首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The impact of observation selection, observation combination and model parameterization on GPS carrier phase ambiguity resolution and position accuracy under operational conditions is investigated. The impact of an ionospheric bias for a generic linear combination of L1 and L2 measurements is assessed and the results are used to clearly outline the desirable characteristics for improving ambiguity resolution versus positioning accuracy performance. Ambiguity resolution performance and position accuracy are shown for widelane (WL), L1-only, and ionospheric-free (IF) combinations. Several techniques for dealing with the ionospheric bias are also presented and compared, including stochastic ionospheric modelling. Multiple carrier phase combination solutions estimated in the same filter are also compared. The concept of an optimal processing strategy—in terms of both reliable ambiguity resolution and high accuracy positions—is presented. In total, eight strategies, which vary in observables and parameters, are tested on several datasets ranging from 13 km to 43 km.  相似文献   

2.
GPS Single-epoch Real-Time Kinematic positioning is immune to cycle slips and can be immediately re-initialized after loss-of-lock, providing high availability. This technique requires reliable ambiguity resolution: incorrect ambiguities can cause position errors of several meters, and failed ambiguity resolution reduces availability. However, a bias or inaccuracy in a single phase observation can prevent successful resolution of the whole set of ambiguities. Partial ambiguity resolution allows a subset of ambiguities to be resolved with greater probability of success than the full set. A new algorithm for resolving a subset of ambiguities with validation from previous epochs is described. If normal ambiguity resolution fails, all ambiguity subsets are generated and ordered with the best subsets first. Each subset is then resolved in turn. Fixed subsets are validated against values from previous epochs; this validation procedure greatly reduces the proportion of epochs with incorrect ambiguities. An additional algorithm is described that uses the fixed ambiguities as precise ranges to resolve the remaining unfixed ambiguities. In order to test these new algorithms, GPS data were collected from static and ship-based GPS receivers around Harwich harbor and processed from reference stations at distances up to 111 km. In the static tests the distance over which a 90% ambiguity resolution success rate for dual-frequency data was achieved was increased from 15 to 76 km. However, in some cases, the processing time was too long for this algorithm to be practical without a time-based cut-off. There is also a risk of incorrect ambiguities being propagated, particularly for single-frequency processing. In a ship-based test, the distance over which sufficient availability to support harbor navigation was achieved using single-epoch dual-frequency RTK was increased from 1 to 66 km.  相似文献   

3.
 Carrier phase ambiguity resolution is the key to fast and high-precision GNSS (Global Navigation Satellite System) kinematic positioning. Critical in the application of ambiguity resolution is the quality of the computed integer ambiguities. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to unacceptable errors in the positioning results. Very high success rates are therefore required for ambiguity resolution to be reliable. Biases which are unaccounted for will lower the success rate and thus increase the chance of unsuccessful ambiguity resolution. The performance of integer ambiguity estimation in the presence of such biases is studied. Particular attention is given to integer rounding, integer bootstrapping and integer least squares. Lower and upper bounds, as well as an exact and easy-to-compute formula for the bias-affected success rate, are presented. These results will enable the evaluation of the bias robustness of ambiguity resolution. Received: 28 September 2000 / Accepted: 29 March 2001  相似文献   

4.
S. Han 《Journal of Geodesy》1997,71(6):351-361
An integrated method for the instantaneous ambiguity resolution using dual-frequency precise pseudo-range and carrier-phase observations is suggested in this paper. The algorithm combines the search procedures in the coordinate domain, the observation domain and the estimated ambiguity domain (and therefore benefits from the integration of their most positive elements). A three-step procedure is then proposed to enhance the reliability of the ambiguity resolution by: (1) improving the stochastic model for the double-differenced functional model in real time; (2) refining the criteria which distinguish the integer ambiguity set that generates the minimum quadratic form of residuals from that corresponding to the second minimum one; and (3) developing a fault detection and adaptation procedure. Three test scenarios were considered, one static baseline (11.3 km) and two kinematic experiments (baseline lengths from 5.2 to 13.7 km). These showed that the mean computation time for one epoch is less than 0.1 s, and that the success rate reaches 98.4% (compared to just 68.4% using standard ratio tests). Received: 5 June 1996; Accepted: 16 January 1997  相似文献   

5.
Continuously operating reference stations (CORS) are increasingly used to deliver real-time and near-real-time precise positioning services on a regional basis. A CORS network-based data processing system uses either or both of the two types of measurements: (1) ambiguity-resolved double-differenced (DD) phase measurements, and (2) phase bias calibrated zero-differenced (ZD) phase measurements. This paper describes generalized, network-based geometry-free models for three carrier ambiguity resolution (TCAR) and phase bias estimation with DD and ZD code and phase measurements. First, the geometry-free TCAR models are constructed with two Extra-Widelane (EWL)/Widelane (WL) virtual observables to allow for rapid ambiguity resolution (AR) for DD phase measurements without distance constraints. With an ambiguity-resolved WL phase measurement and the ionospheric estimate derived from the two EWL observables, an additional geometry-free equation is formed for the third virtual observable linearly independent of the previous two. AR with the third geometry-free model requires a longer period of observations for averaging than the first two, but is also distance-independent. A more general formulation of the geometry-free model for a baseline or network is also introduced, where all the DD ambiguities can be more rigorously resolved using the LAMBDA method. Second, the geometry-free models for calibration of three carrier phase biases of ZD phase measurements are similarly defined for selected virtual observables. A network adjustment procedure is then used to improve the ZD phase biases with known DD integer constraints. Numerical results from experiments with 24-h dual-frequency GPS data from three US CORS stations baseline lengths of 21, 56 and 74 km confirm the theoretical predictions concerning AR reliability of the network-based geometry-free algorithms.
Chris RizosEmail:
  相似文献   

6.
An approach to GLONASS ambiguity resolution   总被引:9,自引:2,他引:7  
J. Wang 《Journal of Geodesy》2000,74(5):421-430
 When processing global navigation satellite system (GLONASS) carrier phases, the standard double-differencing (DD) procedure cannot cancel receiver clock terms in the DD phase measurement equations due to the multiple frequencies of the carrier phases. Consequently, a receiver clock parameter has to be set up in the measurement equations in addition to baseline components and DD ambiguities. The resulting normal matrix unfortunately becomes singular. Methods to deal with this problem have been proposed in the literature. However, these methods rely on the use of pseudo-ranges. As pseudo-ranges are contaminated by multi-path and hardware delays, biases in these pseudo-ranges are significant, which may result in unreliable ambiguity resolution. A new approach is addressed that is not sensitive to the biases in the pseudo-ranges. The proposed approach includes such steps as converting the carrier phases to their distances to cancel the receiver clock errors, and searching for the most likely single-differenced (SD) ambiguity. Based on the results from the theoretical investigation, a practical procedure for GLONASS ambiguity resolution is presented. The initial experimental results demonstrate that the proposed approach is useable in cases of GLONASS and combined global positioning system (GPS) and GLONASS positioning. Received: 19 August 1998 / Accepted: 12 November 1999  相似文献   

7.
 A new method called Trop_NetAdjust is described to predict in real time the residual tropospheric delays on the GPS carrier phase observables using the redundant measurements from a network of GPS reference stations. This method can not only enhance the effectiveness and reliability of real-time kinematic users within the network, but also provide a valid approach to tropospheric parameter variation forecasting. Trop_NetAdjust is theoretically based upon LS prediction criteria and enables the prediction of residual tropospheric delays remaining after a standard model has been applied to the raw GPS measurements. Two cases are analyzed, namely a first case when the delay is required for an existing satellite at a new point within the network and a second case when the delay is required for a new satellite. Field tests were conducted using data collected in a network of 11 reference stations covering a 400×600 km region in southern Norway. The results were analyzed in the measurement domain (ionospheric-free double-difference residuals) and showed improvements of 20 to 65% RMS errors using Trop_NetAdjust. The estimates of the Trop_NetAdjust prediction accuracy were also obtained using the covariance analysis method. The agreement was consistently better than 30% when compared with data from a real network. Received: 28 February 2000 / Accepted: 9 January 2001  相似文献   

8.
格洛纳斯(Global Navigation Satellite System,GLONASS)采用了频分多址技术,接收机在接收不同卫星信号时会产生频间偏差,阻碍了GLONASS长基线模糊度固定,限制了其定位定轨的精度。提出了一种新的GLONASS模糊度固定方法。该方法基于全球电离层格网产品,根据频间偏差率的变化范围,采用搜索的方法和线性模型去除相位频间偏差对宽窄巷模糊度的影响,实现了GLONASS无电离层组合模糊度固定。利用平均基线长度为763 km的全球卫星导航系统(Global Navigation Satellite System,GNSS)服务站实验网数据对该方法进行分析,结果表明:连续30 d内,模糊度固定成功率最高为95.4%,最低为88.8%,平均为93.45%;模糊度固定后,北(north,N)、东(east,E)、高(up,U)各分量重复性和均方根误差(root mean square er-ror,RMSE)值均得到不同程度的改善,E分量重复性和RMSE值分别改善了20%和14%,改善效果最为明显。  相似文献   

9.
 The problem of phase ambiguity resolution in global positioning system (GPS) theory is considered. The Bayesian approach is applied to this problem and, using Monte Carlo simulation to search over the integer candidates, a practical expression for the Bayesian estimator is obtained. The analysis of the integer grid points inside the search ellipsoid and their evolution with time, while measurements are accumulated, leads to the development of a Bayesian theory based on a mathematical mixture model for the ambiguity. Received: 29 March 2001 / Accepted: 3 September 2001  相似文献   

10.
The probability distribution of the ambiguity bootstrapped GNSS baseline   总被引:4,自引:0,他引:4  
 The purpose of carrier phase ambiguity resolution is to improve upon the quality of the estimated global navigation satellite system baseline by means of the integer ambiguity constraints. However, in order to evaluate the quality of the ambiguity resolved baseline rigorously, its probability distribution is required. This baseline distribution depends on the random characteristics of the estimated integer ambiguities, which in turn depend on the chosen integer estimator. In this contribution is presented an exact and closed-form expression for the baseline distribution in the case that use is made of integer bootstrapping. Also presented are the bootstrapped probability mass function and easy-to-compute measures for the bootstrapped baseline's probability of concentration. Received: 28 September 2000 / Accepted: 11 January 2001  相似文献   

11.
整数相位钟法是精密单点定位(PPP)中应用最广泛的模糊度固定方法之一。利用整数相位钟法进行频率传递的稳定度优于传统PPP,但该方法的钟差计算结果包含系统性偏差,影响时间传递精度。本文介绍了整数相位钟法基本原理,分析了钟差计算结果所包含的系统性偏差成因,提出一种基于星间单差模糊度固定与原子钟精化模型的改进整数相位钟法,并检验改进整数相位钟法的模糊度固定性能与时频传递性能。试验结果表明,改进算法能够有效消除该系统性偏差,利用改进整数相位钟法进行时间传递精度能够达到0.1~0.2 ns,频率传递稳定度达到1.1×10-15/d。  相似文献   

12.
This paper investigates single epoch ambiguity resolution performance using Galileo four frequency data. Two commonly used ambiguity resolution methods are used in the tests, including the Cascade Ambiguity Resolution (CAR) and the Least-Squares Ambiguity Decorrelation Adjustment (LAMBDA) methods. For CAR method, four optimal combinations are carefully selected according to their wavelength to noise ratios and success rate for ambiguity fixing. The test results show, in general, the LAMBDA method performs better than the CAR method. The speed of ambiguity resolution is closely related to the carrier phase measurement precision. With carrier phase measurement precision of 3 mm, single epoch ambiguity resolution can be achieved at every epoch with simulated 1-s interval 24-h Galileo data (total epochs 86,400). With the increase of carrier phase noise, ambiguity resolution performances become worse. When the noise level is increased to 12 mm, single epoch ambiguity resolution can only be achieved about 50% of epochs.  相似文献   

13.
由于北斗地球静止轨道(geostationary earth orbiting,GEO)卫星轨道精度较低且其观测值受多路径误差和伪距偏差影响严重,目前各分析中心尚未针对北斗GEO卫星提供长期稳定的相位小数偏差(uncalibrated phase delay,UPD)产品,北斗精密单点定位(precise point positioning,PPP)模糊度固定技术研究主要针对倾斜轨道(inclined geosynchronous orbiting,IGSO)和中地球轨道(medium earth orbiting,MEO)卫星。本文采用Wanninger和Beer的高度角模型消除了IGSO/MEO观测值伪距偏差,并通过小波变换提取低频分量修正伪距观测值的方法削弱了GEO卫星多路径和伪距偏差的影响。由于窄巷UPD估值受未模型化误差影响较大,本文改进了窄巷UPD估计的策略,该策略利用上一历元成功估计的窄巷UPD对当前历元的浮点模糊度进行改正,剔除了残差较大的浮点模糊度,修正固定错误的整周模糊度,从而提高了窄巷UPD的精度和稳定性。利用估计得到的UPD产品,本文实现了联合GEO、IGSO和MEO卫星的北斗非差PPP模糊度固定,并对其定位性能进行分析。结果表明:联合GEO、IGSO和MEO卫星的PPP固定解的首次固定时间和收敛时间均可以缩短到30 min以内;6 h后的E、N、U方向的定位误差由(1.35、0.35、2.75)cm减少到(1.07、0.26、2.24)cm,分别减少了20%、27%和18%。  相似文献   

14.
 Global positioning system (GPS) carrier phase measurements are used in all precise static relative positioning applications. The GPS carrier phase measurements are generally processed using the least-squares method, for which both functional and stochastic models need to be carefully defined. Whilst the functional model for precise GPS positioning is well documented in the literature, realistic stochastic modelling for the GPS carrier phase measurements is still both a controversial topic and a difficult task to accomplish in practice. The common practice of assuming that the raw GPS measurements are statistically independent in space and time, and have the same accuracy, is certainly not realistic. Any mis-specification in the stochastic model will inevitably lead to unreliable positioning results. A stochastic assessment procedure has been developed to take into account the heteroscedastic, space- and time-correlated error structure of the GPS measurements. Test results indicate that the reliability of the estimated positioning results is improved by applying the developed stochastic assessment procedure. In addition, the quality of ambiguity resolution can be more realistically evaluated. Received: 13 February 2001 / Accepted: 3 September 2001  相似文献   

15.
In spite of significant research in the development of efficient algorithms for three carrier ambiguity resolution, full performance potential of the additional frequency signals cannot be demonstrated effectively without actual triple frequency data. In addition, all the proposed algorithms showed their difficulties in reliable resolution of the medium-lane and narrow-lane ambiguities in different long-range scenarios. In this contribution, we will investigate the effects of various distance-dependent biases, identifying the tropospheric delay to be the key limitation for long-range three carrier ambiguity resolution. In order to achieve reliable ambiguity resolution in regional networks with the inter-station distances of hundreds of kilometers, a new geometry-free and ionosphere-free model is proposed to fix the integer ambiguities of the medium-lane or narrow-lane observables over just several minutes without distance constraint. Finally, the semi-simulation method is introduced to generate the third frequency signals from dual-frequency GPS data and experimentally demonstrate the research findings of this paper.  相似文献   

16.
A synthetic Earth for use in geodesy   总被引:1,自引:0,他引:1  
 A synthetic Earth and its gravity field that can be represented at different resolutions for testing and comparing existing and new methods used for global gravity-field determination are created. Both the boundary and boundary values of the gravity potential can be generated. The approach chosen also allows observables to be generated at aircraft flight height or at satellite altitude. The generation of the synthetic Earth shape (SES) and gravity-field quantities is based upon spherical harmonic expansions of the isostatically compensated equivalent rock topography and the EGM96 global geopotential model. Spherical harmonic models are developed for both the synthetic Earth topography (SET) and the synthetic Earth potential (SEP) up to degree and order 2160 corresponding to a 5′×5′ resolution. Various sets of SET, SES and SEP with boundary geometry and boundary values at different resolutions can be generated using low-pass filters applied to the expansions. The representation is achieved in point sets based upon refined triangulation of a octahedral geometry projected onto the chosen reference ellipsoid. The filter cut-offs relate to the sampling pattern in order to avoid aliasing effects. Examples of the SET and its gravity field are shown for a resolution with a Nyquist sampling rate of 8.27 degrees. Received: 6 August 1999 / Accepted: 26 April 2000  相似文献   

17.
一种GPS整周模糊度单历元解算方法   总被引:4,自引:1,他引:3  
仅利用单历元的载波相位观测值进行整周模糊度解算,观测方程秩亏,给单历元模糊度解算带来很大困难.因此,本文提出一种单历元确定GPS整周模糊度的方法.利用单历元测码伪距观测值和双频载波相位观测值组成双差观测方程,根据方差矩阵对宽巷模糊度进行分组,采用基于LABMDA方法的逐步解算方法来确定双差相位观测值的宽巷模糊度.确定宽...  相似文献   

18.
Summary Many GPS networks which were initially surveyed with Texas Instruments TI-4100 receivers have now been resurveyed with mixtures of TI-4100 and Trimble 4000 receivers or exclusively with Trimble receivers. In order to make confident tectonic interpretation of displacements observed between such surveys, it is necessary to understand any biases which may be introduced by using different receiver types or by mixing receivers within a network. Therefore, one of the primary objectives of the Ecuador 1990 GPS campaign (February 1990) was to provide a direct long baseline comparison between the TI-4100 and Trimble 4000SDT GPS receivers. p ]During this campaign, TI and Trimble receivers were co-located at each end of a 1323 kilometer baseline (Jerusalen to Baltra). Solutions for this baseline show no variation with receiver type. Zero-length baseline solutions showed no evidence for any intrinsic bias caused by mixing the two receiver types. Short baseline solutions indicate a bias of -34±10 mm in the baseline vertical component; the sign of the bias indicates that either the assumed phase center location for the TI is too low or the assumed location for the Trimble is too high. The bias is explainable if the phase centers of the Trimble SDT and SST antennas are similarly located. p ]Solutions for baselines measured with codeless receivers (such as the Trimble) should be as precise as those for baselines measured with P-code receivers (such as the TI) as long as it is possible to resolve ambiguities. Resolution of the widelane ambiguity is the limiting factor in ambiguity resolution with any codeless receiver, and in the February 1990 campaigns it was not successful fore baselines longer than 100 km. Without explicit modeling of the ionospheric effect on the widelane, ambiguity resolution with codeless receivers will not be successful for baselines longer than about 100 km, depending on the local ionospheric conditions.  相似文献   

19.
韩绍伟 《测绘学报》1994,23(4):282-288
本文主要讨论了GPS相位观测工函数法处理与最小二乘法处理(如双闪差分相位观测值的最小二乘处理方法)的等价性,并提出了一种改进的模糊度函数模型,该模型具有更好的求解特性,在此基础上,给出了模糊度函数法及改进的模糊度函数法的精度评定方法。最后通过对实测数据的处理,证明了理论和方法的有效性。  相似文献   

20.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号