首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Land-use planners have a critical role to play in building vibrant, sustainable and hazard resilient communities in New Zealand. The policy and legal setting for natural hazards planning provides a solid foundation for good practice. But there are many examples of ‘bad practice’ that result in unnecessary risks and, in some cases, exposure to repeat events and potentially devastating impacts. Much, therefore, remains to be done to improve hazards planning policy and practice in New Zealand. This article explores the questions: What role does land-use planning play in managing hazard risks in New Zealand; and what needs to be done to reduce hazard risks and build community resilience? The article starts by describing the milieu within which natural hazards planning takes place. It goes onto outline the stakeholders and institutional and legal setting for natural hazards planning in New Zealand, including barriers to realising the potential of natural hazards planning. This synthesis reveals a number of ‘burning issues’, including the need to: (a) Improve understanding about the nature of hazards; (b) Prioritise risk avoidance (reduction) measures; (c) Provide national guidance for communities exposed to repeat events and address the relocation issue and (d) Mainstream climate change adaptation. Each ‘burning issue’ is discussed, and priority actions are recommended to realise the potential of land-use planning to reduce natural hazard risks and build community resilience in New Zealand. Ultimately, the challenge is to develop a cooperative hazards governance approach that is founded on coordinated policies, laws and institutions, cooperative professional practice and collaborative communities.  相似文献   

2.
Flood disasters and its consequent damages are on the rise globally. Pakistan has been experiencing an increase in flood frequency and severity along with resultant damages in the past. In addition to the regular practices of loss and damage estimation, current focus is on risk assessment of hazard-prone communities. Risk measurement is complex as scholars engaged in disaster science and management use different quantitative models with diverse interpretations. This study tries to provide clarity in conceptualizing disaster risk and proposes a risk assessment methodology with constituent components such as hazard, vulnerability (exposure and sensitivity) and coping/adaptive capacity. Three communities from different urban centers in Pakistan have been selected based on high flood frequency and intensity. A primary survey was conducted in selected urban communities to capture data on a number of variables relating to flood hazard, vulnerability and capacity to compute flood risk index. Households were categorized into different risk levels, such as can manage risk, can survive and cope, and cannot cope. It was found that risk levels varied significantly across the households of the three communities. Metropolitan city was found to be highly vulnerable as compared to smaller cities due to weak capacity. Households living in medium town had devised coping mechanisms to manage risk. The proposed methodology is tested and found operational for risk assessment of flood-prone areas and communities irrespective of locations and countries.  相似文献   

3.
Research into exposure to, and experience of, environmental risk that has an explicitly spatial focus can be broadly differentiated into two strands. The first strand focuses on the responses of communities of exposure (or the threat of exposure) to some form of environmental hazard and to the policies put in place by institutional actors to manage the hazard. The second strand addresses social inequalities in exposure to environmental hazards and seeks to correlate uneven spatial distributions of risk across different social groups. It is argued that both strands are limited by their respective understandings of space - and that the way in which vulnerable communities experience environmental risk and its management will be shaped significantly by the complex interactions of different spatialisations or constructions of space. We explore this process by examining accounts of local experience of the UK’s 2001 foot and mouth disease crisis and its management in terms of the interplay of two different spatialisations: socio-cultural marginality and political-economic peripherality. We trace the relationship between these cultural and political-economic spatialisations through an analysis of the discursive mobilisation of contrasting place rhetorics. We conclude that focusing on these rhetorics can enhance our understanding of the spatial processes which are constitutive of place identity and in turn mediate the experience of environmental risk and its management.  相似文献   

4.
城市突发性地质灾害应急系统探讨   总被引:10,自引:0,他引:10  
城市突发性地质灾害是当今减灾的重点,已引起了广泛的关注。人们意识到灾后及时地采取应急抢险救援措施,可以有效地减少人员伤亡。灾害应急行动包括建立应急指挥机构,明确职责,并进行资源调配。灾害应急抢险救灾时实性强,其快速反应行动涉及危机管理、预警、撤离、避险,以及维护法律与社会秩序、信息通报、灾情评估。应急救援行动还包括城市基础和生命线的恢复,以确保受灾居民和社区的基本需求。论文在分析城市突发性地质灾害应急管理进展和存在问题的基础上,探讨了当前城市地质灾害应急反应系统中的监测预警系统、快速反应系统、应急指挥系统、应急避难系统、信息发布系统、空间信息系统和宣传教育系统:通过实施这些应急系统并制定预案可以达到减轻城市突发性地质灾害的目的。  相似文献   

5.
The town of Santa Teresa (Cusco Region, Peru) has been affected by several large debris-flow events in the recent past, which destroyed parts of the town and resulted in a resettlement of the municipality. Here, we present a risk analysis and a risk management strategy for debris-flows and glacier lake outbursts in the Sacsara catchment. Data scarcity and limited understanding of both physical and social processes impede a full quantitative risk assessment. Therefore, a bottom-up approach is chosen in order to establish an integrated risk management strategy that is robust against uncertainties in the risk analysis. With the Rapid Mass Movement Simulation (RAMMS) model, a reconstruction of a major event from 1998 in the Sacsara catchment is calculated, including a sensitivity analysis for various model parameters. Based on the simulation results, potential future debris-flows scenarios of different magnitudes, including outbursts of two glacier lakes, are modeled for assessing the hazard. For the local communities in the catchment, the hazard assessment is complemented by the analysis of high-resolution satellite imagery and fieldwork. Physical, social, economic, and institutional vulnerability are considered for the vulnerability assessment, and risk is eventually evaluated by crossing the local hazard maps with the vulnerability. Based on this risk analysis, a risk management strategy is developed, consisting of three complementing elements: (i) standardized risk sheets for the communities; (ii) activities with the local population and authorities to increase social and institutional preparedness; and (iii) a simple Early Warning System. By combining scientific, technical, and social aspects, this work is an example of a framework for an integrated risk management strategy in a data scarce, remote mountain catchment in a developing country.  相似文献   

6.
The old potable water network in Byblos city is provided mainly from Ibrahim River nearby. Located in a seismic region, the aging network needs to tolerate seismic threats; thus, damage to the potable water network needs to be assessed. Therefore, first, enhancing infrastructure resilience is briefly discussed, noting briefly the need to bridge specifically between heritage risk management and engineering. Second, Byblos potable water network, seismicity, and geology are detailed. Third, the potable water network damage assessment methodology is presented. It encompasses hazard assessment, network inventory, damage functions, and model development. Data and maps are prepared using the Geographic Information System and then modeled in Ergo platform to obtain the damage to buried pipelines in the event of likely earthquake scenarios. Ergo is updated to consider recommended ground motion prediction equations (GMPEs) for the Middle East region, to consider amplification of the peak ground velocity in hazard maps due to different soil types, and to consider adequate fragility functions. Moreover, different Byblos geotechnical maps, landslide hazard, and liquefaction are investigated and embedded. Damage results to pipelines are dependent on the hazard maps obtained using different GMPEs and geotechnical maps. Asbestos cement pipelines will be most damaged, followed by polyethylene and then by ductile iron. Finally, recommendations are offered to consider an improved sustainable rehabilitation solution. The study provides a better understanding of Byblos potable water network and allows the establishment of a sustainable and resilience-to-earthquake preparedness strategy and recovery plan.  相似文献   

7.
Anthropogenic activities are a disturbance factor of coastal systems and can be widely recognized as a major threat to the health of coastal systems. However, natural events cannot be disregarded from management issues because of their significant influence on the communities living in these areas. Based on long-term subtidal data from the Mondego Estuary (Portugal), the effects of natural events (e.g., floods and droughts) on macrobenthic communities were compared with the anthropogenic events. Sampling stations were grouped into characteristic zones (mouth, north arm, south arm) so the community dynamics of each of these estuarine areas could be followed over time. Environmental assessment was performed for stations using the Benthic Assessment Tool (BAT), and compared with the existing pressures. Human impacts persist over a number of years and gradually reduce ecosystem health, as discussed in the European Water Framework Directive. Paradoxically, natural events cause stronger impacts but are of a shorter duration, which allows for a faster recovery of macrobenthic communities. The study showed that caution should be taken when developing and implementing water policies so as not to disregard the importance of the different events (natural and human-caused) on the ecosystem health (e.g., community degradation and water quality and ecological quality status assessment).  相似文献   

8.
Regional landslide-hazard assessment for Seattle, Washington, USA   总被引:13,自引:6,他引:13  
Landslides are a widespread, frequent, and costly hazard in Seattle and the Puget Sound area of Washington State, USA. Shallow earth slides triggered by heavy rainfall are the most common type of landslide in the area; many transform into debris flows and cause significant property damage or disrupt transportation. Large rotational and translational slides, though less common, also cause serious property damage. The hundreds of landslides that occurred during the winters of 1995–96 and 1996–97 stimulated renewed interest by Puget Sound communities in identifying landslide-prone areas and taking actions to reduce future landslide losses. Informal partnerships between the U.S. Geological Survey (USGS), the City of Seattle, and private consultants are focusing on the problem of identifying and mapping areas of landslide hazard as well as characterizing temporal aspects of the hazard. We have developed GIS-based methods to map the probability of landslide occurrence as well as empirical rainfall thresholds and physically based methods to forecast times of landslide occurrence. Our methods for mapping landslide hazard zones began with field studies and physically based models to assess relative slope stability, including the effects of material properties, seasonal groundwater levels, and rainfall infiltration. We have analyzed the correlation between historic landslide occurrence and relative slope stability to map the degree of landslide hazard. The City of Seattle is using results of the USGS studies in storm preparedness planning for emergency access and response, planning for development or redevelopment of hillsides, and municipal facility planning and prioritization. Methods we have developed could be applied elsewhere to suit local needs and available data.  相似文献   

9.
Coastal inundation and damage exposure estimation: a case study for Jakarta   总被引:2,自引:2,他引:0  
Coastal flooding poses serious threats to coastal areas, and the vulnerability of coastal communities and economic sectors to flooding will increase in the coming decades due to environmental and socioeconomic changes. It is increasingly recognised that estimates of the vulnerability of cities are essential for planning adaptation measures. Jakarta is a case in point, since parts of the city are subjected to regular flooding on a near-monthly basis. In order to assess the current and future coastal flood hazard, we set up a GIS-based flood model of northern Jakarta to simulate inundated area and value of exposed assets. Under current conditions, estimated damage exposure to extreme coastal flood events with return periods of 100 and 1,000 years is high (€4.0 and €5.2 billion, respectively). Under the scenario for 2100, damage exposure associated with these events increases by a factor 4–5, with little difference between low/high sea-level rise scenarios. This increase is mainly due to rapid land subsidence and excludes socioeconomic developments. We also develop a detemporalised inundation scenario for assessing impacts associated with any coastal flood scenario. This allows for the identification of critical points above which large increases in damage exposure can be expected and also for the assessment of adaptation options against hypothetical user-defined levels of change, rather than being bound to a discrete set of a priori scenarios. The study highlights the need for urgent attention to the land subsidence problem; a continuation of the current rate would result in catastrophic increases in damage exposure.  相似文献   

10.
In the recent past, Australia has experienced several catastrophic hazard events and the frequency and intensity of such events is expected to increase in the future. Natural hazards can rarely be fully prevented, yet their losses can be minimized if the necessary preparedness and mitigation actions are taken before an event occurs. Identification of vulnerable groups is an important first step in any preparedness and emergency management planning process. Social vulnerability refers to population characteristics that influence the capacity of a community to prepare for, respond to and recover from disasters. Factors that contribute to social vulnerability are often hidden and difficult to capture. This study analyzes the relative levels of social vulnerability of communities at the urban?Cbush interface in the Blue Mountains and Ku-ring-gai local council areas in New South Wales (NSW), Australia. We tested whether a standardized social vulnerability index could be developed using a pre-existing set of indicators. We created an exploratory principle component analysis model using Australian Bureau of Statistics 2006 census data at the Census Collection District (CCD) level. We identified variables contributing to social vulnerability and used the component scores to develop a social vulnerability index. Finally, the social vulnerability index was mapped at the CCD level. Our results indicate that both contributors to and the level of social vulnerability differ between and within communities. In other words, they are spatially variable. They show different spatial patterns across the areas, which provides useful information for identifying communities that are most likely to experience negative disaster impacts due to their socio-demographic characteristics.  相似文献   

11.
Hurricane surge events have caused devastating damage in active-hurricane areas all over the world. The ability to predict surge elevations and to use this information for damage estimation is fundamental for saving lives and protecting property. In this study, we developed a framework for evaluating hurricane flood risk and identifying areas that are more prone to them. The approach is based on the joint probability method with optimal sampling (JPM-OS) using surge response functions (SRFs) (JPM-OS-SRF). Derived from a discrete set of high-fidelity storm surge simulations, SRFs are non-dimensional, physics-based empirical equations with an algebraic form, used to rapidly estimate surge as a function of hurricane parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location). The advantage of an SRF-based approach is that a continuum of storm scenarios can be efficiently evaluated and used to estimate continuous probability density functions for surge extremes, producing more statistically stable surge hazard assessments without adding measurably to epistemic uncertainty. SRFs were developed along the coastline and then used to estimate maximum surge elevations with respect to a set of hurricane parameters. Integrating information such as ground elevation, property value and population with the JPM-OS-SRF allows quantification of storm surge-induced hazard impacts over the continuum of storm possibilities, yielding a framework to create the following risk-based products, which can be used to assist in hurricane hazard management and decision making: (1) expected annual loss maps; (2) flood damage versus return period relationships; and (3) affected business (e.g., number of business, number of employees) versus return period relationships. By employing several simplifying assumptions, the framework is demonstrated at three northern Gulf of Mexico study sites exhibiting similar surge hazard exposure. The framework results reveal Gulfport, MS, USA is at relatively more risk of economic loss than Corpus Christi, TX, USA, and Panama City, FL, USA. Note that economic processes are complex and very interrelated to most other human activities. Our intention here is to present a methodology to quantify the flood damage (i.e., infrastructure economic loss, number of businesses affected, number of employees in these affected businesses and sales volume in these affected businesses) but not to discuss the complex interactions of these damages with other economic activities and recovery plans.  相似文献   

12.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

13.
In the context of natural hazard-related risk analyses, different concepts and comprehensions of the term risk exist. These differences are mostly subjected to the perceptions and historical backgrounds of the different scientific disciplines and results in a multitude of methodological concepts to analyse risk. The target-oriented selection and application of these concepts depend on the specific research object which is generally closely connected to the stakeholders’ interests. An obvious characteristic of the different conceptualizations is the immanent various comprehensions of vulnerability. As risk analyses from a natural scientific-technical background aim at estimating potential expositions and consequences of natural hazard events, the results can provide an appropriate decision basis for risk management strategies. Thereby, beside the preferably addressed gravitative and hydrological hazards, seismo-tectonical and especially meteorological hazard processes have been rarely considered within multi-risk analyses in an Alpine context. Hence, their comparative grading in an overall context of natural hazard risks is not quantitatively possible. The present paper focuses on both (1) the different concepts of the natural hazard risk and especially their specific expressions in the context of vulnerability and (2) the exemplary application of the natural scientific-technical risk concepts to analyse potential extreme storm losses in the Austrian Province of Tyrol. Following the corresponding general risk concept, the case study first defines the hazard potential, second estimates the exposures and damage potentials on the basis of an existing database of the stock of elements and values, and third analyses the so-called Extreme Scenario Losses (ESL) considering the structural vulnerability of the potentially affected elements at risk. Thereby, it can be shown that extreme storm events can induce losses solely to buildings and inventory in the range of EUR 100–150 million in Tyrol. However, in an overall context of potential extreme natural hazard events, the storm risk can be classified with a moderate risk potential in this province.  相似文献   

14.

Hurricane surge events have caused devastating damage in active-hurricane areas all over the world. The ability to predict surge elevations and to use this information for damage estimation is fundamental for saving lives and protecting property. In this study, we developed a framework for evaluating hurricane flood risk and identifying areas that are more prone to them. The approach is based on the joint probability method with optimal sampling (JPM-OS) using surge response functions (SRFs) (JPM-OS-SRF). Derived from a discrete set of high-fidelity storm surge simulations, SRFs are non-dimensional, physics-based empirical equations with an algebraic form, used to rapidly estimate surge as a function of hurricane parameters (i.e., central pressure, radius, forward speed, approach angle and landfall location). The advantage of an SRF-based approach is that a continuum of storm scenarios can be efficiently evaluated and used to estimate continuous probability density functions for surge extremes, producing more statistically stable surge hazard assessments without adding measurably to epistemic uncertainty. SRFs were developed along the coastline and then used to estimate maximum surge elevations with respect to a set of hurricane parameters. Integrating information such as ground elevation, property value and population with the JPM-OS-SRF allows quantification of storm surge-induced hazard impacts over the continuum of storm possibilities, yielding a framework to create the following risk-based products, which can be used to assist in hurricane hazard management and decision making: (1) expected annual loss maps; (2) flood damage versus return period relationships; and (3) affected business (e.g., number of business, number of employees) versus return period relationships. By employing several simplifying assumptions, the framework is demonstrated at three northern Gulf of Mexico study sites exhibiting similar surge hazard exposure. The framework results reveal Gulfport, MS, USA is at relatively more risk of economic loss than Corpus Christi, TX, USA, and Panama City, FL, USA. Note that economic processes are complex and very interrelated to most other human activities. Our intention here is to present a methodology to quantify the flood damage (i.e., infrastructure economic loss, number of businesses affected, number of employees in these affected businesses and sales volume in these affected businesses) but not to discuss the complex interactions of these damages with other economic activities and recovery plans.

  相似文献   

15.
Haase  Thomas W.  Wang  Wen-Jiun  Ross  Ashley D. 《Natural Hazards》2021,109(1):1097-1118

This article builds upon disaster scholarship that suggests community resilience is driven by six capacities: social, economic, physical, human, institutional, and environmental. Together, these capacities constitute a conceptual framework that can be used to investigate and assess community resilience. While recent scholarship has provided insights into how resilience operates in large communities, there remain questions about whether this conceptual framework is appropriate for the study of resilience in small communities. To narrow this knowledge gap, we conducted interviews with twenty-six subjects from three small Texas communities affected by Hurricane Harvey: City of Dickinson; City of Port Aransas; and Town of Refugio. Analysis of the interview data confirms that the six capacities of resilience provide an appropriate framework for the investigation of resilience in small communities. Given the complex and dynamic nature of community resilience, the findings also suggest that it is unlikely policymakers will be able to develop a unified policy solution for hazard events that is appropriate for all communities. Rather, policymakers need to consider community-based resilience solutions, driven by local strengths and weaknesses, that facilitate the reduction of risks associated with hazard events.

  相似文献   

16.
Within the framework of recent research projects, basic tools for GIS-based seismic risk assessment technologies were developed and applied to the building stock and regional particularities of German earthquake regions. Two study areas are investigated, being comparable by the level of seismic hazard and the hazard-consistent scenario events (related to mean return periods of 475, 2475 and 10000 years). Significant differences exist with respect to the number of inhabitants, the grade and extent of urbanisation, the quality and quantity of building inventory: the case study of Schmölln in Eastern Thuringia seems to be representative for the majority of smaller towns in Germany, the case study of Cologne (Köln) stands for larger cities. Due to the similarities of hazard and scenario intensities, the considerable differences do not only require proper decisions concerning the appropriate methods and acceptable efforts, they enable conclusions about future research strategies and needs for disaster reduction management. Not least important, results can sharpen the focus of public interest. Seismic risk maps are prepared for different scenario intensities recognising the scatter and uncertainties of site-dependent ground motion and also of the applied vulnerability functions. The paper illustrates the impact of model assumptions and the step-wise refinements of input variables like site conditions, building stock or vulnerability functions on the distribution of expected building damage within the study areas. Furthermore, and in contrast to common research strategies, results support the conclusion that in the case of stronger earthquakes the damage will be of higher concentration within smaller cities like Schmölln due to the site-amplification potential and/or the increased vulnerability of the building stock. The extent of damage will be pronounced by the large number of masonry buildings for which lower vulnerability classes have to be assigned. Due to the effect of deep sedimentary layers and the composition of building types, the urban centre of Cologne will be less affected by an earthquake of comparable intensity.  相似文献   

17.
Economic risk maps of floods and earthquakes for European regions   总被引:2,自引:0,他引:2  
Europe experiences different natural hazards and subsequent risks that have various effects on the development of its regions. The spatial significance of hazards can be expressed as an economic risk when combining hazard potential with vulnerability data. Two examples of European natural hazard maps on floods and earthquakes, as well as the resulting risk profiles of regions (combination of hazard potential and vulnerability) give a first impression on the spatial characters of hazards in Europe and their potential impact on further spatial development. The economic risk maps enable a view on the spatial dimension of the economic damage potential of flood and earthquakes, pointing out comparable situations across Europe with the aim to facilitate targeted responses and policies. The spatial character of a hazard is either defined by spatial effects that might occur in case of a disaster or by the possibility of spatial planning responses. The integration of the economic vulnerability of a region (regional GDP per capita, population density) leads to a classification of areas according to their economic risk or damage potential towards hazards. These synthetic risk profiles are presented as risk maps of European regions in administrative boundaries. Obtained information can be of interest for spatial planning and development strategies, e.g. economic risk profile of regions can influence the targets of investments and could thus be an important background for structural funding.  相似文献   

18.
Urban Seismic Risk Evaluation: A Holistic Approach   总被引:3,自引:4,他引:3  
Risk has been defined, for management purposes, as the potential economic, social and environmental consequences of hazardous events that may occur in a specified period of time. However, in the past, the concept of risk has been defined in a fragmentary way in many cases, according to each scientific discipline involved in its appraisal. From the perspective of this article, risk requires a multidisciplinary evaluation that takes into account not only the expected physical damage, the number and type of casualties or economic losses, but also the conditions related to social fragility and lack of resilience conditions, which favour the second order effects (indirect effects) when a hazard event strikes an urban centre. The proposed general method of urban risk evaluation is multi hazard and holistic, that is, an integrated and comprehensive approach to guide decision-making. The evaluation of the potential physical damage (hard approach) as the result of the convolution of hazard and physical vulnerability of buildings and infrastructure is the first step of this method. Subsequently, a set of social context conditions that aggravate the physical effects are also considered (soft approach). In the method here proposed, the holistic risk evaluation is based on urban risk indicators. According to this procedure, a physical risk index is obtained, for each unit of analysis, from existing loss scenarios, whereas the total risk index is obtained by factoring the former index by an impact factor or aggravating coefficient, based on variables associated with the socio-economic conditions of each unit of analysis. Finally, the proposed method is applied in its single hazard form to the holistic seismic risk evaluation for the cities of Bogota (Colombia) and Barcelona (Spain).  相似文献   

19.
This paper examines the factors promoting theadoption of mitigation measures during long-term recoveryfollowing Hurricane Hugo in the United States. Recovery fromdisaster offers opportunities for improving community resilienceto future disasters and for promoting sustainability. Variousdynamics during recovery, however, can interfere with mitigationof hazards. In this study the adoption of mitigation duringrecovery in three case communities after Hurricane Hugo isevaluated, with a focus on the influence of various regulations onhazard mitigation. There is a very strong connection betweendevelopment management and hazard mitigation; resourcemanagement also contributes to hazard mitigation. Conditionsthat influence advancement of hazard mitigation at thecommunity level include local leadership, a linkage betweenwell-established ways of doing things and new policies,adaptation to dynamic local conditions, monitoring andcompliance strategies tailored to suit local conditions, recognitionof local rights, and stakeholders' involvement in developingstrategies.  相似文献   

20.
Mountain landslide has been an environmental geological problem and occurs frequently in China, especially in the karst region of Guizhou Province, Southwest China. The data of karst mountain landslide are collected and analysed, which occurred in the period of 1940–2002. The collection includes 321 events in the karst region of Guizhou Province. The characteristics of mountain landslides may be classified as two types, namely natural mountain landslides (287 events) and the other induced by human activities (34 events). The results indicate that natural mountain landslide causes especially high damage and is still the main type of natural hazard in the study area owing to the extremely fragile karst geological environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号