributions. The fact that a CPO can survive GBS even after a high strain indicates that CPO is not always a sensitive indicator of deformation mechanisms. Misorientation distribution may provide a complementary, and possibly a more sensitive indicator of deformation mechanisms.  相似文献   

9.
The growth history of two populations of snowball garnet from the Lukmanier Pass area (central Swiss Alps) was examined through a detailed analysis of three-dimensional geometry, chemical zoning and crystallographic orientation. The first population, collected in the hinge of a chevron-type fold, shows an apparent rotation of 360°. The first 270° are characterized by spiral-shaped inclusion trails, gradual and concentric Mn zoning and a single crystallographic orientation, whereas in the last 90°, crenulated inclusion trails and secondary Mn maxima centred on distinct crystallographic garnet domains are observed. Microstructural, geochemical and textural data indicate a radical change in growth regime between the two growth sequences. In the first 270°, growth occurred under rotational non-coaxial flow, whereas in the last 90°, garnet grew under a non-rotational shortening regime. The second population, collected in the limb of the same chevron-type fold structure, is characterized by a spiral geometry that does not exceed 270° of apparent rotation. These garnet microstructures do not record any evidence for a modification of the stress field during garnet growth. Concentric Mn zoning as well as a single crystallographic orientation are observed for the entire spiral. Electron backscatter diffraction data indicate that nearly all central domains in the snowball garnet are characterized by one [001] axis oriented (sub-)parallel to the symmetry axis and by another [001] axis oriented (sub-)parallel to the orientation of the internal foliation. These features suggest that the crystallographic orientation across the garnet spiral is not random and that a relation exists among the symmetry axis, the internal foliation and the crystallographic orientation.  相似文献   

10.
Eclogite-facies rocks within the Bergen Arcs, western Norway, have formed from granulites along shear zones and fluid pathways. Garnets that were inherited from granulite facies protoliths show different types of replacement patterns due to an incomplete eclogitisation process including concentric rim zoning, zoning along vein fillings and inclusion trails, and zoning bands without inclusions. The interfacial part between the granulitic core and the eclogitic rim of garnet as well as the microstructure of other relevant minerals (omphacite, plagioclase) has been analysed using analytical transmission electron microscopy (ATEM). In garnet, the interface is characterised by gradual changes in composition from Xalm=0.31, Xpyr=0.50 to Xalm=0.54, and Xpyr=0.25 within ≈20 μm and exhibits no distinct change in microstructure. Granulitic plagioclase shows exsolution lamellae of the Bøggild intergrowth. In omphacite, anti-phase domains (APDs) which potentially record the temperature of cation ordering after mineral growth have been observed and their size suggest eclogitisation at 600–700 °C. The electron backscatter diffraction (EBSD) analysis revealed that the lattice orientation of the granulitic feldspar is basically unrelated to tectonic axes whereas newly formed eclogitic minerals omphacite and kyanite show a crystallographic relation to the foliation. In garnet, no change in the basic crystallographic orientation between the eclogitic and granulitic garnet composition was confirmed. However, misorientation analysis suggests a cellular microstructure not more than 1° misorientation in the core of the garnets, which is missing in the eclogitic rim indicating textural equilibration of the latter. The heterogeneous replacement patterns are characteristic for dissolution and re-precipitation reactions in an open system limited to fluid availability. The appearance of the compositional profile in garnet is interpreted as a diffusional re-equilibration step after the time-limited, fluid-mediated eclogitisation event that apparently obscured the initially sharp interface within the further retrograde metamorphic history.  相似文献   

11.
The microstructural development of synthetic rocksalt experimentally deformed at 100–200°C can be dominated either by grain boundary migration recrystallisation or by subgrain rotation recrystallisation, depending on water content. Samples taken from both regimes have been analysed using automated electron backscatter diffraction in order to collect crystallographic orientation and misorientation data. The frequency distribution of boundary misorientations, the boundary hierarchy characteristics and the nature of any crystallographic preferred orientation (CPO) have been used to determine the crystallographic signature of both recrystallisation processes. Dominant subgrain rotation recrystallisation results in many low to medium angle (4–20°) boundaries, a strong CPO and a continuous boundary hierarchy. Dominant grain boundary migration recrystallisation results in few low or medium angle boundaries, and a discrete boundary hierarchy. The causes of these differences and the potential application of crystallographic signatures to the study of naturally deformed rocks are discussed.  相似文献   

12.
Intragranular microshear zones within a greenschist facies calcite marble were studied to try to constrain better the processes of dynamic recrystallization as well as the deformation processes that occur within newly recrystallized grains. Intragranular recrystallized grains within large, twinned calcite porphyroclasts can be related to the host from which they have recrystallized and are the focus of an electron backscatter diffraction study. Lattice distortions, low angle boundaries and some high angle boundaries (>15°) in the microshears within a porphyroclast have the same misorientation axes suggesting that deformation occurred by climb-accommodated dislocation creep involving subgrain rotation recrystallization. Changes in the ratio of host and twin domain, as the deformation zone is entered, show that twin boundary migration also occurred. Recrystallized grains have similar sizes (10–60 μm) to subgrains, suggesting that they formed by subgrain rotation. However, within the intragranular microshear zones the misorientations between recrystallized grains and porphyroclasts are considerably larger than 15° and misorientation axes are randomly oriented. Moreover recrystallized grain orientations average around the porphyroclast orientation. We suggest that the recrystallized grains, once formed, are able to deform partly by diffusion accommodated grain boundary sliding, which is consistent with predictions made from lab flow laws.  相似文献   

13.
A population of oscillatory zoned, igneous zircon grains in a Javanese andesite contains fluid and mineral inclusions (up to 10 μm across) trapped during zircon growth. Orientation contrast imaging and orientation mapping by electron backscatter diffraction reveal that crystal-plastic deformation overprints growth zoning and has localized around 1–10 μm pores and inclusions. Cumulative crystallographic misorientation of up to 25° around pores and inclusions in zircon is predominantly accommodated by low-angle (<5°) orientation boundaries, with few free dislocations in subgrain interiors. Low-angle boundaries are curved, with multiple orientation segments at the sub-micrometer scale. Misorientation axes associated with the most common boundaries align with the zircon c-axis and are consistent with dislocation creep dominated by <100>(010) slip. A distinctly different population of sub-micron pores is present along subgrain boundaries and their triple junctions. These are interpreted to have formed as a geometric consequence of dislocation interaction during crystal-plasticity. Dislocation creep microstructures are spatially related to differences in cathodoluminescence spectra that indicate variations in the abundance of CL-active rare earth elements. The extent of the modification suggests deformation-related fast-pathway diffusion distances that are over five orders of magnitude greater than expected for volume diffusion. This enhanced diffusion is interpreted to represent a combination of fast-diffusion pathways associated with creep cavitation, dislocations and along low-angle boundaries. These new data indicate that ductile deformation localised around inclusions can provide fast pathways for geochemical exchange. These pathways may provide links to the zircon grain boundary, thus negating the widely held assumption that inclusions in fracture-free zircon are geochemically armoured once they are physically enclosed.  相似文献   

14.
We use quantitative microstructural analysis including misorientation analysis based on electron backscatter diffraction (EBSD) data to investigate deformation mechanisms of naturally deformed plagioclase in an amphibolite gabbro mylonite. The sample is from lower oceanic crust exposed near the Southwest Indian Ridge, and it has a high ratio of recrystallized matrix grains to porphyroclasts. Microstructures preserved in porphyroclasts suggest that early deformation was achieved principally by dislocation creep with subgrain rotation recrystallization; recrystallized grain (average diameter ∼8 μm) microstructures indicate that subsequent grain boundary sliding (GBS) was active in the continued deformation of the recrystallized matrix. The recrystallized matrix shows four-grain junctions, randomized misorientation axes, and a shift towards higher angles for neighbor-pair misorientations, all indicative of GBS. The matrix grains also exhibit a shape preferred orientation, a weak lattice preferred orientation consistent with slip on multiple slip systems, and intragrain microstructures indicative of dislocation movement. The combination of these microstructures suggest deformation by dislocation-accommodated GBS (DisGBS). Strain localization within the recrystallized matrix was promoted by a transition from grain size insensitive dislocation creep to grain size sensitive GBS, and sustained by the maintenance of a small grain size during superplasticity.  相似文献   

15.
Application of new scanning electron microscope techniques to the study of deformed metamorphic pyrite reveals evidence for plastic deformation not readily recognised by more traditional methods. Specifically, use of forescatter solid-state detectors in conjunction with tilted polished specimens of pyritic ore produces high quality crystallographic orientation contrast images, which map the distribution of deformation domains within grains. Use of electron-backscatter diffraction allows quantification of the crystallographic misorientations shown by the orientation contrast images. Combination of these techniques shows that the pyrite studied deforms by slip on {100} and more rarely {110} systems. Slip is often associated with distributed rotation of up to 20° about <100> and more rarely <110> axes. Pyrites may have simple histories involving rotation about a single <100> axis, or more complex histories involving rotation about different <100> axes, and more rarely <110>, in different domains of the same pyrite grain, or sequential rotations about quite different systems, typically distributed rotation about <100> followed by discrete rotation about a non-crystallographic axis. Received: 25 June 1997 / Accepted: 14 May 1998  相似文献   

16.
Garnet growth in high‐pressure, mafic garnet granulites formed by dehydration melting of hornblende‐gabbronorite protoliths in the Jijal complex (Kohistan palaeo‐island arc complex, north Pakistan) was investigated through a microstructural EBSD‐SEM and HRTEM study. Composite samples preserve a sharp transition in which the low‐pressure precursor is replaced by garnet through a millimetre‐sized reaction front. A magmatic foliation in the gabbronorite is defined by mafic‐rich layering, with an associated magmatic lineation defined by the shape‐preferred orientation (SPO) of mafic clusters composed of orthopyroxene (Opx), clinopyroxene (Cpx), amphibole (Amp) and oxides. The shape of the reaction front is convoluted and oblique to the magmatic layering. Opx, Amp and, to a lesser extent, Cpx show a strong lattice‐preferred orientation (LPO) characterized by an alignment of [001] axes parallel to the magmatic lineation in the precursor hornblende‐gabbronorite. Product garnet (Grt) also displays a strong LPO. Two of the four 〈111〉 axes are within the magmatic foliation plane and the density maximum is subparallel to the precursor magmatic lineation. The crystallographic relationship 〈111〉Grt // [001]Opx,Cpx,Amp deduced from the LPO was confirmed by TEM observations. The sharp and discontinuous modal and compositional variations observed at the reaction front attest to the kinetic inhibition of prograde solid‐state reactions predicted by equilibrium‐phase diagrams. The PT field for the equilibration of Jijal garnet granulites shows that the reaction affinities are 5–10 kJ mol.?1 for the Grt‐in reaction and 0–5 kJ mol.?1 for the Opx‐out reaction. Petrographic and textural observations indicate that garnet first nucleated on amphibole at the rims of mafic clusters; this topotactic replacement resulted in a strong LPO of garnet. Once the amphibole was consumed in the reaction, the parallelism of [001] axes of the mafic‐phase reactants favoured the growth of garnet crystals with similar orientations over a pyroxene substrate. These aggregates eventually sintered into single‐crystal garnet. In the absence of deformation, the orientation of mafic precursor phases conditioned the nucleation site and the crystallographic orientation of garnet because of topotaxial transformation reactions and homoepitaxial growth of garnet during the formation of high‐pressure, mafic garnet‐granulite after low‐pressure mafic protoliths.  相似文献   

17.
A prominent feature of a granulite-facies shear zone from the Hidaka Main Zone (Japan) is the folding of orthopyroxene (opx) porphyroclasts. Dislocation density estimated by transmission electron microscope (TEM) and chemical etching in homogeneously folded domains is too low to account for the amplitude of crystallographic bending, leading us to propose a model similar to “flexural slip” folding, where folded layers are micrometer-wide opx layers between thin planar clinopyroxene (cpx) exsolutions. Extension (compression) in the extrados (intrados) of the folded layer is accommodated by dislocations at the cpx–opx interfaces. Alternatively to distributed deformation, crystal bending also localizes in grain boundaries (GBs), mostly oriented close to the (001) plane and with various misorientation angles but misorientation axes consistently close to the b-axis. For misorientation up to a few degrees, GBs were imaged as tilt walls composed of regularly spaced (100)[001] dislocations. For misorientation angles of 7°, individual dislocations are no longer visible, but high-resolution TEM (HRTEM) observation showed the partial continuity of opx tetrahedral chains through the boundary. For 21° misorientation, the two adjacent crystals are completely separated by an incoherent boundary. In spite of these atomic-scale variations, all GBs share orientation and rotation axis, suggesting a continuous process of misorientation by symmetric incorporation of (100)[001] dislocations. In addition to the dominant GBs perpendicular to the (100) plane, boundaries at low angle with (100) planes are also present, incorporating dislocations with a component of Burgers vector along the a-axis. The two kinds of boundaries combine to delimit subgrains, which progressively rotate with respect to host grains around the b-axis, eventually leading to recrystallization of large porphyroclasts.  相似文献   

18.
An undeformed glomeroporphyritic andesite from the Sunda Arc of Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent magmatic disaggregation. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a discrete population of zoned, euhedral, igneous zircon yields a SHRIMP U-Pb crystallisation age of 9.3 ± 0.2 Ma. Quantitative microstructural analysis of zircon by electron backscatter diffraction (EBSD) shows no deformation in the inherited xenocrysts, but intragrain orientation variations of up to 30° in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint compositional growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common <100> misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of <001>{100} and <100>{010} slip systems. The restriction of deformation microstructures to large glomerocrysts and the young magmatic zircon population, and the absence of deformation within the host igneous rock and inherited zircon grains, indicate that zircon deformation took place within a low-melt fraction (<5% melt), mid-lower crustal cumulate prior to fragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmatic decompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are considered to be the probable driver for low-strain deformation of the cumulate in the late stages of initial crystallisation. These results provide the first evidence of crystal plastic dislocation creep in zircon associated with magmatic crystallisation and indicate that the development of crystal-plastic microstructures in zircon is not restricted to high-strain rocks. Such microstructures have previously been shown to enhance bulk diffusion of trace elements (U, Th and REE) in zircon. The development of deformation microstructures, and therefore multiple diffusion pathways in zircon in the magmatic environment, has significant implications for the interpretation of geochemical data from igneous zircon and the trace element budgets of melts due to the potential enhancement of bulk diffusion and dissolution rates.  相似文献   

19.
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth’s interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ?=?7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700–1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3–6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of ~?4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.  相似文献   

20.
The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations in intragrain crystallographic orientations that accommodate 20° of misorientation in the zircon crystal. These variations are manifested by discrete low-angle (<4°) boundaries that separate domains recording no resolvable orientation variation. The progressive nature of orientation change is documented by crystallographic pole figures which show systematic small circle distributions, and disorientation axes associated with 0.5–4° disorientation angles, which lie parallel to rational low index crystallographic axes. In the most distorted part of the grain (area A), this is the [100] crystal direction. A quaternion analysis of orientation correlations confirms the [100] rotation axis inferred by stereographic inspection, and reveals subtle orientation variations related to the local boundary structure. Microstructural characteristics and orientation data are consistent with the low-angle boundaries having a tilt boundary geometry with dislocation line [100]. This tilt boundary is most likely to have formed by accumulation of edge dislocations associated with a 〈001〉{100} slip system. Analysis of the energy associated with these dislocations suggest they are energetically more favorable than TEM verified 〈010〉{100} slip. Analysis of minor boundaries in area A indicates deformation by either (001) edge, or [100](100) and [001](100) screw dislocations. In other parts of the grain, cross slip on (111), and (112) planes seems likely. These data provide the first detailed microstructural analysis of naturally deformed zircon and indicate ductile crystal-plastic deformation of zircon by the formation and migration of dislocations into low-angle boundaries. Minimum estimates of dislocation density in the low-angle boundaries are of the order of ∼3.1010 cm−2. This value is sufficiently high to have a marked effect on the geochemical behavior of zircon, via enhanced bulk diffusion and increased dissolution rates. Therefore, crystal plasticity in zircon may have significant implications for the interpretation of radiometric ages, isotopic discordance and trace element mobility during high-grade metamorphism and melting of the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号