首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A widespread seamount province, the Rano Rahi Field, is located near the superfast spreading Southern East Pacific Rise (SEPR) between 15°–19° S. Particularly abundant volcanic edifices are found on Pacific Plate aged 0 to 6.5 Ma between 17°–19° S, an area greater than 100,000 km2. The numbers of seamounts and their volume are several times greater than those of a comparablysurveyed area near the Northern East Pacific Rise (NEPR), 8°–17° N. Most of the Rano Rahi seamounts belong to chains, which vary in length from 25 km to >240 km and which are very nearly collinear with the Pacific absolute and relative plate motion directions. Bends of 10°–15° occur along a few of the chains, and some adjacent chains converge or diverge slightly. Many seamount chains have fluctuations in volume along their length, and statistical tests suggest that some adjacent chains trade-off in volume. Several seamount chains split into two lines of volcanoes approaching the axis. In general, seamount chains composed of individual circular volcanoes are found near the axis; the chains consist of variably-overlapping edifices in the central part of the survey; to the west, volcanic ridges predominate. Near the SEPR, the volume of nearaxis seamount edifices is generally reduced near areas of deflated cross-sectional area of the axial ridge. Fresh lava flows, as imaged by sidescan sonar and sampled by dredging, exist around some seamounts throughout the entire survey area, in sharp contrast to the absence of fresh flows beyond 30 km from the NEPR. Also, the increases in seamount abundance and volume extend to much greater crustal ages than near the NEPR. Seamount magnetization analysis is also consistent with this wider zone of seamount growth, and it demonstrates the asynchronous formation of most of the seamount chains and volcanic ridges. The variety of observations of the SEPR seamounts suggests that a number of factors and mechanisms might bring about their formation, including the mantle upwelling associated with superfast spreading, off-axis mantle heterogeneities, miniplumes and local upwelling, and the vulnerability of the lithosphere to penetration by volumes of magma. In particular, we note the association of extensive, recent volcanism with intermediate wavelength gravity lineaments lows on crust aged 6 Ma. This suggests that the lineaments and some of the seamounts share a common cause which may be related to ridge-perpendicular asthenospheric convection and/or some manner of extension in the lithosphere.  相似文献   

2.
In August–September of 1995, 20 Nautile dives and detailed magnetic surveys (spaced every 1.8 km) were undertaken on two segments of the Mid-Atlantic Ridge between the Oceanographer and Hayes fractures zones. These two segments are only 65 km apart and show strong morphology and gravity contrasts. OH1 is shallower and has a large mantle Bouguer anomaly (MBA) bull's eye, whereas OH3 is deeper and has a smaller MBA bull's eye.Thirteen dives were devoted to segment OH1. The Median Ridge (MR) located on the central high (1700 m deep) is topped by 100 to 300 m high circular volcanoes. The volcanics consists mainly of porphyritic and/or vesicular pillows and volcaniclastics. The NVZ (2200 m deep), located in the valley floor east of the MR, consists of near aphyric fluid lava flows. A chain of off-axis volcanoes, displaying a magnetic continuity with surroundings, extends on both sides of the axis. Three volcanoes on the east side and one on the west side of the axis were explored and sampled by submersible. The off-axis increase of weathering, Fe-Mn coating and magnetic signature suggest that the volcanoes were built at or near the ridge axis. The spacing of NS elongated hills bearing circular volcanoes and separated large magnetic signature (2 to 4 km) depressions suggests that several similar volcanic events occured during the past 2 Ma. The last 1 Ma episode involves (1) the construction of an axial ridge (MR) by fissure eruptions and the formation of circular summit volcanoes by focused volcanism, and (2) the extrusion of fluid magma in the depressions formed by further fissuring and faulting of the MR.  相似文献   

3.
无震脊或海山链俯冲对超俯冲带处的地质效应   总被引:3,自引:1,他引:2  
鄢全树  石学法 《海洋学报》2014,36(5):107-123
全球海底分布着众多的无震脊或海山链,且在太平洋、印度洋及大西洋均存在靠近俯冲带的海岭。除小安德列斯弧外的巴拉克达脊和蒂勃朗脊起源自转换断层外,一般认为它们由与板块构造动力学迥异的地幔柱动力学所形成的。在板块汇聚边缘处,与扩张脊处所形成的正常洋壳一起,无震脊或海山链俯冲于陆缘弧或洋内弧之下,其对弧及弧后地区的地质效应(构造、地貌、地震以及岩浆作用等)有别于正常洋壳俯冲。无震脊或海山链的俯冲通常造成俯冲带地区的上驮板块的局部异常抬升、俯冲剥蚀作用效应的加强、海沟的向陆迁移以及地震强度的增加。同时,无震脊或海山链俯冲时,其携带的具富集地球化学特征的物质不仅影响着地幔地球化学,也对弧及弧后火山熔岩化学产生明显影响,并对超俯冲地区的热液矿床的形成产生重要影响。最后,本文指出了我国有关无震脊或海山链俯冲的可能的研究方向包括黄岩海山链俯冲对吕宋岛弧的可能影响、印度洋无震脊俯冲对青藏高原局部地区的影响,有我国学者参与的IODP344航次的研究对象——科科斯脊俯冲对哥斯达黎加地震成因的效应以及位于西太平洋地区靠近俯冲带的一些无震脊等。  相似文献   

4.
The meso-scale (km) morphology of the well-studied volcanic rift zones on the Island of Hawaii is compared to the morphology of the lesser known rift zones of La Palma and El Hierro, Canary Islands. We find that there are both differences and similarities in their morphologic characteristics. In general, the rift zones on La Palma and El Hierro are shorter (a few tens of km in length) than those on Hawaii (ranging up to >100 km in length), perhaps reflecting both magma supply and composition. Many of the rift zones on Hawaii have well defined axial zones, both on-and offshore. In contrast, the rift zones on La Palma and El Hierro display various geometries ranging from linear ridges having smooth to irregular crests to structures with a broad fan-like morphology in plan view. The pronounced fanning may be a reflection of: 1) the stress field within the rift being insufficient to trap dikes within a narrow region, 2) dike injection and volcanism shifting laterally through time, 3) volcanoes building nearly one atop of another in the Canary Islands, superimposing the stress field of one structure on the other and thus yielding a more complex distribution of gravitational stresses, and 4) low rate of magma supply producing low magma pressures and thus randomly oriented dike injections. Irregularities and curvature along the axes of the rifts on La Palma and El Hierro may be a reflection of differences in the rate of magma production. Unlike the volcanoes on the Island of Hawaii there may be insufficient volumes of lavas erupted on La Palma and El Hierro to smooth out irregularities. The superposition of rifts from different volcanoes may also add to topographic irregularities in the Canary Islands, especially if eruption rates are low.  相似文献   

5.
We analyse TOBI side-scan sonar images collected during Charles Darwin cruise CD76 in the axial valley of the Mid-Atlantic Ridge (MAR) between 27°N and 30°N (Atlantis Transform Fault). Mosaics of the two side-scan sonar swaths provide a continuous image of the axial valley and the inner valley walls along more than six second-order segments of the MAR. Tectonic and volcanic analyses reveal a high-degree intra-segment and inter-segment variability. We distinguish three types of volcanic morphologies: hummocky volcanoes or volcanic ridges, smooth, flat-topped volcanoes, and lava flows. We observe that the variations in the tectonics from one segment to another are associated with variations in the distribution of the volcanic morphologies. Some segments have more smooth volcanoes near their ends and in the discontinuities than near their mid-point, and large, hummocky axial volcanic ridges. Their tectonic deformation is usually limited to the edges of the axial valley near the inner valley walls. Other segments have smooth volcanoes distributed along their length, small axial volcanic ridges, and their axial valley floor is affected by numerous faults and fissures. We propose a model of volcano-tectonic cycles in which smooth volcanoes and lava flows are built during phases of high magmatic flux. Hummocky volcanic ridges are constructed more progressively, by extraction of magma from pockets located preferentially beneath the centre of the segments, during phases of low magma input. These cycles might result from pulses in melt migration from the mantle. Melt arrival would lead to the rapid emplacement of smooth-textured volcanic terrains, and would leave magma pockets, mostly beneath the centre of the segments where most melt is produced. During the end of the volcanic cycle magma would be extracted from these reservoirs through dikes with a low magma pressure, building hummocky volcanic ridges at low effusion rates. In extreme cases, this volcanic phase would be followed by amagmatic extension until a new magma pulse arrives from the mantle.  相似文献   

6.
The central equatorial Pacific is interesting for studying clues to upper mantle processes, as the region lacks complicating effects of continental remnants or major volcanic plateaus. In particular, the most recently produced maps of the free-air gravity field from satellite altimetry show in greater detail the previously reported lineaments west of the East Pacific Rise (EPR) that are aligned with plate motion over the mantle and originally suggested to have formed from mantle convection rolls. In contrast, the gravity field 600 km or farther west of the EPR reveals lineaments with varied orientations. Some are also parallel with plate motion over the mantle but others are sub-parallel with fracture zones or have other orientations. This region is covered by pelagic sediments reaching ~?500–600 m thickness so bathymetry is not so useful for seeking evidence for plate deformation across the lineaments. We instead use depth to basement from three seismic reflection cruises. In some segments of these seismic data crossing the lineaments, we find that the co-variation between gravity and basement depth is roughly compatible with typical densities of basement rocks (basalt, gabbro or mantle), as expected for some explanations for the lineaments (e.g., mantle convection rolls, viscous asthenospheric inter-fingering or extensional deformation). However, some other lineaments are associated with major changes in basement depth with only subtle changes in the gravity field, suggesting topography that is locally supported by varied crustal thickness. Overall, the multiple gravity lineament orientations suggest that they have multiple origins. In particular, we propose that a further asthenospheric inter-fingering instability mechanism could occur from pressure variations in the asthenosphere arising from regional topography and such a mechanism may explain some obliquely oriented gravity lineaments that have no other obvious origin.  相似文献   

7.
Two main events determined the formation, geological history, magmatism, and geodynamics of the Jan Mayen microcontinent: (1) drift of this segment of the Laurasian plate over the Iceland plume in the Early Paleogene; (2) propagation of the rift zone of the mid-Atlantic Ridge into this region and separation of the Jan Mayen lithospheric block from northeastern Greenland. The lithosphere was reduced at the block boundary when it was separated. This process was accompanied by the formation of depressions intruded by magma of the Iceland plume, which resulted in the appearance of a new volcanic center with active volcanoes of the central type. They supplied pyroclastic material to the sedimentary cover of the expanding Norwegian?Greenland Basin in the Eocene and Oligocene. The wedging of the Jan Mayen plate (microcontinent) into the triple junction of the plates (Greenland, Eurasian, Jan Mayen) promoted intense volcanism and the formation of two large volcanic complexes: (1) the Greenland?Faroes and the (2) Trail?Vøring. Recent volcanoes of the Jan Mayen hot spot are fed by magma from the Iceland plume as well as from relict and newly formed cambers in a zone of deep-seated Jan Mayen transform faults.  相似文献   

8.
This study presents results of surveys conducted along the slow to ultra-slow spreading axis of the Northern North Fiji Basin (NNFB), including the Hazel Holmes, Tripartite and South Pandora Ridges, and the newly discovered Futuna and North Cikobia spreading centers. Spreading segments along these axes display highly contrasted axial morphologies, ranging from a rift valley to a prominent axial high. In some places, abrupt inversions of topography are observed between neighboring segments. Detailed analyses of bathymetry and backscatter maps reveal that axial highs are spotted with numerous coalescent volcanoes forming features ranging from irregular terrains to well-organized ridges. The volcanic edifices are distributed over a wide neovolcanic zone, which corresponds to the axial relief, suggesting on important contribution of volcanism to the relief construction. Comparisons between various ridge-shaped segments reveal that axial volcano-tectonic patterns are directly related to the local magma production and delivery, in a context of tectonic extension related to plate divergence, and suggest that coalescent volcanoes are fed from multiples short-lived and unconnected magma lenses. In the competition between horizontal and vertical accretion of oceanic crust, the spreading centers of the NNFB represent a special case where lava production is locally high enough and spreading rate is low enough to allow prominent axial highs to develop. The along axis morphologic variability is related to intermittent volcanic activity that may result from rapid temporal and spatial variations in the distribution of upper mantle convection cells below accretion centers, superimposed on the regional thermal anomaly located under the whole basin.  相似文献   

9.
Tectonic and volcanic activity along the East Pacific Rise near Lat. 21°N is generally restricted to a 3–4‐km‐wide area centered over the rise axis. The East Pacific Rise is a medium‐rate (60 mm/yr) spreading center characterized by modest (100–200 m) relief of hills and seapeaks across the crestal region that is typical for such spreading centers. Few tectonic features appear in an axial volcanic zone 600–1, 200 m wide characterized by fresh, glassy pillow basalt and little or no sediment cover. This volcanic terrain is commonly flanked by tectonic zones where older lavas are cut by numerous normal faults bounding horst and graben systems and open fissures; these tectonic zones are commonly of unequal width on each side of the central volcanic zone and locally may be absent on one side. Bottom photographs and visual observations from a manned submersible indicate that most faults and fissures in the tectonic zones are young. Farther than 2 or 3 km from the axial volcanic zone, recent tectonic activity appears limited to a few faults that bound linear abyssal hills with total offset, suggesting relatively minor extension, so that instrumentation to measure the rate of plate separation along the rise crest will have to span both the volcanic and tectonic zones. The total width of the active plate boundary is at least 20 km, although less than 10% of the separation of the oceanic plates is accounted for by fault displacement and open fissures observed in the tectonic zones and on adjacent rise flanks. The asymmetric widths of the extensional tectonic zones result from migration of the volcanic extrusive zone over time.  相似文献   

10.
Naresh Kumar   《Marine Geology》1979,30(3-4):175-191
In the equatorial Atlantic the Ceará and Sierra Leone rises lie on opposing sides of the mid-ocean ridge and are equidistant from its axis. The northern and southern boundaries respectively, of the two rises are formed by the same fracture zones. The area of shallowest acoustic basement under the Ceará Rise coincides with the presence of a 1–2 km thick seismic layer (velocity: 3.5 km/sec) lying over the oceanic layer 2. This 3.5 km/sec layer is interpreted as a sequence of volcanics which began erupting about 80 m.y. ago when the sites of the two rises lay at the ridge axis. As the “abnormal” volcanic activity ceased, the breakup of this volcanic pile into two pieces has formed the Ceará and Sierra Leone rises.

In the South Atlantic, the northern and southern boundaries of the Rio Grande Rise are also formed by fracture zones and an approximately 1 km thick layer with a velocity of 3.5 km/sec exists also under this rise. The same fracture zones appear to bound the Walvis Ridge. Drilling data suggests that both the Rio Grande Rise and Walvis Ridge have subsided continuously since their creation. The igneous rocks recovered from both rises consist of alkalic basaltic suites typical of oceanic volcanic islands. The existing data favor a model in which “excessive” volcanism along the same segment of the Mid-Atlantic Ridge created both the South Atlantic aseismic rises between 100 and 80 m.y. ago. In both the examples, the northern and southern boundaries of the rises are formed by the same fracture zones which originally bounded the abnormally active segment of the ridge axis.  相似文献   


11.
The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu–Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu–Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene–Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene–Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth’s crust beneath the Kyushu–Palau Ridge was the major factor in the formation this ridge.  相似文献   

12.
Simrad EM12 backscatter strength data of the Southwest Indian Ridge (SWIR), between 57°E and 70°E, are used to reveal the along-axis segmentation of this super slow-spreading ridge. The backscatter properties of different geologic domains, like bathymetric highs and oblique basins within the rift valley, are characterized using 66 small test sites. We show that backscatter strength is higher on bathymetric swells, corresponding to segment centres, and lower in deep oblique basins corresponding to axial non-transform discontinuities and fracture zones. This contrast between segment centres and discontinuities is produced by both a thicker sediment cover and less frequent volcanic eruptions at segment ends. Using the model of Mitchell (1993), sediments have been estimated to be 2 to 5 m thicker in these areas than at segment centres. The distribution of the seamounts within the rift valley is controlling the long-wavelength variations of the mean backscatter strength calculated along the axis. Lower densities of seamounts and thicker sediments are producing lower and heterogeneous reflectivity levels in the deepest part of the axial valley floor between 61°45′E and 63°45′E. We propose that cooler mantle temperatures inducing construction of fewer volcanoes occur beneath this part of the ridge. The mean backscatter strength along the SWIR axis decreases dramatically toward the Rodrigues Triple Junction suggesting that volcanic production is reduced between 68°20′E and 69°20′E and that the transition from amagmatic tectonic deformation at the triple junction to new seafloor spreading occurs between 69°20′E and 70°E.  相似文献   

13.
The volumes of formed volcanoes are an important indicator of the formation intensity of the ocean floor volcanogenic morphostructure under different geodynamic conditions. The distribution of the volumes of volcanoes that formed within the oceanic lithosphere of different geological ages is considered to analyze the spatial and time dynamics of the scopes of the seamount formation. The greatest volumes of effused rocks concentrate in volcanoes of different heights on the different-age segments of the lithosphere. The total volumes of volcanogenic substance growing with increasing age and thickness of the lithosphere is caused by the increasing range of the heights of the formed volcanoes and the growing number of big seamounts. Despite that the volcanic seamounts formed within the mid-oceanic ridges, on the divergent boundaries of the lithospheric plates and in the transform faults most often, half of the volcanogenic material was emitted to the earth’s surface during the spreading of the intraplate volcanism. A leading part in the formation of the volcanogenic morphostructure of the ocean floor belongs to the formation of big seamounts with heights of 4–6 km and volumes from 1500 to 5100 km3, respectively, in the provinces with ages from 60 to 90 mln years.  相似文献   

14.
中太平洋海山群漂移史及其来源   总被引:1,自引:0,他引:1  
中太平洋海山群的海山呈簇状排列且近EW向展布于太平洋海山密集区,其四周分布着一系列NW走向的线性列岛及规模巨大的水下海山链。它位于明显属于海山链构造的夏威夷群岛和马绍尔群岛之间,处于莱恩群岛的北西向延伸方向上,与热点作用的板内火山作用关系密切。结合前人对中太平洋海山群形成和漂移的认识,从板块运动和几何学角度出发,采用Backtracking和Hot-spotting海山追踪方法对该区海山进行了追踪,发现该区海山的热点源主要位于现今法属玻利尼西亚群岛区(法属玻利尼西亚热点群),这与前人从古地磁和钻探资料出发得到的结果相接近。研究表明,中太平洋海山群是多热点成因的板内火山作用和板块构造运动的共同产物,它在130~90Ma期间起源于法属玻利尼西亚热点群,曾随着太平洋板块发生过向南和向北的运动,既有水平方向的漂移又有垂直方向上的升降,在漂移和升降过程中还受到了当时大规模多期的热点活动和断裂活动的改造作用,经过一个漫长的过程后才到达今天的位置,最后形成了现今呈簇状分布的海山群。  相似文献   

15.
A Seabeam reconnaissance of the 400 km-long fast-slipping (88 mm yr-1) Heezen transform fault zone and the 55 km-long spreading center that links it to Tharp transform defined and bathymetrically described several types of ridges built by tectonic uplift and volcanic construction. Most prominent is an asymmetric transverse ridge, at which abyssal hills adjacent to the fault zone have been raised 2–3 km above normal rise-flank depths. Topographic and petrologic evidence suggests that this uplift, which has produced a 5400 m scarp from the crest of the ridge to the floor of a 10 km-wide transform valley, is caused by rapid serpentinization of upper mantle which has been exposed to hydrothermal circulation by fault-zone fracturing of an unusually thin crust. Transverse ridges have been thought atypical of fast-slipping transforms. One class of volcanic ridge more common at these sites is the overshot ridge, formed by prolongation of spreading-center rift zones obliquely across the transform. Overshot ridges are well developed at Heezen transform, especially at the eastern end where an eruptive rift zone extending 60 km from the southern tip of the East Pacific Rise has built a transform-parallel ridge that fills the eastern transform valley. Obliteration of fault-zone structure by ridges overshooting from the spreading center intersections means that the topography of the aseismic fracture zones is not just inherited from that of the active transform fault zone. The latter has several en echelon and overlapping fault traces, linked by short oblique spreading axes that generally form pull-apart basins rather than volcanic ridges. Interpretation of the origin and pattern of the fault zone's tectonic and volcanic relief requires refinement of the plate geography and history of this part of the Pacific-Antarctic boundary, using new Seabeam and magnetic traverses to supplement and adjust the existing geophysical data base.  相似文献   

16.
The Kane Transform offsets spreading-center segments of the Mid-Atlantic Ridge by about 150 km at 24° N latitude. In terms of its first-order morphological, geological, and geophysical characteristics it appears to be typical of long-offset (>100 km), slow-slipping (2 cm yr-1) ridge-ridge transform faults. High-resolution geological observations were made from deep-towed ANGUS photographs and the manned submersible ALVIN at the ridge-transform intersections and indicate similar relationships in these two regions. These data indicate that over a distance of about 20 km as the spreading axes approach the fracture zone, the two flanks of each ridge axis behave in very different ways. Along the flanks that intersect the active transform zone the rift valley floor deepens and the surface expression of volcanism becomes increasingly narrow and eventually absent at the intersection where only a sediment-covered ‘nodal basin’ exists. The adjacent median valley walls have structural trends that are oblique to both the ridge and the transform and have as much as 4 km of relief. These are tectonically active regions that have only a thin (<200 m), highly fractured, and discontinuous carapace of volcanic rocks overlying a variably deformed and metamorphosed assemblage of gabbroic rocks. Overprinting relationships reveal a complex history of crustal extension and rapid vertical uplift. In contrast, the opposing flanks of the ridge axes, that intersect the non-transform zones appear to be similar in many respects to those examined elsewhere along slow-spreading ridges. In general, a near-axial horst and graben terrain floored by relatively young volcanics passes laterally into median valley walls with a simple block-faulted character where only volcanic rocks have been found. Along strike toward the fracture zone, the youngest volcanics form linear constructional volcanic ridges that transect the entire width of the fracture zone valley. These volcanics are continuous with the older-looking, slightly faulted volcanic terrain that floors the non-transform fracture zone valleys. These observations document the asymmetric nature of seafloor spreading near ridge-transform intersections. An important implication is that the crust and lithosphere across different portions of the fracture zone will have different geological characteristics. Across the active transform zone two lithosphere plate edges formed at ridge-transform corners are faulted against one another. In the non-transform zones a relatively younger section of lithosphere that formed at a ridge-non-transform corner is welded to an older, deformed section that initially formed at a ridge-transform corner.  相似文献   

17.
Geophysical observations demonstrate that the archipelagic apron surrounding the Marquesan hot-spot volcanoes is derived almost entirely from mass wasting processes. Seismic reflection and refraction data constrain the volume of the apron sediments to approximately 200,000 km3, with thicknesses reaching over 2 km in the deep portions of the moat near the edge of the volcanic edifice. Seismic velocities average 4 to 5 km s–1 in the sediments, and 6 km s–1 at the top of the underlying basement. Single channel seismic profiles show acoustically chaotic cores in the sediments of the apron, which are interpreted as debris flows from mass wasting events. We deduce that the apron is formed by catastrophic collapses that may involve volumes over 100 km3 tens to hundreds of times during the lifetime of a volcano. Comparison with similar data from the Hawaiian Islands yields the result that the total volume of volcanics and their derived sediments along the strike of the chains is only slightly smaller for the Marquesas, implying comparable eruption rates. However, the ratio of sediment to surface volcanic load is much larger for the latter, leading to an overfilled moat in the Marquesas and an underfilled moat at Hawaii. The much larger size of the Hawaiian islands can be explained as the combined effects of a higher thermal swell, loading a stiffer elastic plate, and proportionately less mass wasting.  相似文献   

18.
The Teahitia-Mehetia hot spot region located in the southeastern extension of the Society Islands chain, near 18° S–148° W consists of several active volcanoes. The distribution of recent volcanic activity correlates with seismic epicenters, and covers an area of more than 1000 km2. Intermittent volcanic activity has given rise to large (>1000 m high) and small (<500 m high) edifices composed of various types of flows. Several recent volcanic events have produced a suite of alkalic rocks ranging from ankaramites, through alkali basalts to trachy-phonolites. The presence of altered MORB-like tholeiites on one small seamount suggests that a different mantle source material was involved in forming some of the crust in this hot spot region.  相似文献   

19.
麦哲伦海山链主要由十多座相对独立的平顶海山组成,呈北西向展布于太平洋海山密集区。结合前人对麦哲伦海山链形成和漂移的认识,从板块运动和几何学角度出发采用backtracking和hot-spotting海山追踪方法对该区海山的起源与形成进行了研究,结果表明,麦哲伦海山链是多热点成因的板内火山和板块构造运动共同作用的产物,最初于白垩纪期间由法属玻利尼西亚热点群西侧呈北北西向排列的热点活动产生,继而受到板块运动与区内近南北向和北北东向两组断裂及其热活化等的改造作用,最后形成了现今看到的平顶海山。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号