首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
近百年来青藏高原冰川的进退变化   总被引:58,自引:22,他引:36  
近百年来, 青藏高原的冰川虽然出现过两次退缩速率减缓或相对稳定甚至小的前进阶段, 但总的过程仍然呈明显的波动退缩趋势. 随着全球气候的波动变暖, 特别是进入20世纪80年代以来的快速增温, 使高原冰川末端在近几十年间出现了快速退缩. 以高原东部和南部边缘山地的冰川变化幅度最大, 而高原中北部山区和羌塘地区的冰川变化幅度较小, 相对比较稳定. 显示出青藏高原冰川对气候变化响应的敏感性在边缘山区较中腹地区更为敏感.  相似文献   

2.
北半球50条山地冰川近期的物质平衡状况   总被引:4,自引:0,他引:4       下载免费PDF全文
杨大庆 《水科学进展》1992,3(3):161-165
近期北半球大多数山地冰川的物质平衡为负,冰川普遍退缩,表明北半球气候暖化的趋势.由于区域气候波动和变化的差异性以及冰川对气候变化的敏感性(响应程度)的不同,北半球山地冰川在普遍退缩的背景下具有鲜明的区域特征.  相似文献   

3.
中国冰川变化对气候变化的响应程度研究   总被引:3,自引:2,他引:1  
理清冰川变化对气候变化的响应程度、揭示响应度的空间变化规律,是开展冰川变化预估及其对社会经济影响程度量化研究的基础。使用1958-2010年西部地区150个气象站点的夏季平均气温和年降水量资料、中国第一、二次冰川编目数据,通过夏季平均气温和年降水量变化趋势值定量反映气候变化,以冰川面积变化率表征冰川变化,借助GIS技术平台,采用参照对比方法,从宏观层面研究了中国西部冰川变化对气候变化的响应程度。依据等分分类法(Equal Interval),将响应程度分为极低度响应、低度响应、中度响应、高度响应、极高度响应5级。结果表明:中国冰川变化对气候变化的响应方式与程度不同,对夏季平均气温变化表现为正响应,而对年降水量变化主要表现为负响应,冰川分布区年降水量增加带来的冰川积累量增多不足以抵消因温度升高而增加的消融量,升温是中国西部冰川快速退缩的主导性因素。就整体而言,冰川变化对夏季平均气温变化的响应程度相对较低,但局部地区冰川变化对温度变化高度敏感,响应程度高与极高。不同类型冰川的变化对夏季平均气温变化的响应程度亦不同,海洋型冰川的变化以中高度响应为主,极大陆型冰川的变化主要呈现极低、低响应程度,而大陆型冰川变化的响应程度呈两级化。  相似文献   

4.
从1970、1990、2000年和2010年4个时段的MSS、TM、ETM影像中提取了敦德冰川的边界,并结合距敦德冰川较近的托勒、大柴旦和德令哈3个气象站点的1957-2010年年降水量数据、年平均气温和夏季平均气温(6-8月)数据进行分析,对近40a来敦德冰川变化和气候变化的关系进行了研究.结果表明:近40a来的敦德冰川处在持续退缩状态;最近几十年敦德冰川退缩有相对加速之势;冰川在退缩过程中不断分解,部分分解后的小面积冰川融化消失.近半个世纪以来该区的气候增温趋势较明显,降水虽有少量增加,但是趋势却不明显.冰川变化与气候变化的关系表现为温度的升高是敦德冰川退缩的主要原因.  相似文献   

5.
20世纪初以来青藏高原东南部岗日嘎布山的冰川变化   总被引:28,自引:13,他引:15  
采用地形图、航空摄影相片、中巴资源卫星和Landsat TM数字影像, 对青藏高原东南部岗日嘎布山区20世纪初以来的冰川变化进行了研究, 分析了该地区冰川对20世纪后期全球变暖的响应. 结果表明: 20世纪初期至1980年, 研究区的冰川基本处于退缩状态, 期间冰川面积减少了13.8%, 储量减少了9.8%, 储量减少量相当于249.2×108 m3水当量, 因冰川萎缩导致其对河川径流的调节作用减弱了一半左右. 1980年以来, 本区气候表现出升温和降水增加, 在此气候变化背景下, 冰川总体呈面积减小的退缩状态, 但有一定数量的冰川处于前进之中, 这可能与不同规模冰川对气候变化的响应特点和响应时间有关.  相似文献   

6.
1980-2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测   总被引:9,自引:7,他引:2  
基于地形图、航空摄影相片和Landsat OLI遥感影像,对青藏高原东南部岗日嘎布山1980-2015年间的冰川变化进行了研究。结果表明: 1980-2015年,岗日嘎布山冰川面积减少679.50 km2(-24.91%),年平均面积退缩率为0.71%·a-1,末端海拔平均抬升了111 m。研究区范围内有10条冰川处于前进状态,冰川长度平均增加566.17 m;其余冰川均处于退缩状态,冰川长度平均减少823.49 m。与中国其他山系冰川相比,岗日嘎布山冰川面积年平均退缩速率较大,冰川长度变化速率最大,是冰川退缩最强烈的地区之一。岗日嘎布山冰川变化与气候变化关系密切,对研究区附近三个气象站5-9月平均气温和降水变化分析表明,自1980年以来,岗日嘎布山5-9月平均气温显著上升,降水变化不明显,是导致该区域冰川呈现快速退缩的主要原因。  相似文献   

7.
近25年唐古拉山西段冰川变化遥感监测   总被引:1,自引:0,他引:1  
基于1990—2015年Landsat影像数据,利用比值阈值和NIR水体识别相结合的新方法提取并研究了近25年来唐古拉山西段冰川变化情况和规律,并采用克里金插值构建研究区气候分布及变化特征,揭示冰川变化与气候变化的关系。研究得出:唐古拉山西段冰川总体退缩比较严重,近25年来冰川面积退缩约202.84 km~2,占1990年面积的11.98%;冰川退缩主要集中在海拔5 800 m以下;研究区东南部冰川退缩最严重,中部格拉丹冬地区冰川退缩较少;空间插值表明研究区东南部相对较湿热而西北部干冷,西北—东南方向温度分布呈现由低到高的变化趋势,降水量先减少后增加总体变化幅度不大,但研究区气温普遍上升,插值变化显示增温区从研究区中心向周围辐射,最大增温区几乎已经覆盖整个冰川区域;唐古拉山西段冰川的加速退缩主要是由升温造成的。  相似文献   

8.
利用1999年ETM、2014/2015年GF-1为主的2期遥感影像作为数据源,采用人机交互解译的方法完成了2期冰川编目成果,并对最近15年(1999—2015)念青唐古拉山冰川变化进行分析。结果显示,从1999年至2015年间,念青唐古拉山脉冰川呈退缩趋势,以东段海洋型冰川退缩为主,西段亚大陆型冰川相对稳定。冰川总面积减少了56. 32km2,减少变化率为0. 67%;有10条冰川消失,减少变化率为0. 16%;冰储量减少5. 315 km3,减少变化率为0. 78%。调查结果还显示,念青唐古拉山地区冰川各朝向均呈退缩趋势,偏南向和东向冰川数量与面积减少大于偏北向和西向的;平均坡度在20°~35°范围的冰川数量和面积减少最多;海拔介于4 500~5 500 m区间的冰川面积退缩最明显。在恒河流域和萨尔温江流域的冰川消退最显著。总体上,不同规模冰川均有退缩,规模≤5. 0 km2的冰川是念青唐古拉山地区退缩最多的。冰川退缩与气候变化关系密切。选取念青唐古拉山脉附近3个气象台站,对最近50多年以来的年均气温和年降水量变化分析表明,自1961年以来,念青唐古拉山年均气温呈显著上升趋势,而降水量变化不一,有增有减。气温上升而降水减少,可能是导致念青唐古拉山地区东段冰川退缩的一个因素。  相似文献   

9.
唐古拉山东段布加岗日地区小冰期以来的冰川变化研究   总被引:17,自引:12,他引:5  
王宁练  丁良福 《冰川冻土》2002,24(3):234-244
对唐古拉山东段布加岗日地区小冰期以来的冰川变化资料进行了分析,结果表明,该地区小冰期最盛时(即15世纪)冰川总面积和总储量分别为241.46km2和19.6282km3,目前其面积和储量分别已减少了23.7%和15.1%,并且自小冰期以来有184条长度大约为0.6km的小冰川已消失.该地区各冰川面积和储量的绝对变化量随着冰川规模的增大而增大,而其相对变化百分数却是随着冰川规模的增大而减小.不同方位冰川小冰期以来的平均面积萎缩量、平均末端退缩量和平均末端高程上升量均表明,南坡冰川变化的绝对量比北坡的大.这说明在同一气候变化背景下,该地区南坡冰川对于气候变化的响应比北坡冰川敏感.小冰期以来该地区冰川雪线上升了约90m,这大致相当于气温上升约0.6℃.  相似文献   

10.
在全球气候普遍变暖、冰川大面积退缩的大背景下,为揭示山岳冰川十分发育的喀喇昆仑山脉现代冰川分布及变化特征,以中等空间分辨率(ETM和Landsat 8)卫星数据为主要数据源,采用人机交互式解译方法完成了厦呈慕士塔格山、吕莫慕士塔格山段冰川变化遥感调查,基本查明了区内冰川面积、分布特征和变化状况,共调查1 373处冰川,其中中国境内有554处,境外克什米尔印控区有819处; 同时对区内典型冰川变化进行了2期对比分析,得出冰舌退缩、前进或稳定现象同时存在的结论,为喀喇昆仑山脉冰川变化研究提供了参考依据,为我国西部边海防地区水资源的开发利用和冰雪灾害的防治等提供了科学依据。  相似文献   

11.
青藏高原冰川对气候变化的响应及趋势预测   总被引:49,自引:3,他引:46  
青藏高原是世界上中低纬度地区最大的现代冰川分布区,这里冰川末端在近百年来总的进退变化趋势是退缩,但在本世纪初至20~30年代和70~80年代间多数冰川曾出现过稳定甚至前进。对比近百年来气候变化,冰川变化虽然滞后于温度变化,但它们之间存在着很好的对应关系,多数冰川对温度变化滞后时间在10~20年间。根据80年代以来平均物质净平衡值,大致将青藏高原划分为:内部为平衡或正平衡区;向外为负平衡区;边缘为强负平衡区。以冰川对气候响应滞后关系预测,在今后10~20年间,青藏高原边缘冰川末端仍继续处于后退,而高原内部冰川末端位置变化不大。  相似文献   

12.
新疆哈密是资源性缺水地区,冰川是该区主要的供给水源。为了对该区冰川和水文水资源的现状和未来变化做出合理评价和预估,以榆树沟6号冰川和庙尔沟冰帽为代表,结合野外实测资料以及近年来在冰川变化领域所取得的相关研究成果,综合分析了在气候变暖背景下新疆哈密地区冰川近年来的变化过程及对水资源的影响。结果表明,1972-2011年,榆树沟6号冰川厚度平均减薄20 m,减薄速率约为0.51 m/a,冰川末端退缩254 m,年均退缩约6.5 m。由于强烈消融,冰川表面径流发育明显,且在末端有冰碛湖形成。相比之下,庙尔沟冰帽消融速率相对较小,对气候变暖的敏感度较低,这与冰帽类型和所处海拔较高有直接关系。综合分析发现,流域有无冰川覆盖及覆盖的比率大小,直接造成哈密地区不同流域近期河川径流变化的差异。  相似文献   

13.
物质平衡是冰川对气候变化最直接的响应,是冰川变化的重要参数.大陆型冰川与海洋型冰川发育在不同的水热环境下,它们对气候变化的响应程度、过程和机理存在很大差异,因此在全球变暖背景下对这两类不同性质冰川物质平衡变化特征及其机理做一全面的对比研究意义重大.以东、西天山的乌鲁木齐河源1号冰川和图尤克苏冰川以及阿尔卑斯山东、中、西部的欣特雷斯冰川、Caresèr冰川和Sarennes冰川为参照冰川,在对比分析这五条参照冰川近60 a来物质平衡变化幅度差异和阶段性差异基础上,对大陆型冰川与海洋型冰川物质平衡变化特征及其机理进行了对比研究.结果表明:在物质平衡阶段性变化上,阿尔卑斯山参照冰川物质平衡变化具有相似的阶段性,而天山和阿尔卑斯山参照冰川之间以及天山内部两条参照冰川之间物质平衡阶段性变化存在很大的差异,可见,无论不同性质冰川还是同一性质的不同冰川,其物质平衡的阶段性变化都可能存在差异,这与不同冰川所处环境水热变化的时间差异有关,而与冰川性质无关;在物质平衡变化幅度上,海洋型冰川变化幅度明显大于大陆型冰川,原因是不同性质冰川发育的水热环境及其对气候变化敏感性差异;在前人对冰川加速消融机理的研究基础上,本文也讨论了大陆型冰川与海洋型冰川物质平衡变化的机理及其异同.  相似文献   

14.
环北极地区冰川(盖)物质平衡研究进展   总被引:6,自引:4,他引:2  
效存德  秦大河 《冰川冻土》1999,21(3):200-206
回顾了环北极各分区冰川物质平衡观测,研究的历史与现状,过去30a间,北极冰川(帽)波动与全球平均变化保持同步。相对于中低纬地区冰川,北极地区的小型冰川(帽)对全球气候变化反应更灵敏,北极冰川物质平衡的变化对气候变化具有更好的指示意义。19世纪末以来的百年时间里,除本世纪60年代出现短暂的相对冰时外,环北极冰川表现出普遍退缩趋势。  相似文献   

15.
根据完成的青藏地区基于1999年ETM、2014/2015年GF-1/OLI两期遥感调查的冰川编目数据,对1999-2015年期间中国喜马拉雅山地区的冰川变化进行分析。结果显示,从1999-2015年间,中国喜马拉雅山地区的冰川普遍退缩,冰川数量减少了85条,面积减少了42.00 km^2,冰储量减少了2.385 km^3,分别占其减少变化率的1.53%、0.67%和0.50%。沿山脉由东向西冰川变化不一,其中东段的冰川数量减少多,西段的冰川面积和冰储量减少多,并且东段的数量减少变化率远大于西段,西段的面积、冰储量减少变化率大于东段,中段的冰川相对稳定。喜马拉雅山地区的冰川在北、北东和东等方向上发生退缩,且减少量依次减少,其中东向的数量减少变化率最大,北东向的面积减少变化率最大,而北向的减少变化率最小。冰川在不同坡度退缩程度不一,在坡度10°~15°范围冰川面积退缩最多、变化率最大,在坡度30°~35°范围数量减少最多、变化率最大。冰川在高程5 500~6 000 m区间数量和面积退缩量最多,其次是在高程5 000~5 500 m区间;在高程3 500~4 000 m区间的退缩变化率最大,而在高程6 000~6 500 m区间的退缩变化率最小。不同流域中冰川变化差异较大,在雅鲁藏布江流域(5O2)冰川数量和面积减少最多,其次是朗钦藏布等流域(5Q2)和朋曲等流域(5O1),而扎日南木措流域(5Z3)的冰川减少量最小,但是变化率最大。总之,小冰川的大规模退缩或者消失,较大冰川也普遍退缩,是喜马拉雅山地区冰川变化的特点。喜马拉雅山地区冰川退缩与气候变化关系密切。根据多年年平均气温和年降水量分析,自1961年以来,该地区年平均气温显著上升,年降水量有增有减,但气温上升、降水量减少是导致冰川消融原因之一。  相似文献   

16.
1973-2010年基于RS和GIS的马兰冰川退缩与气候变化关系研究   总被引:5,自引:3,他引:2  
姜珊  杨太保  田洪阵 《冰川冻土》2012,34(3):522-529
以1973-2010年的RBV、 MSS、 TM和ETM+遥感资料为信息源, 通过遥感图像处理技术和目视解译方法提取冰川界限, 应用GIS技术分析了位于昆仑山中段的马兰冰帽近37 a冰川面积变化. 结果表明: 1973-2010年马兰冰帽呈退缩趋势, 冰川面积减少了6.04%; 冰川退缩经历由快-慢-快-慢的过程, 近10 a冰川退缩不显著, 体现冰川变化的一个转型时期. 在研究期内, 马兰冰帽南北向退缩690.4 m, 东西向退缩84.29 m. 研究表明: 马兰冰帽退缩的关键因素是气候变暖, 年降水量的增加不能够抵消由夏季温度剧烈上升导致的冰川消融. 此外, 地形条件、 冰川规模都是影响冰川波动的重要因素.  相似文献   

17.
念青唐古拉山羊八井附近古仁河口冰川的变化   总被引:6,自引:5,他引:1  
利用GPS测量冰川不同时期的相关位置,结合地形图和航空照片的分析,在2004-2006年连续监测了念青唐古拉山羊八井古仁河口冰川的变化.结果表明:自小冰期以来,古仁河口冰川表现出较强的退缩状态,小冰期最盛期冰川末端海拔比现在降低100 m;小冰期后期到1970年,冰川末端退缩幅度约为7.0 m.a-1,1970-2004年平均退缩幅度为8.3 m.a-1.观测得到2004-2005年的平均退缩量约9.5 m.a-1,2005-2006年的平均退缩量为17.0 m.a-1.古仁河口冰川变化的现状,显示出冰川退缩幅度呈增大趋势.这预示着在全球气候变暖影响下,羊八井地区的冰川消融在逐渐增大,冰川水资源锐减,由此引起冰川面积的缩小.  相似文献   

18.
何文雨  旺罗 《地质论评》2023,69(4):2023040016-2023040016
全新世(11. 7 ka BP)作为最年轻的地质年代,其气候变化相对晚更新世冰期稳定,但仍存在千百年尺度的气候波动。造成这些气候波动的可能有多种原因,但至今还没有统一的认识。这一时期的气候变化与人类发展有密切的关系,因此其短尺度的气候变化越来越受到学界的关注,已经开展了大量的研究。通过对文献资料分析,综述了全新世千百年尺度的气候突变的原因。全新世早期温度普遍升高主要与太阳活动变化有关,期间冰盖消融与海洋环流作用引起百年尺度的气候事件。全新世中期气温最高,但也发现多次干冷气候事件,主要为冰川活动导致。全新世晚期温度降低,主要是以火山活动导致的气候变冷。其他因素如地球轨道参数、潮汐作用、冰川作用、海洋环流等在全新世各个时期对气候造成影响。  相似文献   

19.
何文雨  旺罗 《地质论评》2023,69(6):2308-2324
全新世(11. 7 ka BP)作为最年轻的地质年代,其气候变化相对晚更新世冰期稳定,但仍存在千百年尺度的气候波动。造成这些气候波动的可能有多种原因,但至今还没有统一的认识。这一时期的气候变化与人类发展有密切的关系,因此其短尺度的气候变化越来越受到学界的关注,已经开展了大量的研究。通过对文献资料分析,综述了全新世千百年尺度的气候突变的原因。全新世早期温度普遍升高主要与太阳活动变化有关,期间冰盖消融与海洋环流作用引起百年尺度的气候事件。全新世中期气温最高,但也发现多次干冷气候事件,主要为冰川活动导致。全新世晚期温度降低,主要是以火山活动导致的气候变冷。其他因素如地球轨道参数、潮汐作用、冰川作用、海洋环流等在全新世各个时期对气候造成影响。  相似文献   

20.
1959-2013年中国境内萨吾尔山冰川变化特征   总被引:1,自引:1,他引:0  
萨吾尔山冰川条数少,中国冰川编目将萨吾尔山南北坡的冰川分别附入了天山和阿尔泰山区的冰川,不便于冰川变化研究,因此应给予其特殊考虑.鉴于前人工作中鲜有涉及该区的冰川研究,以萨吾尔山区冰川为研究对象,利用地形图、冰川编目数据以及Landsat遥感影像数据结合实测探地雷达数据,分析萨吾尔山地区冰川变化特征.通过目视解译结合野外实地观测的方法,得到1959-2013年该区的冰川变化特征.结果表明:总体上,萨吾尔山冰川持续退缩明显,1959-2013年中国境内的冰川面积由17.69 km2退缩为10.13 km2,退缩率42.74%,平均每年退缩0.14 km2;萨吾尔山北坡的冰川退缩率为37.57%,南坡退缩率为72.69%,南坡冰川退缩率基本为北坡的两倍.分析认为,南坡冰川退缩率较高的原因除了与坡向因素有关外,单条冰川面积大小是该差异的主要影响因素;基于木斯岛冰川探地雷达测厚结果,对该冰川体积进行了初步估算并与1959年地形图估算出的体积进行对比,发现该冰川体积减少约44.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号