首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
结合电测深曲线、 岩性资料建立三维水平层状结构物理模型, 利用有限元法定量计算挖土水坑蓄水量和砖厂建设对兴济N60°W向地电阻率观测的影响。 研究结果显示, 测区内挖土水坑位于影响系数为负的区域, 夏季水位高时为低阻体, 冬季无水时为高阻体, 蓄水量的季节性变化导致N60°W向地电阻率具有冬低夏高的反向年变。 砖厂厂房由砖混结构改建为钢架结构, 位于测区影响系数为负的区域, 局部形成的低阻体引起N60°W测向地电阻率的趋势上升变化。  相似文献   

2.
对青藏高原东北缘海原弧形构造区(105deg;~107deg;E,36deg;~37.5deg;N)的5条大地电磁测深剖面进行处理分析和二维反演,得到研究区内东西宽约160 km、深约60 km范围的地壳电性细结构. 结果表明: 研究区呈现南西——北东的带状分布特征. 由南西——北东可分为6个电性区块,依次为西吉盆地(Ⅰ)、西、 南华山隆起(Ⅱ)、兴仁堡-海原盆地(Ⅲ)、中卫-清水河盆地(Ⅳ)、中宁-红寺堡盆地(Ⅴ)和鄂尔多斯西缘带(Ⅵ). 各区块在平面上呈北西撒开、 南东收缩的ldquo;扫帚状rdquo;形态;弧形构造区弧顶附近构造完整、规模大,自弧顶向北西、南东两端构造规模逐渐减小. 地表到深度10 km左右,西、南华山隆起和鄂尔多斯西缘带呈高阻特性,西吉、兴仁堡-海原、中卫——清水河和中宁-红寺堡4个盆地的电阻率较低且呈盆地凹陷形状. 其中兴仁堡-海原盆地电性基底最深,显示为南西深北东浅的ldquo;簸箕状rdquo;起伏形态. 研究区发育不连续的壳内低阻带,与该区中、强震活动密切相关. 1920年海原大震区存在明显的电性结构差异,震区南西侧和上部区域为相对高阻,北东侧和下部区域为相对低阻.   相似文献   

3.
张掖盆地处于青藏高原东北缘,探究该区域的构造活动对于研究青藏高原向东北方向碰撞挤压机制具有重要意义.此次布设3条北东向宽频大地电磁剖面,基于实测数据,通过Bahr分解、相位张量分析和共轭阻抗变换的方法进行了偏离度分析和电性主轴分析;通过NLCG二维反演,获得了沿剖面的电性结构模型.结合研究区地质与地球物理资料进行分析,结果表明:电性结构模型在横向上呈现出分块特点,榆木山和龙首山隆起区对应高阻,走廊过渡带整体表现为低阻;走廊过渡带中存在一壳内低阻层,表现为壳内滑脱;祁连地块中上地壳整体表现为高阻,下地壳电阻率相对较低,以推覆拓展样式延伸至河西走廊地区;阿拉善地块呈"低阻舌状体"俯冲于河西走廊下部,整体形态呈南浅北深.  相似文献   

4.
中国大陆地壳上地幔电性特征   总被引:9,自引:6,他引:9       下载免费PDF全文
李立 《地球物理学报》1996,39(Z1):130-140
根据大地电磁测深调查结果,编制了中国大陆30,90,150km三个深度的电阻率图以及壳内低阻层和上地幔低阻层的顶面深度图。在90km深度的电阻率图上发现了一个自松辽盆地直到扬子地台西南缘的北东-南西向巨大低阻异常带.150km深度的电阻率图上显示出在低阻的背景上镶嵌着一些高阻块体.中国大陆的壳内低阻层深度国基本上反映了地温场的特征,壳内低阻层上隆区基本上对应于高地温区.中国大陆的上地幔低阻层深度变化大.最浅处仅50-60km,大多位于构造活动地区;最深处达200km以上,大部分对应于稳定地区.中国大陆的上地幔低阻层平均深度为100-120km,东部浅,西部深。  相似文献   

5.
安徽霍山地震区深部电性结构和发震构造特征   总被引:2,自引:0,他引:2       下载免费PDF全文
霍山地震区位于大别造山带北缘华北板块与扬子板块接触带上,是大别造山带及周边地震活动最频繁、最集中的地区.83个大地电磁测点组成的大地电磁三维阵列覆盖了整个霍山地震区.用多重网格法、印模迭代重构法和非线性共轭梯度法对阵列数据进行三维带地形反演,获得了地震区深部三维电性结构.电性结构显示,北大别、北淮阳区的中上地壳为电阻率1000Ωm以上的高阻区,中下地壳为电阻率数十欧姆米的相对低阻区;六安盆地电阻率整体较低,中地壳存在显著的电阻率为几欧姆米的壳内高导层.北西向的晓天—磨子潭断裂分隔了北大别高阻层和北淮阳高阻层,在浅部向NE倾,深部向SW倾;北东向的落儿岭—土地岭断裂切穿北大别上地壳高阻层.小震双差定位结果表明,地震主要发生在NE向延伸的落儿岭—土地岭断裂附近的北大别、北淮阳中上地壳的高阻区,并集中于NW向的晓天—磨子潭断裂运动所造成的构造薄弱带中;2014年M S4.3霍山地震震源深度较深,位于北大别高阻区内部的电性梯度较大的区域.综合上述结果我们认为,霍山地震区的主要发震断裂为落儿岭—土地岭断裂,断裂的运动变形充分利用了晓天—磨子潭断裂早先活动所形成的构造薄弱带,断裂下方壳源高导体中的流体沿断层传播使断层强度弱化,使得这些薄弱带区易于发生小地震.由于北大别、北淮阳构造区显著高阻层的存在,我们认为霍山地震区存在发生6级以上中强震的深部孕震环境.  相似文献   

6.
攀西地区地壳和上地幔中的电性结构   总被引:7,自引:2,他引:7       下载免费PDF全文
攀西地区大地电磁测深结果表明,这一地区可划分为三个条带:丽江至华坪、华坪至会理和会理至巧家。三个条带内电性结构有明显差异,反映出本地区地质构造十分复杂。测区内沉积层厚度为3-5km,其电阻率小于30Ωm。在地壳中约33km深处有一低阻层,厚度为5-12km。在红格和华坪两测点之下,深度为82-90km处出现第二个低阻层,它们指示出软流层顶部埋深。  相似文献   

7.
2014年10月7日云南景谷地区发生M_S6.6地震,震源机制显示此次地震为逆走滑型,地震断层面走向140°,同时余震分布显示破裂面走向也为NNW向。文中对1条横穿景谷震区,与地震破裂面垂直的大地电磁测线数据进行了由定性到定量的全面分析,通过二维非线性共轭梯度(NLCG)反演得到了震源区较为详细的地壳电性结构。结果表明:1)震源区电性结构可以分为4层:地表以下约4km为相对低阻层,主要由中、新生代盆地沉积岩组成,电阻率10~100Ω·m;地下5~10km为相对高阻层,可能由元古界变质岩系组成,电阻率1000Ω·m;15~30km为中下地壳低阻层,电阻率10Ω·m;30km以下为壳幔过渡层,电阻率值约为30Ω·m。2)景谷地震主震发生在高阻层和壳内低阻层的分界面上。3)对余震的震源深度统计发现5km和10km两个深度范围内余震较多,与电性梯度带的位置相对应。  相似文献   

8.
在城市活断层调查中,利用电阻率二维层析成像测量方法,对郯庐断裂带山东潍坊段的地震活断层进行了探测试验,取得了较理想的勘探效果。沂水-汤头断裂、刘家庄断裂的二维电阻率反演结果表明,断裂带两侧的电性结构呈现出整体性的差异,正断层的上盘为低阻区和局部高、低阻扰动区;而断层下盘多为均匀的高阻区;断层为高角度断层。试验探测表明:在城市活断层调查中,选用合适的电极装置类型,电阻率层析成像是一种有效的勘探方法  相似文献   

9.
高密度电阻率法在海底金矿含水构造探测中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
海底金矿上覆岩层中含水直接对矿床的开采构成威胁,选择山东三山岛金矿新立矿区海底-135m水平沿脉巷道,采用地球物理高密度电阻率法对该巷道635m测线以下200m深度范围内岩体中的含水构造进行了坑道探测,利用三种装置(温纳装置(Wenner)、偶极装置(Dipole-Dipole)、Schlumberger装置)进行实施,相互验证,取得了很好的探测结果.温纳、偶极和Schlumberger三种装置的视电阻率反演结果反映在测线(-135m沿脉巷道)以下至30m深度为一高阻层,表明自-135~-165m的岩体中已不含水或含少量的水;测线以下30~60m段为低阻层,反映-165~-200m的岩体中含基岩裂隙水;测线以下大于60m的地段为特高阻层,反映-200m以下岩体含水性逐渐变差.该探测结果与矿区水文地质结构调查分析结论具有很好的一致性,表明了坑道高密度电阻率法探测含水构造是可行的.  相似文献   

10.
青藏高原岩石圈三维电性结构   总被引:3,自引:0,他引:3       下载免费PDF全文
本文报道通过综合大地电磁调查数据研究青藏高原岩石圈三维电阻率模型的初步成果.大地电磁法调查区域已经覆盖了高原大部分面积,为全区三维电阻率成像研究打下了可靠的基础.对多个测区大地电磁数据进行精细的同化处理和反演成像,取得了青藏高原可靠的岩石圈三维电阻率结构图像.成像的区域为28°N—35°N,80°E—104°E.三维反演计算时采用的网格尺寸为20km×20km,垂直方向不等间距剖分为26层.结果表明,青藏高原现今岩石圈电阻率扰动主要反映印度克拉通对亚欧大陆板块俯冲引起的热流体运动和大陆碰撞和拆离产生的构造.在岩石圈地幔,察隅地块、喜马拉雅地块和拉萨地块东部联成统一的高电阻率地块,它们反映了向北东俯冲的印度克拉通.雅鲁藏布江、班公—怒江和金沙江缝合带都有明显的低电阻率异常,表明岩石圈深处有热流体活动.雅鲁藏布江、班公—怒江和金沙江缝合带都有明显的低电阻率异常,也表明它们的岩石圈还有流体活动.青藏高原东部的低阻区沿100°E向地幔下方扩大,反映了金沙江断裂带有切穿岩石圈的趋势.地幔电阻率平面扰动的模式显示,青藏高原东西部的地体碰撞拼合形式和方向是不同的.在青藏高原西部,羌塘、拉萨和喜马拉雅等地体从北到南碰撞拼合.在青藏高原东部,羌塘—拉萨、察隅、印支、雅安和扬子等地体多方向拆离拼合,在地壳造成不正交的拆离带和压扭构造系.从高阻-低阻区的分布看,东部的地体拼合有地幔的根源,今后还会进一步发展.察隅地块岩石圈对青藏高原东部的楔入,使其北部和东部地块的岩石圈发生拆离撕裂,也造成热流体上涌的低电阻率异常.  相似文献   

11.
对在地理位置上具有一定代表性的鄂尔多斯块体西缘及西南缘的3 条大地电磁剖面进行了分析。盐池—阿拉善左旗剖面:整条剖面上均有壳内低阻层和上地幔低阻层分布,低阻层在银川断陷盆地上隆。定边—景泰剖面:壳内低阻层仅出现在弧形断裂带区,但上地幔低阻层在整个剖面上都有分布。在弧形断裂带区上地幔低阻层埋藏深度加大,但并不上隆,这与北面银川断陷盆地的上地幔上隆形成反照。分析认为,银川断陷盆地属于拉张性质,而弧形断裂带区属于挤压性质,由于均衡调整作用,造成了两者上地幔结构的反差。成县—西吉剖面:以天水太京测点为界,其南、北两段的电性结构差异较大,这为划分南、北两个地质单元提供了深部结构上的依据  相似文献   

12.
The Yishu fault zone is one of the branch faults of the Tanlu fault zone in its central part. Moderate and strong earthquakes occurred in the Yishu fault zone repeatedly. Due to its complex structure, the Yishu fault zone attracts much attention from earthquake researches. The Anqiu and Juxian electromagnetic stations in Shandong Province locate near the Anqiu-Juxian Fault and Changyi-Dadian Fault, which are branches of the Yishu fault zone, respectively. Geoelectric field and geomagnetic field observation were carried out in these two stations. The Wudi electromagnetic station is in the west of Tanlu fault zone in the Jidong-Bohai block and 230km from Anqiu electromagnetic station. This paper firstly describes the crustal structure near the electromagnetic stations by using magnetotelluric(MT)method. By processing the data carefully, we obtain the MT data in good quality near the stations. The MT data of each electromagnetic station and its nearby area suggests that the electrical structure and geological structure of the station are comparable. This paper applied 1-D and 2-D inversion for MT data and obtained the crustal electrical structure model beneath the Anqiu and Juxian seismic station. The shallow electrical structure from the MT method was compared with the results of symmetrical quadrupole electrical sounding. The model suggests that the electrical structure beneath the Anqiu and Juxian electromagnetic stations is complex and shows the feature of block boundary. The Wudi electromagnetic station is located inside a basin, the crustal structure shows layered feature typical for the stable blocks. Beneath the Anqiu electromagnetic station, there is a 1km-thick relative low resistivity layer in the shallow crust and a high resistivity body beneath it with a depth of 13km. There is a high resistivity structure in the crust beneath the Juxian electromagnetic station. The crustal structures are divided into two different parts by Anqiu-Juxian Fault and Changyi-Dadian Fault, respectively. More conductive layers appear to the west of the two faults. Plenty of fluid possibly exists within the conductive body to the west of Changyi-Dadian Fault, which plays important role in the earthquake generation. There is a relative low resistivity layer in the crust within 1~2km beneath the Wudi electromagnetic station. Beneath the relatively low resistivity layer, a relatively high resistivity layer extends to a depth of around 15km, and the resistivity value decreases with the increase of depth. The electrical resistivity model suggests the seismic activity of the Yishu fault zone around the Anqiu and Juxian electromagnetic stations should be taken into account seriously, and monitoring and research on it need to be strengthened. The results of this paper provide a certain reference value for the crustal structure research to similar stations.  相似文献   

13.
The East Kunlun Fault is a giant fault in northern Tibetan, extending eastward and a boundary between the Songpan-Ganzi block and the West Qinling orogenic zone. The East Kunlun Fault branches out into a horsetail structure which is formed by several branch faults. The 2017 Jiuzhaigou MS7.0 earthquake occurred in the horsetail structure of the East Kunlun Fault and caused huge casualties. As one of several major faults that regulate the expansion of the Tibetan plateau, the complexity of the deep extension geometry of the East Kunlun Fault has also attracted a large number of geophysical exploration studies in this area, but only a few are across the Jiuzhaigou earthquake region. Changes in pressure or slip caused by the fluid can cause changes in fault activity. The presence of fluid can cause the conductivity of the rock mass inside the fault zone to increase significantly. MT method is the most sensitive geophysical method to reflect the conductivity of the rock mass. Thus MT is often used to study the segmented structure of active fault zones. In recent years MT exploration has been carried out in several earthquake regions and the results suggest that the location of main shock and aftershocks are controlled by the resistivity structure. In order to study the deep extension characteristics of the East Kunlun Fault and the distribution of the medium properties within the fault zone, we carried out a MT exploration study across the Tazang section of the East Kunlun Fault in 2016. The profile in this study crosses the Jiuzhaigou earthquake region. Other two MT profiles that cross the Maqu section of East Kunlun Fault performed by previous researches are also collected. Phase tensor decomposition is used in this paper to analyze the dimensionality and the change in resistivity with depth. The structure of Songpan-Ganzi block is simple from deep to shallow. The structure of West Qinlin orogenic zone is complex in the east and simple in the west. The structure near the East Kunlun Fault is complex. We use 3D inversion to image the three MT profiles and obtained 3D electrical structure along three profiles. The root-mean-square misfit of inversions is 2.60 and 2.70. Our results reveal that in the tightened northwest part of the horsetail structure, the East Kunlun Fault, the Bailongjiang Fault, and the Guanggaishan-Dieshan Fault are electrical boundaries that dip to the southwest. The three faults combine in the mid-lower crust to form a "flower structure" that expands from south to north. In the southeastward spreading part of the horsetail structure, the north section of the Huya Fault is an electrical boundary that extends deep. The Tazang Fault has obvious smaller scale than the Huya Fault. The Minjiang Fault is an electrical boundary in the upper crust. The Huya Fault and the Tazang Fault form a one-side flower structure. The Bailongjiang and the Guanggaishan-Dieshan Fault form a "flower structure" that expands from south to north too. The two "flower structures" combine in the high conductivity layer of mid-lower crust. In Songpan-Ganzi block, there is a three-layer structure where the second layer is a high conductivity layer. In the West Qinling orogenic zone, there is a similar structure with the Songpan-Ganzi block, but the high conductivity layer in the West Qinling orogenic zone is shallower than the high conductivity layer in the Songpan-Ganzi block. The hypocenter of 2017 MS7.0 Jiuzhaigou earthquake is between the high and low resistivity bodies at the shallow northeastern boundary of the high conductivity layer. The low resistivity body is prone to move and deform. The high resistivity body blocked the movement of low resistivity body. Such a structure and the movement mode cause the uplift near the East Kunlun Fault. The electrical structure and rheological structure of Jiuzhaigou earthquake region suggest that the focal depth of the earthquake is less than 11km. The Huya Fault extends deeper than the Tazang Fault. The seismogenic fault of the 2017 Jiuzhaigou earthquake is the Huya Fault. The high conductivity layer is deep in the southwest and shallow in the northeast, which indicates that the northeast movement of Tibetan plateau is the cause of the 2017 Jiuzhaigou earthquake.  相似文献   

14.
A set of geophysical data collected in an area in Iran are analyzed to check the validity of a geological map that was prepared in connection to a mineral prospecting project and also to image the spatial electrical resistivity distribution. The data set includes helicopter electromagnetic (HEM), airborne magnetic and ground electrical resistivity measurement. Occam approach was used to invert the HEM data to model the resistivity using a layered earth model with fixed thicknesses. The algorithm is based on a nonlinear inverse problem in a least-squares sense.The algorithm was tested on a part of an HEM dataset acquired with a DIGHEM helicopter EM system at Kalat-e-Reshm, Semnan in Iran. The area contains a resistive porphyry andesite that is covered by Eocene sedimentary units. The results are shown as resistivity sections and maps confirming the existence of an arc like resistive structure in the survey area. The resistive andesite seems to be thicker than it is indicated in the geological maps. The results are compared with the reduced to the pole (RTP) airborne magnetic anomaly field data as well as with two ground resistivity profiles. We found reasonable correlations between the HEM 1D resistivity models and 2D models from electrical resistivity tomography (ERT) inversions. A 3D visualization of the 1D models along all flight lines provided a useful tool for the study of spatial variations of the resistivity structure in the investigation area.  相似文献   

15.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

16.
可控源音频大地电磁法在地下水勘查中的应用研究   总被引:58,自引:7,他引:58       下载免费PDF全文
根据可控源音频大地电磁(CSAMT)法进行地下水勘查时取得的大量资料,通过总结、分析与研究,提出了在蓄水构造的断层上,CSAMT测量的视电阻车断面等值线图呈中间低、两侧高的异常特征.利用这一模式解决了在山区、半山区,很多地球物理方法难以解决的地下水勘查问题.经打井验证,成井率很高.  相似文献   

17.
华南东部吉安—福州剖面岩石圈电性结构研究   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究华南东部地区岩浆活动的深部构造背景,对吉安一福州宽频大地电磁测深剖面数据进行了系统的分析和处理,并利用非线性共轭梯度法进行二维反演,得到了武夷隆起带及周缘地区的岩石圈电性结构;结合区域重磁资料,详细分析了研究区内地壳、上地幔电性结构特征及地质含义.结果表明:华南东部地区岩石圈电性结构存在明显的分区性,并且壳内普遍发育不同成因的高导层,揭示出华南东部地区不同构造单元内的岩浆活动具有不同的成岩构造背景.其中,东南沿海褶皱带深部热侵蚀活跃,岩石圈物质和结构被强烈改造,电阻率普遍较低,软流圈上涌并伴随玄武岩浆底侵,导致岩石圈、地壳剧烈减薄;而武夷隆起带岩石圈电阻率相对较高,印支-燕山早期陆内挤压变形的构造形迹明显,晚中生代岩石圈拉张伸展作用对该地区岩石圈的物质结构有一定的改造.  相似文献   

18.
The resistivity structure of the Tenerife geothermal system has been determined by the 3-D inversion of data from different magnetotelluric surveys. In this paper, the ocean and topography effects on the magnetotelluric data were investigated by constructing a 3-D conceptual geoelectrical model of the island. The study showed that these effects should be taken into account in order to obtain a reliable subsurface model of the island. Data from 148 sites were used during three-dimensional inversion. The most interesting feature in the final geoelectrical model of the geothermal system is a low resistivity structure (<10 Ωm) above the resistive core of the system. The low resistivity structure has been interpreted as a hydrothermal clay alteration cap typically generated in the conventional geothermal systems. The resistivity model has been correlated with a recent seismic velocity model, showing that a low resistivity structure surrounds an area with high P wave velocity and medium–high resistivity. This medium–high resistivity area can be associated with a slowly solidified magma and, therefore, with a hotter part of the geothermal system.  相似文献   

19.
鄂尔多斯盆地西缘构造带北段深部电性结构   总被引:14,自引:9,他引:5       下载免费PDF全文
在横跨鄂尔多斯盆地西缘构造带北段的查甘池—银川—五湖洞约200 km长的东西向剖面上,进行了67个测点的大地电磁探测.使用“远参考道”和Robust技术处理数据.分析了各测点视电阻率、阻抗相位、二维偏离度、电性主轴方位角、磁实感应矢量等参数,采用NLCG二维反演方法对TE和TM两种模式的数据进行了二维反演.得到的二维电性结构表明,沿剖面查汗断裂带、贺兰山东缘断裂带和黄河断裂带是明显较大型电性边界,为超壳断裂带,而三关口断裂带深部延深不大.沿剖面阿拉善地块、贺兰山褶皱带、银川断陷盆地和鄂尔多斯地块具有明显不同的深部电性结构特征.阿拉善地块内部除浅表电阻率较低外,以下到深度约50 km都表现为高电阻特性.贺兰山褶皱带电性结构复杂,电阻率高低相间.银川盆地具有上宽下窄最深达约8 km低阻层,具有断陷盆地特征.鄂尔多斯地块具有低-高-低的深部电性结构特征,成层性较明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号