首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sway, heave and roll added masses of three uniform cylinders with semi-circular, rectangular and triangular cross-sectional shapes in shallow and narrow water are numerically analysed. The method is based on simulation of the potential flow induced by the cylinder's mode of motion. The effects of shallow and narrow water on added mass are analysed and presented. It is concluded that the shallow and narrow water effects on added mass depend on the different cross-section shapes of the cylinders. In particular, the water depth effect on sway added mass is stronger than that on heave added mass while the narrow water effect on sway is weaker than that on heave. The shallow water effect on added mass tends to weaken the narrow water effect. Lastly the effect of shallow and narrow water on added mass on a rectangular cylinder is the strongest while that on a triangular cylinder is the weakest.  相似文献   

2.
两层流体中矩形箱浮体的附加质量和阻尼系数   总被引:1,自引:2,他引:1  
研究了两层流体中矩形箱浮体的辐射问题。基于特征函数匹配理论,针对矩形箱浮体的三种振荡运动模式(横荡、垂荡和横摇),建立两层流体中矩形箱浮体辐射势的求解方法,导出矩形箱浮体附加质量和阻尼系数的计算公式。对所建立的求解模型进行了数值计算分析,结果表明在矩形箱浮体的某个振荡频率范围内,流体的分层效应对其附加质量和阻尼系数有显著影响的。  相似文献   

3.
The interaction of waves with submerged two-dimensional circular cylinder groups is investigated. Linear wave theory is used in the analysis and the viscous effects are neglected. The boundary value problem for the wave potential is based on Green's theorem, and the resulting integral equation is solved numerically. The added mass and damping coefficients in sway, heave and roll of oscillating twin-cylinders and the total wave forces on a fixed cylinder in a group are examined. The effects of the free surface, and particularly, the spacing of the cylinders are shown. The numerical results are tested against known solutions. Results for a two-cylinder configuration at different orientations are presented. It is found that the interaction between closely spaced cylinders is large. The spacings at which the interaction effect is important are shown graphically.  相似文献   

4.
A partly non-linear time-domain numerical model is used for the prediction of parametric roll resonance in regular waves. The ship is assumed to be a system with four degrees of freedom, namely, sway, heave, roll and pitch. The non-linear incident wave and hydrostatic restoring forces/moments are evaluated considering the instantaneous wetted surface whereas the hydrodynamic forces and moments, including diffraction, are expressed in terms of convolution integrals based on the mean wetted surface. The model also accounts for non-potential roll damping expressed in an equivalent linearised form. Finally, the coupled equations of motion are solved in the time-domain referenced to a body fixed axis system.This method is applied to a range of hull forms, a post-Panamax C11 class containership, a transom stern Trawler and the ITTC-A1 containership, all travelling in regular waves. Obtained results are validated by comparison with numerical/experimental data available in the literature. A thorough investigation into the influence of the inclusion of sway motion is conducted. In addition, for the ITTC-A1 containership, an investigation is carried out into the influence of tuning the numerical model by modifying the numerical roll added inertia to match that obtained from roll decay curves.  相似文献   

5.
Current paper presents a mathematical model based on 2D-asymmetric wedge water entry to model heave and pitch motions of planing hulls at non-zero heel angles. Vertical and horizontal forces as well as heeling moment due to asymmetric water entry are computed using momentum theory in conjunction with added mass of impact velocity in vertical and horizontal directions. The proposed model is able to compute sway and yaw forces, roll moment, as well as heave and pitch motions in calm water and regular waves. Validity of the proposed model is verified by comparing the results against existing experimental data in both symmetric and asymmetric conditions. Ultimately, different parametric studies are conducted to examine the effects of non-zero heel angle on dynamic vertical motions. The resulting sway and yaw forces due to asymmetric motion are also derived and effects of heel angle on these side forces are investigated.  相似文献   

6.
《Applied Ocean Research》2005,27(4-5):224-234
The modified scaled boundary finite-element method (SBFEM), keeping the advantages of the original SBFEM, eliminates the restriction of the scaling center location so that this approach can solve two-dimensional problems with parallel side-faces. In this paper, the modified SBFEM is applied to solutions of two types of problems—wave diffraction by a single and twin surface rectangular obstacles and wave radiation induced by an oscillating mono-hull and twin-hull structures in a finite depth of water. For wave diffraction problems, numerical results agree extremely well with the analytic solution for the single obstacle case and other numerical results of a different approach for the twin obstacle case. For wave radiation problems, the particular solutions to the scaled boundary finite-element equation are presented for cases of heave, sway and roll motions. The added mass and damping coefficients for heave, sway and roll motions of a two-dimensional rectangular container are computed and the numerical results are compared with those from independent analytical solution and numerical solution using the boundary element method (BEM). It is found that the SBFEM method achieves equivalent accuracy to the conventional BEM with only a few degrees of freedom. In the last example, wave radiation by a two-dimensional twin-hull structure is analyzed. Comparisons of the results with those obtained using conventional Green's function method (GFM) demonstrate that the method presented in this paper is free from the irregular frequency problems.  相似文献   

7.
Based on a two dimensional linear water wave theory, the boundary element method (BEM) is developed and applied to study the heave and the sway problem of a floating rectangular structure in water to finite depth with one side of the boundary is a vertical sidewall and the other boundary is an open boundary. Numerical results for the added mass and radiation damping coefficients are presented. These coefficients are not only depend on the submergence and the width of the structure, but also depend on the clearance between structure and sidewall. Negative added mass and sharp peaks in the damping and added mass coefficients have been found when the clearance with a value close to integral times of half wave length of wave generated by oscillation structure. The important effect of the clearance on the added mass and radiation damping coefficients are discussed in detail. An analytical solution method is also presented. The BEM solution is compared with the analytical solution, and the comparison shows good agreement.  相似文献   

8.
《Ocean Engineering》2004,31(3-4):305-341
The paper seeks to examine hydrodynamic coefficients of a rectangular structure in shallow water and to establish analytical formulae for fast computations. A two-dimensional rectangular profile is considered with the under-bottom clearance assumed to be small compared with structure dimensions and the water depth. Following the method of matched asymptotic expansions, the radiation problem is solved under assumptions of the linear wave theory, by matching two ‘outer’ flows with the ‘inner’ flow near the structure edge. Closed asymptotic formulae are obtained for all hydrodynamic coefficients for heave, sway and roll motions. The zero and infinite frequency values of the added mass are examined and formulae are derived intended for quick engineering estimations. Numerical results compare well with those published in literature, and the approach is shown to be consistent with known fundamental relations in the body–wave interaction theory.  相似文献   

9.
The radiation problem for two parallel-spaced cylinders is studied. The solution is expressed explicitly in terms of well-behaved convergent series with elementary functions, which are convenient for numerical computation and readily applicable for two-dimensional two-body potential problems. The added mass and damping coefficients together with the phase angles of radiated wave potentials for the forced heave and sway motions of two identical submerged cylinders are presented. The results are useful for determination of the hydrodynamic properties of multi-hull semi-submersibles. In view of the close relationship between a radiation and a scattering problem, the application of the results to the problem of energy extraction from water waves is also noted.  相似文献   

10.
In this paper, an exact analytical method is developed for the problem of wave radiation by a uniform cylinder in front of a vertical wall. Based on the image principle, the hydrodynamic problem of a cylinder in front of a vertical wall is transformed into the equivalent problem of double cylinders in unbounded fluid domain. Consequently, an analytical method of eigenfunction expansion is adopted to calculate the radiation of the cylinder due to the motion in surge, sway, roll and pitch, respectively. Moreover, numerical analysis has been carried out in detail in order to discuss the influences of the distance between the cylinder and the vertical wall and water depth on the added mass and radiation damping of the cylinder. It is shown that added mass and damping of the cylinder in front of a vertical wall are evidently different from those in case of the cylinder in unbounded fluid domain from the numerical results. It is also found that the added mass and radiation damping oscillate with wave number, and the oscillating frequency increases with the increasing of the distance between the cylinder and the wall.  相似文献   

11.
The object of the new hull form is to provide a single hull which possesses long natural periods of roll and heave and has substantially reduced motion response amplitudes in very high sea states. Model tests and preliminary estimates indicated that the new hull form can be designed for roll and heave motions nearly equivalent to those of much larger semisubmersible units.All existing conventional marine construction barges have rectangular cross section hull. The new hull form consists of a system of upper side tanks and lower side tanks added onto a rectangular cross section hull. The upper tanks and lower tanks form longitudinal troughs on the port and starboard sides. Structural grillage of any open type is to connect the upper and lower tanks at the side of the vessel. Figure 1 indicates a profile and a typical transverse section of the new hull form. The new hull comprises the concept of reduced water plane area which is turn results in low transverse metacentric height and low tons per in. immersion. The novel features of combining low GMT and low TPI with extremely heavy damping and added mass of the entrained water characteristics result in very long natural periods of roll and heave and considerably small rolling and heaving amplitudes in high sea states. The open side shell plating on the side of the vessel functions to dissipate wave energy at the side of the vessel which would have otherwise been transmitted to the vessel and caused the vessel to respond. This paper presents the conceptual foundation and outline of the new hull form. Model test results are presented and implemented. Also presented is the design philosophy.  相似文献   

12.
13.
深海采矿船是未来人类获取深海矿产资源的重要装备,研究其水动力特性具有重要意义。月池和输运管是影响深海采矿船水动力特性的重要因素。以世界上第一艘超深水采矿船“鹦鹉螺新纪元”号为研究对象,基于三维势流理论,分析月池尺寸、输运管长度及内径对采矿船水运动特性的影响。结果表明:月池开口会使采矿船垂荡、纵荡和纵摇运动出现共振峰,峰值随着开口尺寸的增加而增大,其中垂荡运动峰值可增加将近2倍;输运管的存在会明显改变采矿船横摇运动固有周期,增大垂荡运动峰值,降低横摇运动峰值,对横荡和纵荡运动的影响亦较大,当输运管长度为 5 000 m,内径为0.480 5 m时,横荡和纵荡响应峰值能够达到无输运管时的3倍以上。通过探究月池开孔和输运管不同参数对采矿船运动的影响,为深海采矿船月池和输运管设计提供一定的借鉴和参考。  相似文献   

14.
Vessels operating in shallow waters require careful observation of the finite-depth effect. In present study, a Rankine source method that includes the shallow water effect and double body steady flow effect is developed in frequency domain. In order to verify present numerical methods, two experiments were carried out respectively to measure the wave loads and free motions for ship advancing with forward speed in head regular waves. Numerical results are systematically compared with experiments and other solutions using the double body basis flow approach, the Neumann-Kelvin approach with simplified m-terms, and linearized free surface boundary conditions with double-body m-terms. Furthermore, the influence of water depths on added mass and damping coefficients, wave excitation forces, motions and unsteady wave patterns are deeply investigated. It is found that finite-depth effect is important and unsteady wave pattern in shallow water is dependent on both of the Brard number τ and depth Froude number Fh.  相似文献   

15.
Design analysis of a truss pontoon semi-submersible concept in deep water   总被引:3,自引:0,他引:3  
Truss pontoon semi-submersible (TPS) is a new offshore structure concept in industry, where a truss spar is used to create the added mass by the heave plates. In the present paper, the effect of the heave plates on the vertical motion of the floating structure is demonstrated. A TPS is analyzed by utilizing the linear diffraction theory as well as the linear part of the Morison equation. The close agreement of the analysis results with the experimental results suggests that the simplified Morison equation can be used for the present analysis without sacrificing the quality of the results. However, good engineering judgment is required for estimating the values of the hydrodynamic coefficients as well as the amount of damping introduced in the structure. It is also found that the heave plates indeed introduce large added mass and considerable damping in the system motion in the vertical direction such that the resonant oscillation becomes less of a problem. This suggests that the TSP concept may have merits as a heave-controlled floating production structure in the deepwater development.  相似文献   

16.
The current study focuses on the response analysis of triangular tension leg platform (TLP) for different wave approach angles varying from 0° through 90° and its influence on the coupled dynamic response of triangular TLPs. Hydrodynamic loading is modeled using Stokes fifth-order nonlinear wave theory along with various other nonlinearities arising caused by change in tether tension and change in buoyancy caused by set down effect. Low frequency surge oscillations and high frequency tension oscillations of tethers are ignored in the analysis. Results show that wave approach angle influences the coupled dynamic response of triangular TLP in all degrees of freedom except heave. Response in roll and sway degrees of freedom are activated which otherwise are not present in TLP's response to unidirectional waves. Pitch and roll responses are highly stochastic in nature indicating high degree of randomness. Variation in surge, sway and heave responses are nonlinear and are not proportional to change in wave height for the same period.  相似文献   

17.
The analytical method developed by Svendsen (1968) for a forced heave motion is extended to the general problem of wave induced heave, roll and sway motions of a long ship at a depth of water which is only slightly larger than the draught of the ship. This corresponds, for example, to the situation of a fully loaded ship in a harbour area.After linearization of the problem, the water motion is considered for each of the three individual motions and for the wave reflection-transmission problem for a fixed ship. The ensuing results for the forces on the ship are then synthesized to form the equations of motion, which are presented with all coefficients given, including mooring forces.Analytical and numerical results are given for the three components of motion, for the associated resonance frequencies, and for the hydrodynamic masses and moments of inertia. Finally, the assumptions used are analyzed and evaluated by comparison with measurements and with other results for a special case.  相似文献   

18.
We present a study of the nonlinear coupling internal resonance for the heave roll and pitch performance of a spar platform under the wave and vortex-induced loads when the ratio of the frequencies of heave, roll and pitch are approximately 2:1:1. In consideration of varying wet surface, the three DOFs nonlinear coupled equations are established for the spar platform under the effect of the first-order wave loads in the heave and pitch, and vortexinduced loads in the roll. By utilizing the method of multi-scales when the vortex-induced frequency is close to the natural roll frequency, the first-order perturbation solution is obtained analytically and further validated by the numerical integration. Sensitivity analysis is performed to understand the influence of the damping and the internal detuning parameter. Two cases with internal resonance are shown. The first case is that no saturation phenomenon exists under small vortex-induced loads. The first order perturbation solution illustrates that only the vortex-induced frequency motion in roll and the super-harmonic frequency motion in heave are excited. The second case is that the vortex-induced loads are large enough to excite the pitch and a saturation phenomenon in the heave mode follows.The results show that there is no steady response occurrence for some cases. For these cases chaos occurs and large amplitudes response can be induced by the vortex-induced excitation.  相似文献   

19.
以新型激光雷达浮标系统为研究对象,基于ANSYS/AQWA开展了激光雷达浮标系统运动响应特性数值研究,研究了浮标吃水深度、形状参数对于激光雷达浮标运动响应的影响规律,分析了附加质量、辐射阻尼、运动响应RAO及一阶、二阶波浪力等水动力参数。采用时域分析方法对不同风浪流荷载入射角度下的激光雷达浮标锚泊系统张力特性进行了计算分析。研究结果表明:随着浮标吃水深度的增加,浮标纵荡方向响应无明显变化,垂荡响应显著增大;随着浮标底部圆台直径的增大,浮标纵荡方向响应变化较小,而圆柱形浮标垂荡运动响应显著大于圆台形浮标;当浮标系泊锚链发生松弛—张紧状态变化时易出现极端张力,且极端张力出现的幅值和频率随有效波高的增大和谱峰周期的减小而增大。  相似文献   

20.
We present a study of the nonlinear coupling internal resonance for the heave roll and pitch performance of a spar platform under the wave and vortex-induced loads when the ratio of the frequencies of heave, roll and pitch are approximately 2:1:1. In consideration of varying wet surface, the three DOFs nonlinear coupled equations are established for the spar platform under the effect of the first-order wave loads in the heave and pitch, and vortex-induced loads in the roll. By utilizing the method of multi-scales when the vortex-induced frequency is close to the natural roll frequency, the first-order perturbation solution is obtained analytically and further validated by the numerical integration. Sensitivity analysis is performed to understand the influence of the damping and the internal detuning parameter. Two cases with internal resonance are shown. The first case is that no saturation phenomenon exists under small vortex-induced loads. The first order perturbation solution illustrates that only the vortex-induced frequency motion in roll and the super-harmonic frequency motion in heave are excited. The second case is that the vortex-induced loads are large enough to excite the pitch and a saturation phenomenon in the heave mode follows. The results show that there is no steady response occurrence for some cases. For these cases chaos occurs and large amplitudes response can be induced by the vortex-induced excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号