首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 832 毫秒
1.
We present results from two high-resolution hydrodynamical simulations of protocluster regions at   z ≃ 2.1  . The simulations have been compared to observational results for the so-called Spiderweb galaxy system, the core of a putative protocluster region at   z = 2.16  , found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with   M 200≃ 1014  h −1 M  (C1) and a rich cluster with   M 200≃ 2 × 1015  h −1 M  (C2) at   z = 0  . The simulated protoclusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared with the observed velocities. We argue that the Spiderweb complex resembles the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing active galactic nuclei feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.  相似文献   

2.
Using the Sloan Digital Sky Survey Data Release 4 group catalogue of Yang et al., we investigate sizes, concentrations, colour gradients and surface brightness profiles of central and satellite galaxies. We compare central and satellite galaxies at fixed stellar mass, in order to disentangle environmental from stellar mass dependencies. Early- and late-type galaxies are defined according to concentration. We find that at fixed stellar mass, late-type satellite galaxies have smaller radii and larger concentrations than late-type central galaxies. No such differences are found for early-type galaxies. We have also constructed surface brightness and colour profiles for the central and satellite galaxies in our sample. We find that late-type satellite galaxies have a lower surface brightness and redder colours than late-type central galaxies. We show that all observed differences between satellite and central galaxies can be explained by a simple fading model, in which the star formation in the disc decreases over time-scales of 2–3 Gyr after a galaxy becomes a satellite. Processes that induce strong morphological changes (e.g. harassment) and processes that strip the galaxy of its entire interstellar medium need not to be invoked in order to explain the environmental dependencies we find.  相似文献   

3.
We analyse the observed distribution of Eddington ratios  ( L / L Edd)  as a function of supermassive black hole mass for a large sample of nearby galaxies drawn from the Sloan Digital Sky Survey. We demonstrate that there are two distinct regimes of black hole growth in nearby galaxies. The first is associated with galaxies with significant star formation [   M */star formation rate (SFR) ∼  a Hubble time] in their central kiloparsec regions, and is characterized by a broad lognormal distribution of accretion rates peaked at a few per cent of the Eddington limit. In this regime, the Eddington ratio distribution is independent of the mass of the black hole and shows little dependence on the central stellar population of the galaxy. The second regime is associated with galaxies with old central stellar populations (   M */SFR ≫  a Hubble time), and is characterized by a power-law distribution function of Eddington ratios. In this regime, the time-averaged mass accretion rate on to black holes is proportional to the mass of stars in the galaxy bulge, with a constant of proportionality that depends on the mean stellar age of the stars. This result is once again independent of black hole mass. We show that both the slope of the power law and the decrease in the accretion rate on to black holes in old galaxies are consistent with population synthesis model predictions of the decline in stellar mass loss rates as a function of mean stellar age. Our results lead to a very simple picture of black hole growth in the local Universe. If the supply of cold gas in a galaxy bulge is plentiful, the black hole regulates its own growth at a rate that does not further depend on the properties of the interstellar medium. Once the gas runs out, black hole growth is regulated by the rate at which evolved stars lose their mass.  相似文献   

4.
An analysis of the environments around a sample of 28 3CR radio galaxies with redshifts 0.6< z <1.8 is presented, based primarily upon K -band images down to K ∼20 taken using the UK Infrared Telescope (UKIRT). A net overdensity of K -band galaxies is found in the fields of the radio galaxies, with the mean excess counts being comparable to that expected for clusters of Abell Class 0 richness. A sharp peak is found in the angular cross-correlation amplitude centred on the radio galaxies that, for reasonable assumptions about the luminosity function of the galaxies, corresponds to a spatial cross-correlation amplitude between those determined for low-redshift Abell Class 0 and 1 clusters.
These data are complemented by J -band images also from UKIRT, and by optical images from the Hubble Space Telescope . The fields of the lower redshift ( z ≲0.9) radio galaxies in the sample generally show well-defined near-infrared colour–magnitude relations with little scatter, indicating a significant number of galaxies at the redshift of the radio galaxy; the relations involving colours at shorter wavelengths than the 4000 Å break show considerably greater scatter, suggesting that many of the cluster galaxies have low levels of recent or on-going star formation. At higher redshifts the colour–magnitude sequences are less prominent owing to the increased field galaxy contribution at faint magnitudes, but there is a statistical excess of galaxies with the very red infrared colours ( J − K ≳1.75) expected of old cluster galaxies at these redshifts.
Although these results are appropriate for the mean of all of the radio galaxy fields, there exist large field-to-field variations in the richness of the environments. Many, but certainly not all, powerful z ∼1 radio galaxies lie in (proto)cluster environments.  相似文献   

5.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

6.
We examine the accretion and merger histories of central and satellite galaxies in a smoothed particle hydrodynamics (SPH) cosmological simulation that resolves galaxies down to  7 × 109 M  . Most friends-of-friends haloes in the simulation have a distinct central galaxy, typically 2–5 times more massive than the most massive satellite. As expected, satellites have systematically higher assembly redshifts than central galaxies of the same baryonic mass, and satellites in more massive haloes form earlier. However, contrary to the simplest expectations, satellite galaxies continue to accrete gas and convert it to stars; the gas accretion declines steadily over a period of 0.5–1 Gyr after the satellite halo merges with a larger parent halo. Satellites in a cluster mass halo eventually begin to lose baryonic mass. Typically, satellites in our simulation are 0.1–0.2 mag bluer than in models that assume no gas accretion on to satellites after a halo merger. Since   z = 1  , 27 per cent of central galaxies (above  3 × 1010 M  ) and 22 per cent of present-day satellite galaxies have merged with a smaller system above a 1:4 mass ratio; about half of the satellite mergers occurred after the galaxy became a satellite and half before. In effect, satellite galaxies can remain 'central' objects of halo substructures, with continuing accretion and mergers, making the transition in assembly histories and physical properties a gradual one. Implementing such a gradual transformation in semi-analytic models would improve their agreement with observed colour distributions of satellite galaxies in groups and with the observed colour dependence of galaxy clustering.  相似文献   

7.
Using high-resolution SPH simulations in a fully cosmological Λ cold dark matter context, we study the formation of a bright disc-dominated galaxy that originates from a 'wet' major merger at   z = 0.8  . The progenitors of the disc galaxy are themselves disc galaxies that formed from early major mergers between galaxies with blue colours. A substantial thin stellar disc grows rapidly following the last major merger and the present-day properties of the final remnant are typical of early-type spiral galaxies, with an i -band bulge-to-disc ratio ∼0.65, a disc scalelength of 7.2 kpc,   g − r = 0.5 mag  , an H  i linewidth ( W 20/2) of 238 km s−1 and total magnitude   i =−22.4  . The key ingredients for the formation of a dominant stellar disc component after a major merger are (i) substantial and rapid accretion of gas through cold flows followed at late times by cooling of gas from the hot phase, (ii) supernova feedback that is able to partially suppress star formation during mergers and (iii) relative fading of the spheroidal component. The gas fraction of the progenitors' discs does not exceed 25 per cent at   z < 3  , emphasizing that the continuous supply of gas from the local environment plays a major role in the regrowth of discs and in keeping the galaxies blue. The results of this simulation alleviate the problem posed for the existence of disc galaxies by the high likelihood of interactions and mergers for galaxy-sized haloes at relatively low z .  相似文献   

8.
We study the formation of galaxies in a Λ cold dark matter (ΛCDM) universe using high-resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight isolated haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at   z = 0  , none of our galaxies contains a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The   z = 0  spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at   z = 0  nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at   z ≳ 2  , regardless of their   z = 0  morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic ΛCDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.  相似文献   

9.
We investigate the correlation of star formation quenching with internal galaxy properties and large-scale environment (halo mass) in empirical data and theoretical models. We make use of the halo-based group catalogue of Yang and collaborators, which is based on the Sloan Digital Sky Survey. Data from the Galaxy evolution explorer are also used to extract the recent star formation rate. In order to investigate the environmental effects, we examine the properties of 'central' and 'satellite' galaxies separately. For central galaxies, we are unable to conclude whether star formation quenching is primarily connected with halo mass or stellar mass, because these two quantities are themselves strongly correlated. For satellite galaxies, a nearly equally strong dependence on halo mass and stellar mass is seen. We make the same comparison for five different semi-analytic models based on three independently developed codes. We find that the models with active galactic nuclei feedback reproduce reasonably well the dependence of the fraction of central red and passive galaxies on halo mass and stellar mass. However, for satellite galaxies, the same models badly overproduce the fraction of red/passive galaxies and do not reproduce the empirical trends with stellar mass or halo mass. This satellite overquenching problem is caused by the too-rapid stripping of the satellites' hot gas haloes, which leads to rapid strangulation of star formation.  相似文献   

10.
We present the first results of our Hubble Space Telescope HST WFPC2 F814W snapshot imaging survey, targeting virtually all sub-mJy decimetric radio-selected star-forming galaxies. The radio selection at ∼1 GHz is free from extinction effects and the radio luminosities are largely unaffected by AGN contamination, making these galaxies ideal tracers of the cosmic star formation history. A subsample of four targets is presented here, selected at 1.4 GHz from the spectroscopically homogenous and complete samples of Benn et al. and Hopkins et al. The redshifts are confined to a narrow range around z ∼0.2, to avoid differential evolution, with a radio luminosity close to L ∗ where the galaxies dominate the comoving volume-averaged star formation rate. We find clearly disturbed morphologies resembling those of ultraluminous infrared galaxies, indicating that galaxy interactions may be the dominant mechanism for triggering star formation at these epochs. The morphologies are also clearly different from those of coeval quasars and radio galaxies, as found in star-forming galaxies selected at other wavelengths. This may prove challenging for models that propose direct causal links between AGN evolution and the cosmic star formation history at these epochs. The asymmetries are typically much larger than seen in the Canada–France Redshift Survey at similar redshifts, optical luminosities and H α -derived star formation rates, indicating the possible existence of an obscuration-related morphological bias in such samples.  相似文献   

11.
We follow the chemical evolution of a galaxy through star formation and its feedback into the interstellar medium (ISM), starting from primordial gas and allowing for gas to inflow into the region being modelled. We attempt to reproduce observed spectral line strengths for early-type galaxies in order to constrain their star formation histories (SFH). The efficiencies and times of star formation are varied, as are the amount and duration of inflow. We evaluate the chemical enrichment and the mass of stars made with time. Single stellar population (SSP) data are then used to predict line strengths for composite stellar populations. The results are compared with observed line strengths in 10 ellipticals, including some features which help to break the problem of age–metallicity degeneracy in old stellar populations. We find that the elliptical galaxies modelled require high metallicity SSPs (> 3 Z⊙) at later times. In addition, the strong lines observed cannot be produced by an initial starburst in primordial gas, even if a large amount of inflow is allowed for during the first few × 108 yr. This is because some pre-enrichment is required for lines in the bulk of the stars to approach the observed line strengths in ellipticals. These strong lines are better modelled by a system with a delayed burst of star formation, following an early SFH which can be a burst or more steady star formation. Such a model is representative of star formation in normal ellipticals or spirals, respectively, followed by a starburst and gas inflow during a merger or strong interaction with a gas-rich galaxy. Alternatively, a single initial burst of normal stars with a Salpeter initial mass function could produce the observed strong lines if it followed some pre-enrichment process which did not form long-lived stars (e.g. population III stars).  相似文献   

12.
We present an analysis of the optical spectra of a volume-limited sample of 375 radio galaxies at redshift  0.4 < z < 0.7  from the 2dF-SDSS (Sloan Digital Sky Survey) Luminous Red Galaxy (LRG) and QSO (quasi-stellar object) (2SLAQ) redshift survey. We investigate the evolution of the stellar populations and emission-line properties of these galaxies. By constructing composite spectra and comparing with a matched sample of radio-quiet sources from the same survey, we also investigate the effect on the galaxy of the presence of an active nucleus.
The composite spectra, binned by redshift and radio luminosity, all require two components to describe them, which we interpret as an old and a younger population. We found no evolution with redshift of the age of the younger population in radio galaxies, nor were they different from the radio-quiet comparison sample. Similarly, there is no correlation with radio power, with the exception that the most powerful radio sources  ( P 1.4 > 1026  W Hz−1) have younger stars and stronger emission lines than the less powerful sources. This suggests that we have located the threshold in radio power where strong emission lines 'switch on', at radio powers of around 1026 W Hz−1. Except for the very powerful radio galaxies, the presence of a currently active radio active galactic nucleus (AGN) does not appear to be correlated with any change in the observed stellar population of a luminous red galaxy at   z ∼ 0.5  .  相似文献   

13.
We present the results of fitting deep off-nuclear optical spectra of radio-quiet quasars, radio-loud quasars and radio galaxies at z ≃0.2 with evolutionary synthesis models of galaxy evolution. Our aim was to determine the age of the dynamically dominant stellar populations in the host galaxies of these three classes of powerful active galactic nuclei (AGN). Some of our spectra display residual nuclear contamination at the shortest wavelengths, but the detailed quality of the fits longward of the 4000-Å break provides unequivocal proof, if further proof were needed, that quasars lie in massive galaxies with (at least at z ≃0.2) evolved stellar populations. By fitting a two-component model we have separated the very blue (starburst and/or AGN contamination) from the redder underlying spectral energy distribution, and find that the hosts of all three classes of AGN are dominated by old stars of age 8–14 Gyr. If the blue component is attributed to young stars, we find that, at most, 1 per cent of the visible baryonic mass of these galaxies is involved in star formation activity at the epoch of observation, at least over the region sampled by our spectroscopic observations. These results strongly support the conclusion reached by McLure et al. that the host galaxies of luminous quasars are massive ellipticals which have formed by the epoch of peak quasar activity at z ≃2.5.  相似文献   

14.
We use a self-consistent model of galaxy formation and the evolution of the intergalactic medium to study the effects of the reionization of the Universe at high redshift on the properties of satellite galaxies like those seen around the Milky Way. Photoionization suppresses the formation of small galaxies, so that surviving satellites are preferentially those that formed before the Universe reionized. As a result, the number of satellites expected today is about an order of magnitude smaller than the number inferred by identifying satellites with subhaloes of the same circular velocity in high-resolution simulations of the dark matter. The resulting satellite population has an abundance similar to that observed in the Local Group, although the distribution of circular velocities differs somewhat from the available data. We explore many other properties of satellite galaxies, including their gas content, metallicity and star formation rate, and find generally good agreement with available data. Our model predicts the existence of many as yet undetected satellites in the Local Group. We quantify their observability in terms of their apparent magnitude and surface brightness, and also in terms of their constituent stars. A near-complete census of the Milky Way's satellites would require imaging to   V ≈20  and to a surface brightness fainter than 26 V -band magnitudes per square arcsecond. Satellites with integrated luminosity   V =15  should contain of order 100 stars brighter than   B =26  , with central stellar densities of a few tens per square arcminute. Discovery of a large population of faint satellites would provide a strong test of current models of galaxy formation.  相似文献   

15.
We use three-dimensional SPH/ N -body simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott, relating the gravitational restoring force provided by the disc to the ram pressure force, provides a good approximation to the radius at which gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster, such as Coma, will have its gaseous disc truncated to ∼4 kpc, thus losing ∼80 per cent of its diffuse gas mass. The time-scale for this to occur is a fraction of a crossing time ∼107 yr. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intracluster medium, will lose significantly less gas. We conclude that ram pressure alone is insufficient to account for the rapid and widespread truncation of star formation observed in cluster galaxies, or the morphological transformation of Sabs to S0s that is necessary to explain the Butcher–Oemler effect.  相似文献   

16.
We use a volume- and flux-limited sample of local  (0.03 ≤ z ≤ 0.1)  radio galaxies with optical counterparts to address the question of how long a typical galaxy spends in radio active and quiescent states. The length of the active phase has a strong dependence on the stellar mass of the host galaxy. Radio sources in the most massive hosts are also retriggered more frequently. The time spent in the active phase has the same dependence on stellar mass as does the gas cooling rate, suggesting the onset of the quiescent phase is due to fuel depletion. We find radio and emission-line active galactic nuclei (AGN) activity to be independent, consistent with these corresponding to different accretion states.  相似文献   

17.
We present optical spectra of the nuclei of seven luminous ( P 178 MHz≳1025 W Hz−1 Sr−1) nearby ( z <0.08) radio galaxies, which mostly correspond to the FR II class. In two cases, Hydra A and 3C 285, the Balmer and λ 4000-Å break indices constrain the spectral types and luminosity classes of the stars involved, revealing that the blue spectra are dominated by blue supergiant and/or giant stars. The ages derived for the last burst of star formation in Hydra A are between 7 and 40 Myr, and in 3C 285 about 10 Myr. The rest of the narrow-line radio galaxies (four) have a λ 4000-Å break and metallic indices consistent with those of elliptical galaxies. The only broad-line radio galaxy in our sample, 3C 382, has a strong featureless blue continuum and broad emission lines that dilute the underlying blue stellar spectra. We are able to detect the Ca  ii triplet in absorption in the seven objects, with good quality data for only four of them. The strengths of the absorptions are similar to those found in normal elliptical galaxies, but these values are consistent both with stellar populations of roughly similar ages (as derived from the Balmer absorption and break strengths) and with mixed young+old populations.  相似文献   

18.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

19.
In this paper, the third and final of a series, we present complete K -band imaging and some complementary I -band imaging of the filtered 6C* sample. We find no systematic differences between the K – z relation of 6C* radio galaxies and those from complete samples, so the near-infrared properties of luminous radio galaxies are not obviously biased by the additional 6C* radio selection criteria (steep spectral index and small angular size). The 6C* K – z data significantly improve delineation of the K – z relation for radio galaxies at high redshift ( z >2) . Accounting for non-stellar contamination, and for correlations between radio luminosity and stellar mass, we find little support for previous claims that the underlying scatter in the stellar luminosity of radio galaxies increases significantly at z >2 . In a particular spatially flat universe with a cosmological constant (ΩM=0.3 and ΩΛ=0.7) , the most luminous radio sources appear to be associated with galaxies with a luminosity distribution with a high mean (≈5  L *), and a low dispersion ( σ ∼0.5 mag) which formed their stars at epochs corresponding to z ≳2.5 . This result is in line with recent submillimetre studies of high-redshift radio galaxies and the inferred ages of extremely red objects from faint radio samples.  相似文献   

20.
We use semi-analytic techniques to study the formation and evolution of brightest cluster galaxies (BCGs). We show the extreme hierarchical nature of these objects and discuss the limitations of simple ways to capture their evolution. In a model where cooling flows are suppressed at late times by active galactic nucleus (AGN) activity, the stars of BCGs are formed very early (50 per cent at z ∼ 5, 80 per cent at z ∼ 3) and in many small galaxies. The high star formation rates in these high- z progenitors are fuelled by rapid cooling, not by merger-triggered starbursts. We find that model BCGs assemble surprisingly late: half their final mass is typically locked up in a single galaxy after   z ∼ 0.5  . Because most of the galaxies accreted on to BCGs have little gas content and red colours, late mergers do not change the apparent age of BCGs. It is this accumulation of a large number of old stellar populations – driven mainly by the merging history of the dark matter halo itself – that yields the observed homogeneity of BCG properties. In the second part of the paper, we discuss the evolution of BCGs to high redshifts, from both observational and theoretical viewpoints. We show that our model BCGs are in qualitative agreement with high- z observations. We discuss the hierarchical link between high- z BCGs and their local counterparts. We show that high- z BCGs belong to the same population as the massive end of local BCG progenitors, although they are not in general the same galaxies. Similarly, high- z BCGs end up as massive galaxies in the local Universe, although only a fraction of them are actually BCGs of massive clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号