首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluvial systems and their preserved stratigraphic expression as the fill of evolving basins are controlled by multiple factors, which can vary both spatially and temporally, including prevailing climate, sediment provenance, localized changes in the rates of creation and infill of accommodation in response to subsidence, and diversion by surface topographic features. In basins that develop in response to halokinesis, mobilized salt tends to be displaced by sediment loading to create a series of rapidly subsiding mini‐basins, each separated by growing salt walls. The style and pattern of fluvial sedimentation governs the rate at which accommodation becomes filled, whereas the rate of growth of basin‐bounding salt walls governs whether an emergent surface topography will develop that has the potential to divert and modify fluvial drainage pathways and thereby dictate the resultant fluvial stratigraphic architecture. Discerning the relative roles played by halokinesis and other factors, such as climate‐driven variations in the rate and style of sediment supply, is far from straightforward. Diverse stratigraphic architectures present in temporally equivalent, neighbouring salt‐walled mini‐basins demonstrate the effectiveness of topographically elevated salt walls as agents that partition and guide fluvial pathways, and thereby control the loci of accumulation of fluvial successions in evolving mini‐basins: drainage pathways can be focused into a single mini‐basin to preserve a sand‐prone fill style, whilst leaving adjoining basins relatively sand‐starved. By contrast, over the evolutionary history of a suite of salt‐walled mini‐basins, region‐wide changes in fluvial style can be shown to have been driven by changes in palaeoclimate and sediment‐delivery style. The Triassic Moenkopi Formation of the south‐western USA represents the preserved expression of a dryland fluvial system that accumulated across a broad, low‐relief alluvial plain, in a regressive continental to paralic setting. Within south‐eastern Utah, the Moenkopi Formation accumulated in a series of actively subsiding salt‐walled mini‐basins, ongoing evolution of which exerted a significant control on the style of drainage and resultant pattern of stratigraphic accumulation. Drainage pathways developed axial (parallel) to salt walls, resulting in compartmentalized accumulation of strata whereby neighbouring mini‐basins record significant variations in sedimentary style at the same stratigraphic level. Despite the complexities created by halokinetic controls, the signature of climate‐driven sediment delivery can be deciphered from the preserved succession by comparison with the stratigraphic expression of part of the system that accumulated beyond the influence of halokinesis, and this approach can be used to demonstrate regional variations in climate‐controlled styles of sediment delivery.  相似文献   

2.
Based on a detailed sedimentological analysis of Lower Triassic continental deposits in the western Germanic sag Basin (i.e. the eastern part of the present‐day Paris Basin: the ‘Conglomérat basal’, ‘Grès vosgien’ and ‘Conglomérat principal’ Formations), three main depositional environments were identified: (i) braided rivers in an arid alluvial plain with some preserved aeolian dunes and very few floodplain deposits; (ii) marginal erg (i.e. braided rivers, aeolian dunes and aeolian sand‐sheets); and (iii) playa lake (an ephemeral lake environment with fluvial and aeolian sediments). Most of the time, aeolian deposits in arid environments that are dominated by fluvial systems are poorly preserved and particular attention should be paid to any sedimentological marker of aridity, such as wind‐worn pebbles (ventifacts), sand‐drift surfaces and aeolian sand‐sheets. In such arid continental environments, stratigraphic surfaces of allocyclic origin correspond to bounding surfaces of regional extension. Elementary stratigraphic cycles, i.e. the genetic units, have been identified for the three main continental environments: the fluvial type, fluvial–aeolian type and fluvial/playa lake type. At the time scale of tens to hundreds of thousands of years, these high‐frequency cycles of climatic origin are controlled either by the groundwater level in the basin or by the fluvial siliciclastic sediment input supplied from the highland. Lower Triassic deposits from the Germanic Basin are preserved mostly in endoreic basins. The central part of the basin is arid but the rivers are supplied with water by precipitation falling on the remnants of the Hercynian (Variscan)–Appalachian Mountains. Consequently, a detailed study of alluvial plain facies provides indications of local climatic conditions in the place of deposition, whereas fluvial systems only reflect climatic conditions of the upstream erosional catchments.  相似文献   

3.
The south Uralian foreland basin forms part of the giant, yet sparsely documented, PreCaspian salt tectonic province. The basin can potentially add much to the understanding of fluviolacustrine sedimentation within salt‐walled minibasins, where the literature has been highly reliant on only a few examples (such as the Paradox Basin of Utah). This paper describes the Late Permian terrestrial fill of the Kul’chumovo salt minibasin near Orenburg in the south Urals in which sediments were deposited in a range of channel, overbank and lacustrine environments. Palaeomagnetic stratigraphy shows that, during the Late Permian, the basin had a relatively slow and uniform subsidence pattern with widespread pedogenesis and calcrete development. Angular unconformities or halokinetic sequence boundaries cannot be recognized within the relatively fine‐grained fill, and stratigraphic and spatial variations in facies are therefore critical to understanding the subsidence history of the salt minibasin. Coarse‐grained channel belts show evidence for lateral relocation within the minibasin while the development of a thick stack of calcrete hardpans indicates that opposing parts of the minibasin became largely inactive for prolonged periods (possibly in the order of one million years). The regular vertical stacking of calcrete hardpans within floodplain mudstones provides further evidence that halokinetic minibasin growth is inherently episodic and cyclical.  相似文献   

4.
5.
Well‐exposed Triassic rift strata from the Ischigualasto–Villa Unión Basin (NW Argentina) include a 80 to ca 515 m thick lacustrine‐dominated package that can be correlated across a half‐graben using key stratigraphic surfaces (sequence boundaries, lacustrine flooding surfaces and forced regressive surfaces). The characteristics of the synrift lacustrine fill in different parts of the half‐graben have been examined and the mechanisms controlling sedimentation inferred. A variety of sedimentary environments are recognized including; volcaniclastic floodplain, mildly saline lake and playa lake, offshore lacustrine, delta front to fluvial‐dominated and wave‐dominated deltas, distributary and fluvial channel, and interdistributary bay. The succession can be divided into four stratigraphic sequences (SS1 to SS4), the oldest of which (SS1) contains volcaniclastic, fluvial and saline lake deposits; it is thickest close to the western border fault zone, reflecting more rapid subsidence here. Accommodation exceeded sediment and water input during SS1. The second and third sequences (SS2 and SS3) mark the onset of widespread lacustrine sedimentation, reflecting a balance between accommodation creation and water and sediment fluxes. Sequences SS2 and SS3 are represented by offshore meromictic lacustrine and deltaic deposits, the latter mostly sourced from the flexural and southern axial margins of the half‐graben. The presence of stacked parasequences bound by lacustrine flooding surfaces is related to climatically induced lake‐level fluctuations superimposed on variable rates of subsidence on the controlling rift border fault zone. The youngest sequence (SS4) is represented by the deposits of littoral lacustrine and shallow shelf deltas distinguished by a change in lithofacies, palaeocurrents and sandstone composition, suggesting a switch in sediment supply to the footwall margin to the NW. The change in the sediment source is related to reduced footwall uplift, the possible presence of a relay ramp and/or supply from a captured antecedent drainage network. During SS4, the rate of creation of accommodation was exceeded by the sediment and water discharge. The stratigraphic evolution of lacustrine strata in the half‐graben was mainly controlled by tectonic processes, including subsidence rate and the growth and evolution of the border fault zone, but changing climate (inducing changes in water balance and lake level) and autocyclic processes (delta lobe switching) were also important.  相似文献   

6.
A thick sedimentary sequence comprising fluvial, lacustrine and volcano-sedimentary rocks is present in the Neogene Beypazari Basin, central Anatolia. These units display considerable lateral facies variation and interfinger with alkaline volcanic rocks along the north-eastern margin of the basin. The uppermost Miocene Kirmir Formation contains numerous evaporite horizons. The evaporite sequence is up to 250 m thick and may be divided into four lithofacies. In ascending stratigraphical order these are: (1) gypsiferous claystone facies, (2) thenardite-glauberite facies, (3) laminar gypsum facies and (4) crystalline gypsum facies. These facies interfinger with one another laterally along a section from the margins to central parts of the basin. The lithological and sedimentological features of the Kirmir Formation indicate fluvial, saline playa mudflat, hypersaline ephemeral playa lake and very shallow subaqueous playa lake depositional environments, which probably were influenced by alternating semi-arid and evaporative conditions.  相似文献   

7.
Lake margin sedimentary systems can provide highly sensitive records of sedimentary response to climate change. The Middle Old Red Sandstone of Northern Scotland comprises a thick succession of cyclic lacustrine sediments. Within this succession the deepest lake phase, the Achanarras fish bed, allows bed‐scale correlation over 160 km across the basin. This provides a unique opportunity to examine the character of synchronous lake margin deposits, and their response to climatically driven lake level fluctuations, across a large continental basin. Detailed characterization of two separate lake margin systems was carried out utilizing multiple sections in western Orkney, in the north, and Easter Ross, in the south. Seven facies have been recognized, which include upper and lower shoreface, deep lake, shallow lake, playa, turbidite and fluvial facies. Differences in vertical and lateral facies stacking patterns reflect the response of these systems to climatically driven fluctuations in lake level. Comparison of the northern and southern systems examined highlights the variable response of lake margin systems to the same climatic change and related lake level fluctuations. In the south, a greater fluvial influence is recognized on the development of the lake margin successions, whereas in the northern example, which lay on the downwind margin of the lake, shore zone facies are more commonly developed. The variability recognized can be accounted for by regional variations in sediment supply, coastal physiography, lake size, bathymetry and potential fetch. Lake level stability is also recognized as a major control on the development of lake margin sedimentary systems, as is the linked or unlinked relationship of the catchment and the lake basin climate for which a conceptual model is proposed.  相似文献   

8.
This work presents the stratigraphy and facies analysis of an interval of about 2500 m in the Langhian and Serravallian stratigraphic succession of the foredeep turbidites of the Marnoso‐arenacea Formation. A high‐resolution stratigraphic analysis was performed by measuring seven stratigraphic logs between the Sillaro and Marecchia lines (60 km apart) for a total thickness of about 6700 m. The data suggest that the stratigraphy and depositional setting of the studied interval was influenced by syndepositional structural deformations. The studied stratigraphic succession has been subdivided into five informal stratigraphic units on the basis of how structurally controlled topographic highs and depocentres, a consequence of thrust propagation, change over time. These physiographic changes of the foredeep basin have also been reconstructed through the progressive appearance and disappearance of thrust‐related mass‐transport complexes and of five bed types interpreted as being related to structurally controlled basin morphology. Apart from Bouma‐like Type‐4 beds, Type‐1 tripartite beds, characterized by an internal slurry unit, tend to increase especially in structurally controlled stratigraphic units where intrabasinal topographic highs and depocentres with slope changes favour both mud erosion and decelerations. Type‐2 beds, with an internal slump‐type chaotic unit, characterize the basal boundary of structurally controlled stratigraphic units and are interpreted as indicating tectonic uplift. Type‐3 beds are contained‐reflected beds that indicate different degrees of basin confinement, while Type‐5 are thin and fine‐grained beds deposited by dilute reflected turbulent flows able to rise up the topographic highs. The vertical and lateral distribution of these beds has been used to understand the synsedimentary structural control of the studied stratigraphic succession, represented in the Marnoso‐arenacea Formation by subtle topographic highs and depocentres created by thrust‐propagation folds and emplacements of large mass‐transport complexes.  相似文献   

9.
Sedimentology of a saline playa in the northern Great Plains, Canada   总被引:1,自引:0,他引:1  
Ceylon Lake, a small salt playa located in southern Saskatchewan, is typical of many shallow ephemeral lacustrine basins found in the northern Great Plains of western Canada. The present-day brine, dominated by magnesium, sodium, and sulphate ions, shows wide variation in composition and concentration on both a temporal and a spatial basis. The modern sediments overall exhibit relatively simple facies relationships. An outer ring of coarse grained shoreline and colluvial clastics surrounds mixed fine grained clastics and salts and, in the centre of the basin, salt pan evaporites composed mainly of mirabilite, thenardite, and bloedite. Coring of the late Pleistocene and Holocene sedimentary fill shows that the lake has evolved from a relatively dilute, deep water, clastic dominated basin through a shallower, brackish water, carbonate-clastic phase, and finally into the present salt dominated playa. The thick sequence of evaporites preserved in the basin suggests evolution of the brine from a Na-rich solution to a mixed Mg-Na system. The most important post-depositional processes affecting Ceylon Lake sediments are mud diapirism and salt karsting.  相似文献   

10.
11.
The stratigraphic architecture of shoal‐water deltaic systems developed in low‐accommodation settings is relatively well‐known. In contrast, the features of shoal‐water deltas developed in high‐accommodation settings remain relatively poorly documented, especially when compared with the available data sets for Gilbert‐type deltaic systems developed in the same settings. The lacustrine Valimi Formation (Gulf of Corinth, Greece) provides an opportunity to investigate the facies assemblage and architectural style of shoal‐water deltaic systems developed in high‐accommodation settings. The studied interval accumulated during the Pliocene and Pleistocene and represents part of the early syn‐rift Gulf of Corinth succession. Six facies associations, each described in terms of depositional processes and geometries, have been identified and interpreted to represent a range of proximal to distal deltaic sub‐environments: delta plain, distributary channel, mouth‐bar, delta front, prodelta and open lake. The facies associations and their architectural elements reveal characteristics which are not common in traditionally described shoal‐water deltas. Of note, different facies arrangements are observed in the distributary channels in different sectors of the delta, passing from thick single‐storey channel fills embedded within delta‐plain fines in landward positions, to thin, amalgamated and multi‐storey channels closer to the river mouth. This study proposes a new depositional model for shoal‐water deltas in high‐accommodation settings documenting, for the first time, that shoal‐water delta deposits can form a substantial part of stratigraphic successions that accumulate in these settings. The proposed depositional model provides new criteria for the recognition and interpretation of these deposits; the results of this study have applied significance for reservoir characterization.  相似文献   

12.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   

13.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

14.
The continental Upper Triassic Tadrart Ouadou Sandstone Member was deposited in an extensional setting on the Pangaean continent, strongly influenced by a low‐latitude climatic regime (10° to 20° north). Complex interaction of basin subsidence and climatically driven processes led to high facies variability and a lack of correlatable units across the Argana Valley exposures. A process‐orientated approach integrating detailed facies with architectural element analysis was undertaken, which resulted in a multistage depositional model for the Tadrart Ouadou Sandstone Member. The basin‐scale model shows that basal alluvial fan and braided river systems are confined to the centre of the Argana Valley exposures. Aeolian deposits occur throughout the sequence, but dominate in the north. After a phase of playa deposition, prominent basin‐wide fluvial incision of up to 8 m marks the onset of perennial fluvial flow. These well‐sorted, internally complex and locally highly amalgamated fluvial sandstones are widespread throughout the basin and are focused in a north to south (south‐west) flowing channel system. After a final stage of aeolian sedimentation, sandstone deposition of the Tadrart Ouadou Sandstone Member in the Argana Valley is terminated rapidly by the onlap of lacustrine mudstones of the Sidi Mansour Member. The study revealed that, except for one pronounced period of perennial conditions, sedimentation is controlled largely by ephemeral fluvial flow, alternating ground water tables, deflation processes and periods with limited periodic local run‐off. The study highlights that facies architecture in the basin is the result of complex interaction of local syn‐sedimentary tectonics and the climatic regime within the basin, but also the climate of the catchment area to the east. The data suggest a proximal to mid‐distal basin setting in the rain‐shadow to the west of a mountain range (Massif Ancien), which exerted a strong control on the depositional environments of Triassic deposits exposed in this part of South‐west Morocco.  相似文献   

15.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

16.
17.
The Magallanes‐Austral Basin of Patagonian Chile and Argentina is a retroforeland basin associated with Late Cretaceous–Neogene uplift of the southern Andes. The Upper Cretaceous Dorotea Formation records the final phase of deposition in the Late Cretaceous foredeep, marked by southward progradation of a shelf‐edge delta and slope. In the Ultima Esperanza district of Chile, laterally extensive, depositional dip‐oriented exposures of the Dorotea Formation contain upper slope, delta‐front and delta plain facies. Marginal and shallow marine deposits include abundant indicators of tidal activity including inclined heterolithic stratification, heterolithic to sandy tidal bundles, bidirectional palaeocurrent indicators, flaser/wavy/lenticular bedding, heterolithic tidal flat deposits and a relatively low‐diversity Skolithos ichnofacies assemblage in delta plain facies. This work documents the stratigraphic architecture and evolution of the shelf‐edge delta that was significantly influenced by strong tidal activity. Sediment was delivered to a large slump scar on the shelf‐edge by a basin‐axial fluvial system, where it was significantly reworked and redistributed by tides. A network of tidally modified mouth bars and tidal channels comprised the outermost reaches of the delta complex, which constituted the staging area and initiation point for gravity flows that dominated the slope and deeper basin. The extent of tidal influence on the Dorotea delta also has important implications for Magallanes‐Austral Basin palaeogeography. Prior studies establish axial foreland palaeodrainage, long‐term southward palaeotransport directions and large‐scale topographic confinement within the foredeep throughout Late Cretaceous time. Abundant tidal features in Dorotea Formation strata further suggest that the Magallanes‐Austral Basin was significantly embayed. This ‘Magallanes embayment’ was formed by an impinging fold–thrust belt to the west and a broad forebulge region to the east.  相似文献   

18.
The influence of palaeodrainage characteristics, palaeogeography and tectonic setting are rarely considered as controls on stratigraphic organization in palaeovalley or incised valley systems. This study is an examination of the influence of source region vs. downstream base level controls on the sedimentary architecture of a set of bedrock-confined palaeovalleys developed along the distal margin of the Alpine foreland basin in south-eastern France. Three distinct facies associations are observed within the palaeovalley fills. Fluvial facies association A is mainly dominated by poorly sorted, highly disorganized, clast-to-matrix-supported cobble-to-boulder conglomerates that are interpreted as streamflood deposits. Facies association B comprises mainly yellow siltstones and is interpreted as recording deposition in an estuarine basin environment. Estuarine marine facies association C comprises interstratified estuarine siltstones and clean, well-sorted washover sandstones. The sedimentary characteristics of the valley fill successions are related to the proximity of depositional sites to sediment source areas. Palaeovalleys located proximal to structurally controlled basement palaeohighs are entirely dominated by coarse fluvial streamflood deposits. In contrast, distal palaeovalley segments, which are located several kilometres downstream, contain successions showing upward transition from coarse fluvial facies into estuarine central basin fines, and finally into estuarine-marginal marine facies. Facies distributions suggest that the fluvial deposits form wedge-shaped, downstream-thinning sediment bodies, whereas the estuarine deposits form an upstream-thinning wedge. The vertical stacking of fluvial to estuarine to marginal marine depositional environments records the fluvial aggradation and subsequent transgression of relatively small bedrock-confined river valleys, which drained a rugged, upland terrain. Facies geometries suggest that a fluvial sediment wedge initially prograded downvalley, in response to high bed load sediment yields. Subsequently, palaeovalleys became drowned during the passage of a marine transgression, with the establishment of estuarine conditions. Initial fluvial aggradation and subsequent marine flooding of the palaeovalleys is a consequence of the interaction of high local rates of sediment supply and relative sea-level rise driven by flexural subsidence of the basin.  相似文献   

19.
The Late Devonian‐Early Carboniferous Mansfield Basin is the northernmost structural sub‐basin of the Mt Howitt Province of east‐central Victoria. It is comprised predominantly of continental clastic sedimentary rocks, and is superimposed upon deformed Cambrian to Early Devonian marine sequences of the Palaeozoic Lachlan Fold Belt. This paper documents evidence for synsedimentary deformation during the early history of the Mansfield Basin, via sedimentological, structural and stratigraphic investigations. Repeating episodes of folding, erosion and sedimentation are demonstrated along the preserved western margins of Mansfield Basin, where fold structures within the lower sequences are truncated by intrabasinal syntectonic unconformities. A convergent successor basin setting (an intermontane setting adjacent to, or between major fault zones) is suggested for initial phases of basin deposition, with synsedimentary reverse faulting being responsible for source uplift and subsequent basin deformation. Palaeocurrents within conglomerate units indicate derivation from the west and are consistent with episodic thrusting along basin margin faults providing elevated source regions. Periods of tectonic quiescence are represented by finer grained meandering fluvial facies (indicative of lower regional topographic gradients) which display drainage patterns that appear not to have been influenced by bounding faults to the west. An up‐sequence increase in the textural and compositional maturity of basin sandstones and conglomerates is proposed to be a result of the incorporation of basin fill into ongoing basin deformation, with unstable metapelitic rocks being progressively winnowed from clast populations. Rather than resulting from Carboniferous (Kanimblan) reactivation of extensional structures, as is generally assumed, the deformation observed within the lower units of the Mansfield Basin is suggested here to be essentially syndepositional and at least Late Devonian in age.  相似文献   

20.
Stratigraphic patterns and sequence development in tectonically active extensional basins remain poorly documented in comparison with passive‐margin settings. Rift basin fills are generally characterized by coarsening‐upward trends in response to the rapid creation of accommodation by extensional faulting, and the progressive filling of graben during more quiescent periods. The Early Permian Irwin River Coal Measures in the Northern Perth Basin (Western Australia) record a complex stratigraphic arrangement of conglomerate, sandstone, mudstone and coal, and have been attributed to delta plain depositional environments that developed in a cool–temperate climatic setting during syn‐rift activity. Sedimentary analysis of outcrop and core data from the fault‐bounded Irwin Terrace is used to distinguish nine facies associations reflecting deposition in braided rivers, fixed‐anastomosed channel belts, tide‐influenced coastal environments and storm‐affected distal bays. The broader depositional system is interpreted as a morphologically asymmetrical tide‐dominated embayment with a fluvial and wave influence. The stratigraphic architecture of the Irwin River Coal Measures was strongly influenced by the evolving rift basin margin. Fault reactivation of the major basin‐bounding Darling Fault in the early syn‐rift phase caused footwall uplift and the inception of transverse palaeo‐valleys occupied by braided fluvial systems. Fault block subsidence during the subsequent balanced, backstepping and drowning phases resulted in a dominantly retrogradational stacking pattern indicating progressive flooding of marginal‐marine areas and culminating in deposition of distal marine elements. In the active rift basin, it is proposed that preservation of a shallow‐marine syn‐rift sequence was promoted by the geomorphological confinement of the embayed system increasing tidal current acceleration and hampering transgressive ravinement. The proposed sequence model demonstrates that transgressive successions can develop in the early syn‐rift phase in response to footwall uplift and tectonic subsidence. The syn‐rift sequence recording the filling of an embayment on a rift basin margin may be applied in similar tectonic and/or depositional contexts worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号