首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Summary Crystals of K2[Co2(SeO3)3]-2H2O and K2[Ni2(SeO3)3]-2H2O were synthesized under low-hydrothermal conditions. Their structures were determined using single crystal X-ray data up to sin / = 0.7Å-1. [Space group P63/m; a = 9.091(3),9.016(2)Å; c = 7.562(2), 7.476(2)Å; Z = 2; RW = 1.6, 2.5%]. The investigations confirmed that K2[Co2(SeO3)3].2H2O and K2[Ni2(SeO3)3]-2H2O represent the first selenites belonging to the zemannite structure type, a framework structure with wide channels running parallel [0001]. In both compounds four maxima were clearly located in the channel by Fourier summations and attributed to two K atoms and two H2O molecules, each with an occupancy factor of 1/6; a possible ordering scheme (full occupancy) with local symmetry 1 and [6]-coordinated K atoms could be derived for the channel atoms.Zusammenfassung Kristalle von K2[Co2(SeO3)3]-2H2O und K2[Ni2(SeO3)3]-2H2O wurden unter niedrig-hydrothermalen Bedingungen synthetisiert. Die Strukturen wurden unter Verwendung von Einkristallröntgendaten bis sin /= 0.7Å-1 bestimmt. [Raumgruppe P63/m; a = 9.091(3), 9.016(2)Å; c = 7.562(2), 7.476(2)Å; Z = 2; RW = 1.6, 2.5%] Die Untersuchungen bestätigten, daß K2[Co2(SeO3)3] - 2H2O und K2 [Ni2(SeO3)3] - 2H2O als erste Selenite dem Strukturtyp des Zemannits angehören, einer Gerüststruktur mit weiten, parallel [0001] verlaufenden Kanälen. In beiden Verbindungen wurden im Kanal vier Maxima durch Fourier-Summationen eindeutig lokalisiert und zwei Kalium-atomen sowie zwei H2O Molekülen, jeweils mit einem Besetzungsfaktor von 1/6, zugeschrieben. Für die Kanalatome konnte ein möglicher Ordnungszustand (volle Besetzung) mit lokaler Symmetrie 1 und [6]-koordinierten Kaliumatomen abgeleitet werden.
Selenite des Zemannittyps: Kristallstrukturen von K2[Co2(SeO3)3] - 2H2O und K2[Ni2(SeO3)3]-2H2O

Dedicated to Prof. Dr. Josef Zemann at the occasion of his 70th birthday

With 2 Figures  相似文献   

2.
Galgenbergite-(Ce) from the type locality, the railroad tunnel Galgenberg between Leoben and St. Michael, Styria, Austria, was investigated. There it occurs in small fissures of an albite-chlorite schist as very thin tabular crystals building rosette-shaped aggregates associated with siderite, ancylite-(Ce), pyrite and calcite. Electron microprobe analyses gave CaO 9.49, Ce2O3 28.95, La2O3 11.70, Nd2O3 11.86, Pr2O3 3.48, CO2 30.00, H2O 3.07, total 98.55 wt.%. CO2 and H2O calculated by stoichiometry. The empirical formula (based on Ca + REE ∑3.0) is $ \mathrm{C}{{\mathrm{a}}_{1.00 }}{{\left( {\mathrm{C}{{\mathrm{e}}_{1.04 }}\mathrm{L}{{\mathrm{a}}_{0.42 }}\mathrm{N}{{\mathrm{d}}_{0.42 }}\mathrm{P}{{\mathrm{r}}_{0.12 }}} \right)}_{2.00 }}{{\left( {\mathrm{C}{{\mathrm{O}}_3}} \right)}_4}\cdot {{\mathrm{H}}_2}\mathrm{O} $ , and the simplified formula is $ \mathrm{CaC}{{\mathrm{e}}_2}{{\left( {\mathrm{C}{{\mathrm{O}}_3}} \right)}_4}\cdot {{\mathrm{H}}_2}\mathrm{O} $ . According to X-ray single crystal diffraction galgenbergite-(Ce) is triclinic, space group $ P\overline{1},a=6.3916(5) $ , b?=?6.4005(4), c?=?12.3898(9) Å, α?=?100.884(4), β?=?96.525(4), γ?=?100.492(4)°, V?=?483.64(6) Å3, Z?=?2. The eight strongest lines in the powder X-ray diffraction pattern are [d calc in Å/(I)/hkl]: 5.052/(100)/011; 3.011/(70)/0-22; 3.006/(66)/004; 5.899/(59)/-101; 3.900/(51)/1-12; 3.125/(46)/-201; 2.526/(42)/022; 4.694/(38)/-102. The infrared absorption spectrum reveals H2O (OH-stretching mode at 3,489 cm?1, HOH bending mode at 1,607 cm?1) and indicates the presence of distinctly non-equivalent CO3-groups by double and quadruple peaks of their ν1, ν2, ν3 and ν4 modes. The crystal structure of galgenbergite-(Ce) was refined with X-ray single crystal data to R1?=?0.019 for 2,448 unique reflections (I?>?2σ(I)) and 193 parameters. The three cation sites of the structure Ca(1), Ce(2) and Ce(3) have a modest mixed site occupation by Ca and small amount of REE (Ce, La, Pr, Nd) and vice versa. The structure is based on double layers parallel to (001), which are composed of Ca(1)Ce(2)(CO3)2 single layers with an ordered chessboard like arrangement of Ca and Ce, and with a roof tile-like stacking of the CO3 groups. Perpendicular to (001) the double layers are connected to a triclinic framework structure with good cleavage parallel to (001) by a differently organized and more open part of the structure formed by Ce(3)(CO3)2(H2O). Based on the topology of the CaCe(CO3)2 single layer in galgenbergite-(Ce), structural relationships to rutherfordine, to aragonite and ancylite type minerals, and to lanthanite are outlined.  相似文献   

3.
The normal modes of vibration and their frequencies are calculated for dioptase, a mineral whose crystal structure (space group R or C 3i 2 ) consists of puckered six-membered silicate rings (Si6O18) linked by Cu2+ ions and H2O groups. The calculation employs a valence force potential consisting of central interactions between nearest neighbors and bond-bending interactions centered at the Si4+ and Cu2+ ions. The force constants are determined by fitting the calculated frequencies to values obtained by measuring the single-crystal Raman spectra. The calculated frequencies are in reasonable agreement with experiment, permitting assignment of normal modes to the observed spectral frequencies. Considerable mixing of Cu and H2O motions with those of the ring is found for the Raman-active modes below 430 cm-1. The normal modes and frequencies of the hypothetical isolated ring with C 3i symmetry are determined by neglecting all interactions between the rings and the surrounding Cu and H2O. The identification of normal modes characteristic of the puckered six-membered silicate rings and the effect of the environment on these modes may prove useful in the interpretation of the Raman spectra of amorphous silicates.  相似文献   

4.
《Applied Geochemistry》2000,15(8):1203-1218
Ca6[Al(OH)6]2(CrO4)3·26H2O, the chromate analog of the sulfate mineral ettringite, was synthesized and characterized by X-ray diffraction, Fourier transform infra-red spectroscopy, thermogravimetric analyses, energy dispersive X-ray spectrometry, and bulk chemical analyses. The solubility of the synthesized solid was measured in a series of dissolution and precipitation experiments conducted at 5–75°C and at initial pH values between 10.5 and 12.5. The ion activity product (IAP) for the reaction Ca6[Al(OH)6]2(CrO4)3·26H2O⇌6Ca2++2Al(OH)4+3CrO2−4+4OH+26H2O varies with pH unless a CaCrO4(aq) complex is included in the speciation model. The log K for the formation of this complex by the reaction Ca2++CrO2−4=CaCrO4(aq) was obtained by minimizing the variance in the IAP for Ca6[Al(OH)6]2(CrO4)3·26H2O. There is no significant trend in the formation constant with temperature and the average log K is 2.77±0.16 over the temperature range 5–75°C. The log solubility product (log KSP) of Ca6[Al(OH)6]2(CrO4)3·26H2O at 25°C is −41.46±0.30. The temperature dependence of the log KSP is log KSP=AB/T+D log(T) where A=498.94±48.99, B=27,499±2257, and D=−181.11±16.74. The values of ΔG0r,298 and ΔH0r,298 for the dissolution reaction are 236.6±3.9 and 77.5±2.4 kJ mol−1. the values of ΔC0P,r,298 and ΔS0r,298 are −1506±140 and −534±83 J mol−1 K−1. Using these values and published standard state partial molal quantities for constituent ions, ΔG0f,298=−15,131±19 kJ mol−1, ΔH0f,298=−17,330±8.6 kJ mol−1, ΔS0298=2.19±0.10 kJ mol−1 K−1, and ΔC0Pf,298=2.12±0.53 kJ mol−1 K−1, were calculated.  相似文献   

5.
《Geochimica et cosmochimica acta》1999,63(13-14):1969-1980
The solubility of ettringite (Ca6[Al(OH)6]2(SO4)3 · 26H2O) was measured in a series of dissolution and precipitation experiments at 5–75°C and at pH between 10.5 and 13.0 using synthesized material. Equilibrium was established within 4 to 6 days, with samples collected between 10 and 36 days. The log KSP for the reaction Ca6[Al(OH)6]2(SO4)3 · 26H2O ⇌ 6Ca2+ + 2Al(OH)4 + 3SO42− + 4OH + 26H2O at 25°C calculated for dissolution experiments (−45.0 ± 0.2) is not significantly different from the log KSP calculated for precipitation experiments (−44.8 ± 0.4) at the 95% confidence level. There is no apparent trend in log KSP with pH and the mean log KSP,298 is −44.9 ± 0.3. The solubility product decreased linearly with the inverse of temperature indicating a constant enthalpy of reaction from 5 to 75°C. The enthalpy and entropy of reaction ΔH°r and ΔS°r, were determined from the linear regression to be 204.6 ± 0.6 kJ mol−1 and 170 ± 38 J mol−1 K−1. Using our values for log KSP, ΔH°r, and ΔS°r and published partial molal quantities for the constituent ions, we calculated the free energy of formation ΔG°f,298, the enthalpy of formation ΔH°f,298, and the entropy of formation ΔS°f,298 to be −15211 ± 20, −17550 ± 16 kJ mol−1, and 1867 ± 59 J mol−1 K−1. Assuming ΔCP,r is zero, the heat capacity of ettringite is 590 ± 140 J mol−1 K−1.  相似文献   

6.
Geology of Ore Deposits - CuMo3O10⋅H2O crystals have been obtained by hydrothermal synthesis as a result of reaction between (NH4)6Mo2O24⋅4H2O and Cu(CH3COO)2 at 220°C for 7 days....  相似文献   

7.
A new mineral depmeierite, the first cancrinite-group member with the species-forming extraframework anion PO 4 3? , has been found at Mt. Karnasurt in the Lovozero alkaline pluton on the Kola Peninsula in Russia. Natrolite and depmeierite are the major components of a hydrothermal peralkaline veinlet 1.5 cm thick, which cross cuts the foyaite-urtite-lujavrite complex. The associated minerals are steenstrupine-(Ce), vuonnemite, epistolite, sodalite, aegirine, serandite, natisite, and vitusite-(Ce). Depmeierite occurs as colorless transparent isometric grains up to 1 cm in size. Its luster is vitreous. The mineral is brittle, and its cleavage (100) is perfect. Its Mohs hardness is 5, and D(meas) = 2.321(1) and D(calc) = 2.313 g/cm3. Depmeierite is optically biaxial positive, ω = 1.493(2), and ? = 1.497(2). The IR spectrum is given. The chemical composition is as follows (wt %, the average of 10 microprobe analyses with the H2O and CO2 determined by selective sorption): 23.04 Na2O, 0.54 K2O, 0.03 Fe2O3, 29.07 Al2O3, 36.48 SiO2, 3.30 P2O5, 0.08 SO3, 0.97 CO2, and 5.93 H2O; the total is 99.44. The empirical formula based on (Si,Al)12O24 is (Na758K0.12)Σ7.70(Si6.19Al5.81O24)[(PO4)0.47(CO3)0.22(OH)0.02(SO4)0.01]Σ0.72 · 3.345H2O. The simplified formula is Na8[Al6Si6O24](CO3)1 ? x · 3H2O (x < 0.05). Depmeierite is hexagonal with space group P63, and the unit-cell dimensions are a = 12.7345(2), c = 5.1798(1), V = 727.46(2) Å3, and Z = 1. The strongest reflections of the X-ray powder pattern (d, Å (I, %) [hkl]) are as follows: 6.380(30) [110], 4.695(91) [101], 3.681(37) [300], 3.250(100) [211], 2.758 (33) [400], 2.596(31) [002], and 2.121(24) [330, 302]. The crystal structure was studied using a single crystal, and R hkl = 0.0362. Depmeierite differs from cancrinite in the development of wide channels containing Na cations, H2O molecules, prevailing PO 4 3? -anionic groups, and CO 3 2? . The mineral is named in honor of the German crystallographer Wulf Depmeier (born in 1944). The type specimen is deposited at the Fersman Mineralogical Museum of the Russian Academy of Sciences in Moscow. The cancrinite sensu stricto subgroup separated within the cancrinite group comprises six minerals with AB frameworks, the smallest unit cell is (a ≈ 12.55–12.75, c ≈ 5.1–5.4 Å), and the chain […Na…H2O…] exists in narrow channels: cancrinite, vishnevite, cancrisilite, hydroxycancrinite, kyanoxalite, and depmeierite. The P-bearing varieties of the cancrinite-group minerals are discussed, as well as the formation conditions of the noncarbonate members of the group related to intrusive alkaline complexes.  相似文献   

8.
9.
Mineralogy and Petrology - Monohydrocalcite, CaCO3·H2O, forms a P31 structure composed of composite rods in which a spiral arrangement of Ca ions is accompanied by spiral arrangements of CO3...  相似文献   

10.
The thermodynamic properties of the copper carbonates malachite and azurite have been studied by adiabatic calorimetry, by heat-flux Calvet Calorimetry, by differential thermal analysis (DTA) and by thermogravimetrie (TGA) analysis. The heat capacities, C p 0 of natural malachite and azurite have been measured between 3.8 and 300 K by low-temperature adiabatic calorimetry. The heat capacity of azurite exhibits anomalous behavior at low temperatures. At 298.15 K the molar heat capacities C p 0 and the third law entropies S 298.15 0 are 228.5±1.4 and 254.4±3.8 J mol?1 K?1 for azurite and 154.3±0.93 and 166.3±2.5 J mol?1 K?1 for malachite. Enthalpies of solution at 973 K in lead borate 2PbO·B2O3 have been measured for heat treated malachite and azurite. The enthalpies of decomposition are 105.1±5.8 for azurite and 66.1±5.0 kJ mol? for malachite. The enthalpies of formation from oxides of azurite and malachite determined by oxide melt solution calorimetry, are ?84.7±7.4 and ?52.5±5.9 kJ mol?1, respectively. On the basis of the thermodynamic data obtained, phase relations of azurite and malachite in the system Cu2+-H2O-CO2 at 25 and 75 °C have been studied.  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(19-20):3105-3119
A comprehensive low-temperature thermodynamic model for the geochemically important Na2CO3−MgCO3−CaCO3−H2O system is presented. The model is based on calorimetrically determined ΔfH°298 values, S°298 values and C°p(T) functions taken from the literature as well as on μ°298 values of solids derived in this work from solubility measurements obtained in our laboratories or by others. When these thermodynamic quantities were combined with temperature-dependent Pitzer parameters taken from the literature, solubilities calculated for a wide range of conditions agree well with experimental data. The results for several subsystems were summarized by depicting the respective phase diagrams. For the MgO−CO2−H2O subsystem, it was found that the commonly believed stability relations must be revised, i.e., in the temperature range covered, nesquehonite never becomes more stable than hydromagnesite at pCO2 ≤ 1 atm. Although the recommended set of thermodynamic data on sparingly soluble solids was derived from experimental results on mainly NaClO4 systems, it can be incorporated in databanks containing additional Pitzer parameters for modeling more complex fresh- or seawater systems.  相似文献   

12.
Summary The new mineral orschallite, Ca3(SO3)2SO4 · 12H2O, was found at the Hannebacher Ley near Hannebach, Eifel, Germany. Crystal structure analysis of the mineral, chemical analysis and water determination on synthetic material gave the composition Ca3(SO3)2SO4 · 12H2O. The mineral crystallizes in space group with a = 11.350(1), c = 28.321(2) Å, V = 3159.7 Å3, Z = 6, Dc = 1.87 Mg/m3, Dm = 1.90(3) Mg/m3. It is uniaxial positive with the optical constants = 1.4941, = 1.4960(4). The strongest lines in the powder pattern are (d-value (Å), I, hkl) 5.73, 100, 1 0 4/8.11, 80, 0 1 2/2.69, 80, 3 0 6/3.63, 60, 1 1 6/3.28, 40, 3 0 0. Refinement of the crystal structure led to a weighted residual of Rw = 0.043 for 600 observed reflections with I > 2(I) and 52 variable parameters.
Orschallit, Ca3(SO3)2SO4 · 12H2O, ein neues Kalzium-Sulfat-Sulfat-Hydrat-Mineral
Zusammenfassung Das neue Mineral Orschallit, Ca3(SO3)2SO4 · 12H2O, wurde in der Hannebacher Ley bei Hannebach, Eifel, Deutschland gefunden. Eine Analyse der Kristallstruktur an einem Einkristall des natürlichen Materials, chemische Analyse und Wasserbestimmung an synthetischem Material ergaben die Zusammensetzung Ca3(SO3)2SO4 · 12H2O. Das Mineral kristallisiert in der Raumgruppe mit a = 11.350(1), c = 28.321(2) Å, V = 3159.7 Å3, Z = 6, Dc = 1.87 Mg/m3, Dm = 1.90(3) Mg/m3. Es ist optisch einachsig mit den optischen Konstanten = 1.4941, = 1.4960(4). Die stärksten Linien des Pulver-diagramms liegen bei (d-Wert (Å), I, hkl) 5.73, 100, 1 0 4/8.11, 80, 0 1 2/2.69, 80, 3 0 6/3.63, 60; 1 1 6/3.28, 40, 3 0 0. Die Verfeinerung der Kristallstruktur ergab einen gewichteten Residualwert Rw = 0.043 für 600 beobachtete Reflexe mit I > 2(I) und 52 variable Parameter.


With 5 Figures  相似文献   

13.
A new mineral, kasatkinite, Ba2Ca8B5Si8O32(OH)3 · 6H2O, has been found at the Bazhenovskoe chrysotile asbestos deposit, the Central Urals, Russia in the cavities in rhodingite as a member of two assemblages: (l) on prehnite, with pectolite, calcite, and clinochlore; and (2) on grossular, with diopside and pectolite. Kasatkinite occurs as spherulites or bunches up to 3 mm in size, occasionally combined into crusts. Its individuals are acicular to hair-like, typically split, with a polygonal cross section, up to 0.5 mm (rarely, to 6 mm) in length and to 20 μm in thickness. They consist of numerous misoriented needle-shaped subindividuals up to several dozen μm long and no more than 1 μm thick. Kasatkinite individuals are transparent and colorless; its aggregates are snow white. The luster is vitreous or silky. No cleavage was observed; the fracture is uneven or splintery for aggregates. Individuals are flexible and elastic. The Mohs’ hardness is 4–4.5. D meas = 2.95(5), D calc = 2.89 g/cm3. Kasatkinite is optically biaxial (+), α = 1.600(5), β = 1.603(2), γ = 1.626(2), 2V meas = 30(20)°, 2V calc = 40°. The IR spectrum is given. The 11B MAS NMR spectrum shows the presence of BO4 in the absence of BO3 groups. The chemical composition of kasatkinite (wt %; electron microprobe, H2O by gas chromatography) is as follows: 0.23 Na2O, 0.57 K2O, 28.94 CaO, 16.79 BaO, 11.57 B2O3, 0.28 Al2O3, 31.63 SiO2, 0.05 F, 9.05 H2O, ?0.02 ?O=F2; the total is 99.09. The empirical formula (calculated on the basis of O + F = 41 apfu, taking into account the TGA data) is: Na0.11K0.18Ba1.66Ca7.84B5.05Al0.08Si8.00O31.80(OH)3.06F0.04 · 6.10H2O. Kasatkinite is monoclinic, space group P21/c, P2/c, or Pc; the unit-cell dimensions are a = 5.745(3), b = 7.238(2), c = 20.79 (1) Å, β = 90.82(5)°, V = 864(1) Å3, Z = 1. The strongest reflections (d Å–I[hkl]) in the X-ray powder diffractions pattern are: 5.89–24[012], 3.48–2.1[006], 3.36–24[114]; 3.009–100[ $12\bar 1$ , 121, $10\bar 6$ ], 2.925–65[106, $12\bar 2$ , 122], 2.633–33[211, 124], 2.116–29[ $13\bar 3$ , 133, 028]. Kasatkinite is named in honor of A.V. Kasatkin (b. 1970), a Russian amateur mineralogist and mineral collector who has found this mineral. Type specimen is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.  相似文献   

14.
Tooeleite, nominally Fe63+(As3+O3)4(SO4)(OH)4·4H2O, is a relatively uncommon mineral of some acid-mine drainage systems. Yet, if it does occur, it does so in large quantities, indicating that some specific conditions favor the formation of this mineral in the system Fe-As-S-O-H. In this contribution, we report the thermodynamic properties of synthetic tooeleite. The sample was characterized by powder X-ray diffraction, scanning electron microscopy, extended X-ray absorption fine-structure spectroscopy, and Mössbauer spectroscopy. These methods confirmed that the sample is pure, devoid of amorphous impurities of iron oxides, and that the oxidation state of arsenic is 3+. Using acid-solution calorimetry, the enthalpy of formation of this mineral from the elements at the standard conditions was determined as −6196.6 ± 8.6 kJ mol−1. The entropy of tooeleite, calculated from low-temperature heat capacity data measured by relaxation calorimetry, is 899.0 ± 10.8 J mol−1 K−1. The calculated standard Gibbs free energy of formation is −5396.3 ± 9.3 kJ mol−1. The log Ksp value, calculated for the reaction Fe6(AsO3)4(SO4)(OH)4·4H2O + 16H+ = 6Fe3+ + 4H3AsO3 + SO42− + 8H2O, is −17.25 ± 1.80. Tooeleite has stability field only at very high activities of aqueous sulfate and arsenate. As such, it does not appear to be a good candidate for arsenic immobilization at polluted sites. An inspection of speciation diagrams shows that the predominance field of Fe3+ and As3+ overlap only at strongly basic conditions. The formation of tooeleite, therefore, requires strictly selective oxidation of Fe2+ to Fe3+ and, at the same time, firm conservation of the trivalent oxidation state of arsenic. Such conditions can be realized only by biological systems (microorganisms) which can selectively oxidize one redox-active element but leave the other ones untouched. Hence, tooeleite is the first example of an “obligatory” biomineral under the conditions prevailing at or near the Earth's surface because its formation under these conditions necessitates the action of microorganisms.  相似文献   

15.
 An in situ high-pressure (HP) X-ray diffraction investigation of synthetic diopside and of the Ca0.8Mg1.2Si2O6 clinopyroxene (Di80En20) was performed up to respectively P=40.8 and 15.1 GPa, using high brilliance synchrotron radiation. The compression of the cell parameters is markedly anisotropic, with βb ⋙ βc > βa > βasinβ for any pressure range and for both diopside and Di80En20. The compressibility along the crystallographic axes decreases significantly with pressure and is higher in Di80En20 than in diopside. The β cell parameter decreases as well with pressure, at a higher rate in Di80En20. The cell volume decreases at almost the same rate for the two compositions, since in diopside a higher compression along a* occurs. A change in the mechanism of deformation at P higher than about 5–10 GPa is suggested for both compositions from the analysis of the strain induced by compression. In diopside at lower pressures, the deformation mainly occurs, at a similar rate, along the b axis and at a direction 145° from the c axis on the (0 1 0) plane. At higher pressures, instead, the deformation occurs mostly along the b axis. In Di80En20 the orientation of the strain axes is the same as in diopside. The substitution of Ca with Mg in the M2 site induces at a given pressure a higher deformation on (0 1 0) with respect to diopside, but a similar change in the compressional behaviour is found. Changes in the M2 polyhedron with pressure can explain the above compressional behaviour. A third-order Birch-Murnaghan equation of state was fit to the retrieved volumes, with K=105.1(9) GPa, K′=6.8(1) for diopside and K=107.3(1.4) GPa, K′=5.7(3) for Di80En20; the same equation can be applied for any pressure range. The elasticity of diopside is therefore not significantly affected by Mg substitution into the M2 site, in contrast to the significant stiffening occurring for Ca substitution into Mg-rich orthopyroxenes. Received: 3 January 2000 / Accepted: 21 May 2000  相似文献   

16.
Albrechtschraufite, MgCa4F2[UO2(CO3)3]2?17-18H2O, triclinic, space group Pī, a?=?13.569(2), b?=?13.419(2), c?=?11.622(2) Å, α?=?115.82(1), β?=?107.61(1), γ?=?92.84(1)° (structural unit cell, not reduced), V?=?1774.6(5) Å3, Z?=?2, D c?=?2.69 g/cm3 (for 17.5 H2O), is a mineral that was found in small amounts with schröckingerite, NaCa3F[UO2(CO3)3](SO4)?10H2O, on a museum specimen of uranium ore from Joachimsthal (Jáchymov), Czech Republic. The mineral forms small grain-like subhedral crystals (≤ 0.2 mm) that resemble in appearance liebigite, Ca2[UO2(CO3)3]??~?11H2O. Colour pale yellow-green, luster vitreous, transparent, pale bluish green fluorescence under ultraviolet light. Optical data: Biaxial negative, nX?=?1.511(2), nY?=?1.550(2), nZ?=?1.566(2), 2?V?=?65(1)° (λ?=?589 nm), r < v weak. After qualitative tests had shown the presence of Ca, U, Mg, CO2 and H2O, the chemical formula was determined by a crystal structure analysis based on X-ray four-circle diffractometer data. The structure was later on refined with data from a CCD diffractometer to R1?=?0.0206 and wR2?=?0.0429 for 9,236 independent observed reflections. The crystal structure contains two independent [UO2(CO3)3]4? anions of which one is bonded to two Mg and six Ca while the second is bonded to only one Mg and three Ca. Magnesium forms a MgF2(Ocarbonate)3(H2O) octahedron that is linked via the F atoms with three Ca atoms so as to provide each F atom with a flat pyramidal coordination by one Mg and two Ca. Calcium is 7- and 8-coordinate forming CaFO6, CaF2O2(H2O)4, CaFO3(H2O)4 and CaO2(H2O)6 coordination polyhedra. The crystal structure is built up from MgCa3F2[UO2(CO3)3]?8H2O layers parallel to (001) which are linked by Ca[UO2(CO3)3]?5H2O moieties into a framework of the composition MgCa4F2[UO2(CO3)3]?13H2O. Five additional water molecules are located in voids of the framework and show large displacement parameters. One of the water positions is partly vacant, leading to a total water content of 17-18H2O per formula unit. The MgCa3F2[UO2(CO3)3]?8H2O layers are pseudosymmetric according to plane group symmetry cmm. The remaining constituents do not sustain this pseudosymmetry and make the entire structure truly triclinic. A characteristic paddle-wheel motif Ca[UO2(CO3)3]4Ca relates the structure of albrechtschraufite partly to that of andersonite and two synthetic alkali calcium uranyl tricarbonates.  相似文献   

17.
Polarized single crystal absorption spectra, in the spectral range 40 000–5 000 cm-1, were obtained on Co2+ in trigonally distorted octahedral oxygen fields of buetschliite-type K2Co(SeO3)2 (I), K2Co2(SeO3)3 (II) and zemannite-type K2Co2(SeO3)3 · 2H2O (III). Site symmetries of Co2+ are m (D3d) in I, 3m (C3v) in II, and 3 (C3) in III. The spectra can be interpreted on the basis of an electric dipole mechanism, wherein transitions of Co2+ in the centrosymmetric site in I gain intensity from dynamic removal of the inversion centre by vibronic coupling. In accordance with the elongation of the CoO6 octahedra along the trigonal axis, the split component E(g) of the ground state 4T1g in octahedral fields is the ground state in all three compounds. Trigonal field parameters Dq(trig), D, D and the Racah parameters B have been fitted to the energies of spin allowed transitions (293 K) as follows: I: 744, 94, -16, and 838 cm-1, resp.; II: 647, 227, 42, and 798 cm-1, resp.; III: 667, 181, 21, and 809 cm-1, respectively. Racah parameters C were estimated from the energy of some observed spin-forbidden transitions to be 3770 (I), 3280 (II), and 3465 cm-1 (III). Values of Dq and of the Racah parameters B and C indicate slight differences of Co2+-O bonding in I as compared to II and III, with somewhat higher covalency in compounds II and III which contain face-sharing CoO6 octahedra with short Co-Co contacts. Also, in II and III the observed D values do not agree with theoretical D values, predicted from the magnitude of the mean octahedral distortions.  相似文献   

18.
A new mineral, lahnsteinite, has been found in the dump of the Friedrichssegen Mine, Bad Ems district, Rhineland-Palatinate (Rheinland-Pfalz), Germany. Lahnsteinite, occurring as colorless tabular crystals in the cavities of goethite, is associated with pyromorphite, hydrozincite, quartz, and native copper. The Mohs’ hardness is 1.5; the cleavage is perfect parallel to (001). D calc = 2.995 g/cm3, D meas = 2.98(2) g/cm3. The IR spectrum is given. The new mineral is optically biaxial, negative, α = 1.568(2), β = 1.612(2), γ = 1.613(2), 2V meas = 18(3)°, 2V calc = 17°. The chemical composition (wt %, electron microprobe data; H2O was determined by gas chromatography of ignition products) is as follows: 3.87 FeO, 1.68 CuO, 57.85 ZnO, 15.83 SO3, 22.3 H2O, total is 101.53. The empirical formula is (Zn3.3Fe0.27Cu0.11)Σ3.91(S0.98O4)(OH)5 · 3H2.10O. The crystal structure has been studied on a single crystal. Lahnsteinite is triclinic, space group P1, a = 8.3125(6), b = 14.545(1), c = 18.504(2) Å, α = 89.71(1), β = 90.05(1), γ = 90.13(1)°, V = 2237.2(3) Å3, Z = 8. The strong reflections in the X-ray powder diffraction pattern [d, Å (I, %)] are: 9.30 (100), 4.175 (18), 3.476 (19), 3.290 (19), 2.723 (57), 2.624 (36), 2.503 (35), 1.574 (23). The mineral has been named after its type locality near the town of Lahnstein. The type specimen of lahnsteinite is deposited in the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, registration number 4252/1.  相似文献   

19.
Micas of the composition K(Fe3–x Mg x )AlSi3 O10(OH)2 (x=0.6, 1.2, 1.8, 2.4 and 3.0, corresponding to ann80phl20, ann60phl40, ann40phl60, ann20phl80 and ann0phl100) were synthesized hydrothermally under controlled oxygen fugacity conditions. Lattice parameters a 0 and b 0 show a distinct linear decrease with increasing Mg content. With increasing ferric iron content a deviation from this linear trend is observed especially within iron rich samples. The tetrahedral rotation angle increases smoothly from 0° in annite to 9.1° in phlogopite. Mössbauer spectra show Fe2+ and Fe3+ on the octahedral M1 and M2 sites and partially also Fe3+ on the tetrahedral site. There is a smooth increase of the quadrupole splitting on both the M1 and the M2 site going from annite to phlogopite, probably due to changes in the lattice contribution to the electric field gradient, assuming a positive correlation between quadrupole splitting and distortion. Fe3+ contents, as determined by Mössbauer spectroscopy, versus oxygen fugacity shows that, depending on the composition of the micas, minimum amounts of Fe3+ are present. For ann80phl20 this minimum amount of Fe3+ is about 8% decreasing to about 1–2% Fe3+ for ann20phl80.The molar volume of each solid solution member has been estimated from the determined relations of the molar volume versus % Fe3+ contents, extrapolated back to 0% Fe3+. Plotting these volumes as a function of Xphl shows that negative excess volume occur in the annitephlogopite join, with the maximum deviation from ideality around X phl=0.3. Margules volume parameters have been constrained as: Wv, AnnPhl=0.018±0.016 J/(bar.mol) and Wv, PhlAnn=-0.391±0.025 J(bar.mol) (three site basis).  相似文献   

20.
The results of an examination of vladimirivanovite, a new mineral of the sodalite group, found at the Tultui deposit in the Baikal region are discussed. The mineral occurs in the form of outer rims (0.01–3 mm thick) of lazurite, elongated segregations without faced crystals (0.2 to 3–4 mm in size; less frequently, 4 × 12–15 × 20 mm), and rare veinlets (up to 5 mm) hosted in calciphyre and marble. Vladimirivanovite is irregular and patchy dark blue. The mineral is brittle; on average, the microhardness VHN is 522–604, 575 kg/mm2; and the Mohs hardness is 5.0–5.5. The measured and calculated densities are 2.48(3) and 2.436 g/cm3, respectively. Vladimirivanovite is optically biaxial; 2V meas = 63(±1)°, 2V calc = 66.2°; the refractive indices are α = 1.502–1.507 (±0.002), N m = 1.509–1.514 (±0.002), and N g = 1.512–1.517 (±0.002). The chemical composition is as follows, wt %: 32.59 SiO2, 27.39 Al2O3, 7.66 CaO, 17.74 Na2O, 11.37 SO3, 1.94 S, 0.12 Cl, and 1.0 H2O; total is 99.62. The empirical formula calculated based on (Si + Al) = 12 with sulfide sulfur determined from the charge balance is Na6.36Ca1.52(Si6.03Al5.97)Σ12O23.99(SO4)1.58(S3)0.17(S2)0.08 · Cl0.04 · 0.62H2O; the idealized formula is Na6Ca2[Al6Si6O24](SO4,S3,S2,Cl)2 · H2O. The new mineral is orthorhombic, space group Pnaa; the unit-cell dimensions are a = 9.066, b = 12.851, c = 38.558 Å, V = 4492 Å3, and Z = 6. The strongest reflections in the X-ray powder diffraction pattern (dÅ—I[hkl]) are: 6.61–5[015], 6.43–11[020, 006], 3.71–100[119, 133], 2.623–30[20.12, 240], 2.273–6[04.12], 2.141–14[159, 13.15], 1.783–9[06.12, 04.18], and 1.606–6[080, 00.24]. The crystal structure has been solved with a single crystal. The mineral was named in memoriam of Vladimir Georgievich Ivanov (1947–2002), Russian mineralogist and geochemist. The type material of the mineral is deposited at the Mineralogical Museum of St. Petersburg State University, St. Petersburg, Russia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号