首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 115 毫秒
1.
Outcrops of the Cretaceous Upper sandstone formation some 375 km to the East of Addis Ababa on the motor Highway to Harar was paleomagnetically investigated. About seventy core samples were collected at various stratigraphic levels from 250–300 meters thick sedimentary formation. After standard sample preparations in the laboratory the resulting specimens were subjected to routine paleomagnetic demagnetization protocol. In the first steps of demagnetizations process the recent and viscous magnetizations were removed by heating until a temperature of level of 300 °C. Further demagnetization of the samples resulted in the isolation of the final magnetization with stable line segments that is directed towards the origin, which is interpreted as Characteristic Remanent Magnetization (ChRM). Rock – magnetic experiments have identified goethite (αFeOOH), hematite (αFe2O3), detritial hematite, and magnetite as the magnetic mineral phases carrying the remanence. The ChRM identified resulted in an average value of (Ds = 0.5°, Is = ?0.7°, α95 = 4.3°, N = 34) for the red sandstones while an average value of (Ds = 335.8°, Is = ?31.8°, α95 = 4.7°, N = 14) for the limestone intercalations. The former ChRM in the red sandstone is determined to be secondary while the latter ChRM is known to be primary. Comparison of these directional results and their pole equivalents with the African plate Apparent Polar Wander Path curve established by Besse and Courtillot (2003) give ages of between 115–130 Million years for the limestone intercalation and ages of 30 million years for red sandstone unit. These are interpreted respectively as estimates of the age of deposition and a later remagnetization respectively.  相似文献   

2.
The altitude profiles of particulate extinction in the upper troposphere and lower stratosphere (UTLS) obtained from SAGE-II in the latitude region 0–30°N over the Indian longitude sector (70–90°E) are used to study the latitudinal variation of its annual pattern in this region during the volcanically quiescent period of 1998–2003. The SAGE-II data is compared with the lidar measurements from Gadanki (13.5°N, 79.2°E) when the satellite had an overhead occultation pass over a small geographical grid centered at this location. The particulate optical depth (τp) in the UT region shows a general decrease with increase in latitude and a pronounced summer–winter contrast with relatively low values during winter and high values during summer. In general, these variations are in accordance with the latitudinal variation of convective available potential energy (CAPE) and thunderstorm activity, which are good representative indices of tropospheric convection. While the particulate extinction (and τp) in the 18–21 km (LS1) region is relatively low in the equatorial region up to 15°N, it shows an increase in the off-equatorial region, beyond 15°N. While the annual variation of τp in the LS1 region is almost insignificant near the equator, it is rather well pronounced in latitude region between 10 and 15°N with relatively high values during winter and low values during summer. Beyond 20°N, this shows a prominent peak during summer. At a higher altitude, the 21–30 km (LS2) region, the latitude variation of τp shows a different pattern with high values near the equator and low values in the off-equatorial region confirming the existence of a stratospheric aerosol reservoir. Low values of τp at lower regime (LS1) near the equator could be due to rapid transport of particulates from the near equatorial region to higher latitudes, while the equatorial high at upper regime (LS2) could be due to lofting and subsequent accumulation.  相似文献   

3.
By using six 4.5 Hz geophones, surface wave tests were performed on four different sites by dropping freely a 65 kg mass from a height of 5 m. The receivers were kept far away from the source to eliminate the arrival of body waves. Three different sources to nearest receiver distances (S), namely, 46 m, 56 m and 66 m, were chosen. Dispersion curves were drawn for all the sites. The maximum wavelength (λmax), the maximum depth (dmax) up to which exploration can be made and the frequency content of the signals depends on the site stiffness and the value of S. A stiffer site yields greater values of λmax and dmax. For stiffer sites, an increase in S leads to an increase in λmax. The predominant time durations of the signals increase from stiffer to softer sites. An inverse analysis was also performed based on the stiffness matrix approach in conjunction with the maximum vertical flexibility coefficient of ground surface to establish the governing mode of excitation. For the Site 2, the results from the surface wave tests were found to compare reasonably well with that determined on the basis of cross boreholes seismic tests.  相似文献   

4.
Using data from two very large watersheds and five smaller, this paper explores the use of Bayesian methods for fitting rating curves. Posterior distribution of rating-curve parameters were calculated using Markov Chain Monte Carlo (MCMC) methods, and 95% credible intervals were calculated for predicted discharges, given stage. Expected discharge was related to stage using a link function. For the five smaller watersheds, the assumptions were (a) that the distribution of discharge Q, given stage h, is Normal, with variance proportional to h; (b) that a log link function relates μQ, the mean of Qh, to a function of stage, of the form μQ = β(h + α)λ. For the two large watersheds, however, a better fit was obtained by taking the distribution of Q to be log-Normal, and the link function as ln μQ = β0 + β1h. For the two large watersheds, priors for all three parameters were taken as uninformative; for the five smaller, the prior for parameter λ was taken as Normally distributed, N(2, 0.5). Acceptable ratings were obtained for all seven sites. It is argued that distributions of derived variables (such as annual maximum discharge) can be derived directly from (a) the posterior distribution of rating-curve parameters, and (b) the stage record, without recourse to additional assumptions. Estimates thus obtained for the T-year event will incorporate rating-curve uncertainty. It is argued that Bayesian methods are appropriate for rating-curve calculation because their inherent flexibility (a) allows the incorporation of prior information about the nature of a rating curve; (b) yields credible intervals for predicted discharges and quantities derived from them; (c) can be extended to allow for uncertainty in stage measurements.  相似文献   

5.
New Late Cretaceous paleomagnetic results from the Okhotsk-Chukotka Volcanic Belt in the Kolyma-Omolon Composite Terrane yield stable and consistent remanent directions. The Late Cretaceous (86–81 Ma) ignimbrites from the Kholchan and Ola suites were sampled at 19 sites in the Magadan area (60.4° N, 151.0° E). We isolated the characteristic paleomagnetic directions from 16 sampled sites using an alternating field demagnetization procedure. The primary nature of these directions is ascertained by dual polarities and positive fold tests. A tilt-corrected mean direction (D = 42.8°, I = 84.7°, k = 46.0, α95 = 10.0°) yields a paleomagnetic pole of 66.7° N, 168.5° E (A95 = 18.8°) which appears almost identical to the 90–67 Ma pole reported from the Lake El’gygytgyn area of the Okhotsk-Chukotka Volcanic Belt (Chukotka Terrane). This consistency suggests that the Kolyma-Omolon Composite Terrane and Chukotka Terrane has acted as a single tectonic unit since 80 Ma without any significant internal deformation. Accordingly, we calculate a combined 80 Ma characteristic paleomagnetic pole (Long. = 164.7° E, Lat. = 68.0°, A95 = 10.9°, N = 12) for the Kolyma-Omolon-Chukotka Block which falls 16.5–17.5° south of the same age poles from Europe and East Asia. We ascribe this discrepancy in pole positions to tectonic activity in the area and infer a southward displacement of 1640 ± 1380 km for the Kolyma-Omolon-Chukotka Block with respect to the North American and Eurasian blocks since 80 Ma; more than 260 km of it is attributed to tectonic displacement in the Arctic Ocean due to the opening of the Canadian Basin.  相似文献   

6.
The recent earthquake sequences of 2012 (northern Italy) and 2013 (Marche offshore) provided new, fundamental constraints to the active tectonic setting of the outer northern Apennines. In contrast to the Po Plain area, where the 2012 northern Italy earthquakes confirmed active frontal thrusting, the new focal mechanisms obtained in this study for the 2013 Marche offshore earthquakes indicate that only minor thrust fault reactivation occurs in the Adriatic domain, even for a theoretically favourably oriented maximum horizontal compression. Recent seismicity in this domain appears to be mainly controlled by transcurrent crustal faults dissecting the Apennine thrust belt. The along-strike stress field variation from the Po Plain to the Adriatic area has been quantitatively investigated by applying the multiple inverse method (MIM) to the analysis of the entire seismicity recorded from January 1976 to August 2014, from the top 12 km of the crust (fault plane solutions from 127 earthquakes with MW  4), allowing us to obtain a comprehensive picture of the state of stress over the outer zone of the fold and thrust belt. The present-day stress field has been defined for 39 cells of 1.5° × 1.5° surface area and 12 km depth. The obtained stress field maps point out that, although the entire outer northern Apennines belt is characterized by a sub-horizontal maximum compressive axis (σ1), the minimum compression (σ3) is sub-vertical only in the Po Plain area, becoming sub-horizontal in the Adriatic sector, thus confirming that the latter region is dominated by an active tectonic regime of strike-slip type.  相似文献   

7.
In situ measurements of electron density were made over Trivandrum (8.5°N, 76.9°E) during nighttime to study E-region plasma density irregularities. Irregularities, with vertical scale sizes from a few km to 15 cm, were detected during rocket ascent and descent. Electron density profiles during ascent and descent of an earlier nighttime rocket flight from Trivandrum are also presented. Some of the important results are as follows: (i) horizontal gradients in electron density exist in 110–120 km region with horizontal scale size of at least 40 km, (ii) based on the presence/absence of electron density structures during ascent and descent of both flights, the horizontal distance over which the gradient drift instability operates is found to be at least 80 km and 90 km, for both the flights, (iii) observed irregularities in regions of negative density gradient are suggested to be produced through the gradient drift instability (GDI) driven by vertical polarization electric field as well as by electric field produced through wind shears and those in positive gradient regions by wind driven GDI, (iv) largest irregularity amplitude (≈30%) was associated with steepest gradients and so was the presence of smallest vertical scale sizes (12 m to 15 cm), which were absent at other altitudes, (v) the spectral index of irregularities was in the range of ?2.2±0.2 for large scales (few kilometers>λ>50 m), ?3.25±0.25 for medium scales (50 m>λ>10 m) and ?2.6±0.1 for smaller scales (10 m>λ>1 m) and (vi) irregularities in large and medium scales are expected to be produced directly through GDI and the small and sum-meter scales through non-linear GDI.  相似文献   

8.
Two accurately calibrated superconducting gravimeters (SGs) provide high quality tidal gravity records in three central European stations: C025 in Vienna and at Conrad observatory (A) and OSG050 in Pecný (CZ). To correct the tidal gravity factors from ocean loading effects we compared the load vectors from different ocean tides models (OTMs) computed with different software: OLFG/OLMP by the Free Ocean Tides Loading Provider (FLP), ICET and NLOADF. Even with the recent OTMs the mass conservation is critical but the methods used to correct the mass imbalance agree within 0.1 nm/s2. Although the different software agrees, FLP probably provides more accurate computations as this software has been optimised. For our final computation we used the mean load vector computed by FLP for 8 OTMs (CSR4, NAO99, GOT00, TPX07, FES04, DTU10, EOT11a and HAMTIDE). The corrected tidal factors of the 3 stations agree better than 0.04% in amplitude and 0.02° in phase. Considering the weighted mean of the three stations we get for O1 δc = 1.1535 ± 0.0001, for K1 δc = 1.1352 ± 0.0003 and for M2 δc = 1.1621 ± 0.0003. These values confirm previous ones obtained with 16 European stations. The theoretical body tides model DDW99/NH provides the best agreement for M2 (1.1620) and MATH01/NH for O1 (1.1540) and K1 (1.1350). The largest discrepancy is for O1 (0.05%). The corrected phase αc does not differ significantly from zero except for K1 and S2. The calibrations of the two SG's are consistent within 0.025% and agree with Strasbourg results within 0.05%.  相似文献   

9.
In this study we investigate co-seismic geo-center change based on a dislocation theory for a spherically symmetric, non-rotating, perfectly elastic and isotropic model. We first introduce the basic theory with emphasis on the dislocation Love numbers of degree 1, and then we present methods for computing co-seismic geo-center movement. It is found that the geo-center change reaches maximum value when δ = 45° and λ = 90°, i.e., a 45° declined dip fault causes the maximum geo-center movement. As an application, we apply the methods to compute the geo-center movement caused by the 2004 Sumatra earthquake (Mw9.3) and the 2011 Tohoku-Oki earthquake (Mw9.0). Results show that the maximum co-seismic geo-center movements for the two events are 0.87 mm and 0.43 mm, respectively.  相似文献   

10.
This paper investigates dynamics of a spherical bubble surrounded by a viscoelastic fluid. The purpose of the study is to understand the parameters which control expansion and fragmentation of bubbly magma by decompression. In particular, we focus on which occurs first, fragmentation or expansion. Supposing that rupture of the bubble wall occurs in a critical stress condition, we calculate the change of the bubble radius and tensile stress at the bubble wall for various decompression rates. Conditions in which tensile stress is stored in the shell are represented in terms of dimensionless parameters. The results are interpreted as follows: when magma viscosity is larger than a critical value, and the decompression time is shorter than viscous expansion time, tensile stress is stored before expansion; when magma viscosity is smaller than the critical value, tensile stress is not stored, no matter how rapid the decompression. Although it is a generally accepted theory that fragmentation is effected by stress conditions and decompression time, exactly how decompression time (t1) effects the fragmentation is not yet fully understood. This study demonstrates that the stress condition is controlled by the length of the decompression time not relative to the viscoelastic relaxation time (t1 / τ), but relative to the viscous expansion time (t1 / τlrlx). As suggested by recent experimental studies, the decompression time relative to viscoelastic relaxation time (t1 / τ) is also significant to the fragmentation process itself. It indicates that the decompression time effects the fragmentation not through the stress condition. However more work must be completed to fully understand the particular relationship between the decompression time and relaxation time in terms of its influence on fragmentation.  相似文献   

11.
The GPS-derived total electron content (TEC) and NmF2 are measured at the Chung-Li ionosonde station (24.9°N, 121°E) in order to study the variations in slab thickness (τ) of the ionosphere at low-latitudes ionosphere during 1996–1999, corresponding to half of the 23rd solar cycle. This study presents the diurnal, seasonal, and solar flux variations in τ for different solar phases. The seasonal variations show that the average daily value is greater during summer and the reverse is true during equinox in the equatorial ionization anomaly (EIA) region. Moreover, the τ values are greater during the daytime (0800–1600 LT) and nighttime (2000–0400 LT) for summer and winter, respectively. The diurnal variation shows two abnormal peaks that appear during the pre-sunrise and post-sunset hours. The peak values decrease as the sunspot number increases particularly for the pre-sunrise peak. Furthermore, the variation in the F-peak height (hpF2) indicates that a thermospheric wind toward the equator leads to an increase in hpF2 and an enhancement in τ during the pre-sunrise period. Furthermore, the study shows the variations of τ values for different geophysical conditions such as the geomagnetic storm and earthquake. A comprehensive discussion about the relation between τ and the geophysical events is provided in the paper.  相似文献   

12.
《Marine pollution bulletin》2012,64(5-12):201-208
Flow cytometry was used to examine immune responses in haemocytes of the green-lipped mussel Perna viridis under six combinations of oxygen level (1.5 mg O2 l−1, 6.0 mg O2 l−1) and temperature (20 °C, 25 °C and 30 °C) at 24 h, 48 h, 96 h and 168 h. The mussels were then transferred to normoxic condition (6.0 mg O2 l−1) at 20 °C for further 24 h to study their recovery from the combined hypoxic and temperature stress. Esterase (Est), reactive oxygen species (ROS), lysosome content (Lyso) and phagocytosis (Pha) were reduced at high temperatures, whereas hypoxia resulted in higher haemocyte mortality (HM) and reduced phagocytosis. For HM and Pha, changes were observed after being exposed to the stresses for 96 h, whereas only a 24 h period was required for ROS and Lyso, and a 48 h one for Est. Recovery from the stresses was observed for HM and Pha but not other immune responses.  相似文献   

13.
We present the new 14C extraction line at ETH Zürich. This system is designed to extract in situ-produced cosmogenic 14C from terrestrial quartz samples, and to obtain pure CO2 gas for analysis with a gas ion source Accelerator Mass Spectrometry (AMS) system. Samples are degassed at 1550–1600 °C without the use of a fluxing agent. Gas purification is achieved by a series of cryogenic traps and passage through hot Ag and Cu wool/mesh. Graphitization and, thus, sample dilution is not required. Tests to determine the CO2 recovery after gas extraction and cleaning yielded consistently good recovery rates of >99.8% (n = 7). The 14C blank contribution from the all-metal tubing system is negligible. Our preliminary procedural blank estimate – deriving mostly from the hot extraction furnace – is <5 × 105 14C atoms. Extraction tests on two quartz samples by stepped-heating show a quantitative separation of atmospheric 14C at ≤500 °C from the in situ component above 1200 °C. Based on these data, we estimate to achieve a complete 14C extraction from a quartz sample.  相似文献   

14.
A dielectric model for thawed and frozen Arctic organic-rich soil (50% organic matter) has been developed. The model is based on soil dielectric measurements that were collected over ranges of gravimetric moisture from 0.03 to 0.55 g/g, dry soil density from 0.72 to 0.87 g/cm3, and temperature from 25 to −30 °C (cooling run) in the frequency range of 0.05–15 GHz. The refractive mixing dielectric model was applied with the Debye multi-relaxation equations to fit the measurements of the soil’s complex dielectric constant as a function of soil moisture and wave frequency. The spectroscopic parameters of the dielectric relaxations for the bound, transient bound, and unbound soil water components were derived and were complimented by the thermodynamic parameters to obtain a complete set of parameters for the proposed temperature-dependent multi-relaxation spectroscopic dielectric model for moist soils. To calculate the complex dielectric constant of the soil, the following input variables must be assigned: (1) density of dry soil, (2) gravimetric moisture, (3) wave frequency, and (4) temperature. The error of the dielectric model was evaluated and yielded RMSEε values of 0.348 and 0.188 for the soil dielectric constant and the loss factor, respectively. These values are on the order of the dielectric measurement error itself. The proposed dielectric model can be applied in active and passive microwave remote sensing techniques to develop algorithms for retrieving the soil moisture and the freeze/thaw state of organic-rich topsoil in the Arctic regions.  相似文献   

15.
Earthquake early warning system (EEWS) is one of the effective ways to mitigate earthquake damage and can provide few seconds to tens of seconds of advanced warning time of impending ground motions, allowing for mitigation measures to be taken in the short term. After the devastating Ms8.0 Wenchuan earthquake, hundreds of M4-6 earthquakes occurred with depth range of 2–24 km. We explore a practical approach to earthquake early warning in Wenchuan area by determining a ground-motion period parameter τc and a high-pass filtered vertical displacement amplitude parameter Pd from the initial 3 s of the P waveforms of these aftershocks with M≥4.0. The empirical relationships both between τc and M, and between Pd and peak ground velocity PGV for the Wenchuan area are presented. The τc result shows that it is systematically greater for slow earthquakes, leading to a possible false alarm. The moment rate function is used to handle the fact that the Pd parameter alone miss the M=8.0 mainshock. These two relationships can be used to detect the occurrence of a major earthquake and provide onsite warning in the area around the station where onset of strong ground motions is expected within seconds after the arrival of the P wave. The robustness of onsite early warning can be increased by using multistation data when the station density is high or by combing τc and Pd as a single indicator.  相似文献   

16.
Determining surface precipitation phase is required to properly correct precipitation gage data for wind effects, to determine the hydrologic response to a precipitation event, and for hydrologic modeling when rain will be treated differently from snow. In this paper we present a comparison of several methods for determining precipitation phase using 12 years of hourly precipitation, weather and snow data from a long-term measurement site at Reynolds Mountain East (RME), a headwater catchment within the Reynolds Creek Experimental Watershed (RCEW), in the Owyhee Mountains of Idaho, USA. Methods are based on thresholds of (1) air temperature (Ta) at 0 °C, (2) dual Ta threshold, −1 to 3 °C, (3) dewpoint temperature (Td) at 0 °C, and (4) wet bulb temperature (Tw) at 0 °C. The comparison shows that at the RME Grove site, the dual threshold approach predicts too much snow, while Ta, Td and Tw are generally similar predicting equivalent snow volumes over the 12 year-period indicating that during storms the cloud level is at or close to the surface at this location. To scale up the evaluation of these methods we evaluate them across a 380 m elevation range in RCEW during a large mixed-phase storm event. The event began as snow at all elevations and over the course of 4 h transitioned to rain at the lowest through highest elevations. Using 15-minute measurements of precipitation, changes in snow depth (zs), Ta, Td and Tw, at seven sites through this elevation range, we found precipitation phase linked to the during-storm surface humidity. By measuring humidity along an elevation gradient during the storm we are able to track changes in Td to reliably estimate precipitation phase and effectively track the elevation of the rain/snow transition during the event.  相似文献   

17.
The Ca isotope compositions of 37 late Mesozoic skeletal carbonates, belemnites and brachiopods, from the Tethyan realm were analyzed by thermal (TIMS) and plasma (MC-ICP-MS) ionization mass spectrometry. A poor correlation between δ44/40Ca and δ18O values of belemnites suggests only a weak temperature dependency for the Ca isotope composition of belemnites, likely less than 0.02‰/°C. The δ44/40Ca record of belemnites was therefore used to reconstruct the Ca isotope composition of paleo-seawater (δ44/40CaSW), based on an experimentally determined fractionation factor between seawater Ca and belemnite calcite (αCC–SW) of ∼ 0.9986. The inferred δ44/40CaSW record, with an average stratigraphic resolution of 1 Ma, shows systematic temporal variation of ∼ 0.5‰ with the Middle/Late Jurassic (∼ 154 Ma) minimum of ∼ 1.4‰ and a subsequent general increase to the Early Cretaceous (∼ 124 Ma) maximum of ∼ 1.9‰. The global nature of the δ44/40CaSW record is supported by identical Ca isotope compositions of coeval (Kimmeridgian) belemnites collected from two distinct paleogeographic regions, the southern (New Zealand) and northern (Germany) margin of the Tethys Ocean. The observed late Mesozoic δ44/40CaSW record was simulated using a simple Ca isotope mass balance model, and the results indicate that the variation in δ44/40CaSW record can be explained by changes in oceanic input fluxes of Ca that were independent of the carbonate ion fluxes, such as the hydrothermal Ca flux or the release of Ca to the oceans via dolomitization of marine carbonates.  相似文献   

18.
《Marine pollution bulletin》2009,58(6-12):867-872
Sediment sampled from Taichung Harbor was mixed with local reservoir sediment at different weight ratios to prepare lightweight aggregate at 1050, 1100, and 1150 °C. A pressure of 3000 or 5000 psi was used to shape the powder mixtures into pellets before the heating processes. The results indicate that the leaching levels of trace metals from the lightweight aggregate samples are considerably reduced to levels less than Taiwan Environmental Protection Administration regulatory limits. Increasing final process temperature tends to reduce the bulk density and crushing intensity of lightweight aggregate with a concomitant increase in water sorption capability. Lightweight aggregate with the lowest bulk density, 0.49 g cm−3 for the 5000 psi sample, was obtained with the heating process to 1150 °C. Based on the X-ray absorption near edge structure results, FeSO4 decomposition with a concomitant release of SOx (x = 2, 3) is suggested to play an important role for the bloating process in present study.  相似文献   

19.
Quantifying the timescales associated with moving freshwater–seawater interfaces is critical for effective management of coastal groundwater resources. In this study, timescales of interface movement in response to both inland and coastal water level variations are investigated. We first assume that seawater intrusion (SWI) and retreat (SWR) are driven by an instantaneous freshwater-level variation at the inland boundary. Numerical modelling results reveal that logarithmic timescales of SWI (lnTi) and SWR (lnTr) can be described respectively by various simple linear equations. For example, SWI timescales are described by lnTi = a + blnhf–s, where a and b are linear regression coefficients and hf–s is the boundary head difference after an instantaneous drop of inland freshwater head. For SWR cases with the same initial conditions, but with different increases in freshwater head, lnTr = c + dΔXT, where c and d are regression coefficients and ΔXT is the distance of toe response that can be estimated by a steady-state, sharp-interface analytical solution. For SWR cases with the same freshwater head increase, but with different initial conditions, in contrast, lnTr = e + flnΔXT, where e and f are regression coefficients. The timescale of toe response caused by an instantaneous variation of sea level is almost equivalent to that induced by an instantaneous inland head variation with the same magnitude of water level change, but opposite in direction. Accordingly, the empirical equations of this study are also applicable for sea-level variations in head-controlled systems or for simultaneous variations of both inland and coastal water levels. Despite the idealised conceptual models adopted in this study, the results imply that for a particular coastal aquifer, SWI timescales are controlled by the boundary water levels after variations, whereas SWR timescales are dominated by the distance of toe response.  相似文献   

20.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号