首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Alaska, lichenometry continues to be an important technique for dating late Holocene moraines. Research completed during the 1970s through the early 1990s developed lichen dating curves for five regions in the Arctic and subarctic mountain ranges beyond altitudinal and latitudinal treelines. Although these dating curves are still in use across Alaska, little progress has been made in the past decade in updating or extending them or in developing new curves. Comparison of results from recent moraine-dating studies based on these five lichen dating curves with tree-ring based glacier histories from southern Alaska shows generally good agreement, albeit with greater scatter in the lichen-based ages. Cosmogenic surface-exposure dating of Holocene moraines has the potential to test some of the assumptions of the lichenometric technique and to facilitate the development of a new set of improved lichen dating curves for Alaska.  相似文献   

2.
Contemporary variants of the lichenometric dating technique depend upon statistical correlations between surface age and maximum lichen sizes, rather than an understanding of lichen biology. To date three terminal moraines of an Alaskan glacier, we used a new lichenometric technique in which surfaces are dated by comparing lichen population distributions with the predictions of ecological demography models with explicit rules for the biological processes that govern lichen populations: colonization, growth, and survival. These rules were inferred from size–frequency distributions of lichens on calibration surfaces, but could be taken directly from biological studies. Working with two lichen taxa, we used multinomial‐based likelihood functions to compare model predictions with measured lichen populations, using only the thalli in the largest 25% of the size distribution. Joint likelihoods that combine the results of both species estimated moraine ages of ad 1938, 1917, and 1816. Ages predicted by Rhizocarpon alone were older than those of P. pubescens. Predicted ages are geologically plausible, and reveal glacier terminus retreat after a Little Ice Age maximum advance around ad 1816, with accelerated retreat starting in the early to mid twentieth century. Importantly, our technique permits calculation of prediction and model uncertainty. We attribute large confidence intervals for some dates to the use of the biologically variable Rhizocarpon subgenus, small sample sizes, and high inferred lichen mortality. We also suggest the need for improvement in demographic models. A primary advantage of our technique is that a process‐based approach to lichenometry will allow direct incorporation of ongoing advances in lichen biology.  相似文献   

3.
The recently observed recession of glaciers on King George Island is associated with decades of climate warming in the Antarctic Peninsula region. However, with only 60 years of glaciological observations in the study area ages of the oldest moraines are still uncertain. The goal of the study was to estimate ages of lichen colonization on the oldest moraines of the Ecology and White Eagle Glaciers on King George Island and on the Principal Cone of Penguin Island volcano. The first lichenometric studies on these islands from the late 1970s used rates that had about four to five times slower Rhizocarpon growth rates. We re‐examined the sites and measured 996 thalli diameters to establish the surface ages. To estimate the age we used (1) long‐term Rhizocarpon lichen group growth rates established by authors using data from a previous lichenometric study on King George Island, and (2) previous data of lichen growth rates from other sub‐Antarctic islands. Our results suggest growth rates between 0.5 and 0.8 mm yr–1. According to these rates the ages of the oldest moraine ridges are of the Little Ice Age and were colonized at the beginning of the twentieth century. The mid‐twentieth century age of lichen colonization on the historically active Penguin Island volcano might support the date of the last eruption reported by whalers in the end of the nineteenth and the beginning of the twentieth century.  相似文献   

4.
A New Lichenometric Dating Curve For Southeast Iceland.   总被引:2,自引:0,他引:2  
This paper presents a new lichenometric dating curve for southeast Iceland. The temporal framework for the curve is based on reliably dated surfaces covering the last 270 years, making it the best constrained study of this nature conducted in Iceland. The growth of lichen species within Rhizocarpon Section Rhizocarpon is non-linear over time, with larger (older) thalli apparently growing more slowly. The linear 'growth' curves derived previously by former authors working in Iceland represent only part of a curve which has an overall exponential form. Reasons for the non-linearity of the new dating curve are probably physiological, although climatic change over the last three centuries cannot be ruled out. Use of linear 'growth' curves in Iceland is problematic over time-spans of more than c . 80 years. Pre-20th century moraines dated using a constant, linear relationship between lichen size and age are probably older than previously believed. Those moraines lichenometrically 'dated' to the second half of the 19th century in Iceland may actually pre-date this time by several decades (30–100 years), thus throwing doubt on the exact timing of maximum glaciation during the 'Little Ice Age'.  相似文献   

5.
Matthews, J. A. Families of lichenometric dating curves from the Storbreen gletschervorfeld, Jotunheimen, Norway. Norsk geogr. Tidsskr. 28, 215–235.

Lichenometric dating, based on Rhizocarpon geographicum, is applied to the establishment of an areal chronology for deglaciation of the Storbreen gletschervorfeld, central southern Norway. A simple approach permitting many lichenometry curves to be constructed in the same area is adopted, each curve differing in the number of sites per surface or the number of lichens per site employed in its construction. Nine lichenometry curves of exponential form are constructed from largest lichens on four past glacier margins of known age, and the age of four margins of unknown age predicted. Median predicted ages are 1811, 1833, 1854 and 1871 and all predictions fall within an overall range of 17 years, 10 years, 10 years and 7 years respectively. The reproducibility of the predicted ages, together with independent supporting evidence, suggests that families of lichenometry curves allow considerable confidence to be placed in the lichenometric dates and are a promising addition to lichenometric dating technique in general.  相似文献   

6.
Relict marginal moraines are commonly used landforms in palaeoglaciological reconstructions. In the Swedish mountains, a large number of relict marginal moraines of variable morphology and origin occur. In this study, we have mapped 234 relict marginal moraines distributed all along the Swedish mountains and classified them into four morphological classes: cirque‐and‐valley moraines, valley‐side moraines, complex moraines and cross‐valley moraines. Of these, 46 moraines have been reclassified or are here mapped for the first time. A vast majority of the relict moraines are shown to have formed during deglaciation of an ice‐sheet, rather than by local mountain glaciers as suggested in earlier studies. The relict marginal moraines generally indicate that deglaciation throughout the mountains was characterised by a retreating ice‐sheet, successively damming glacial lakes, and downwasting around mountains. The general lack of moraines indicating valley and cirque glaciers during deglaciation suggests that climatic conditions were unfavourable for local glaciation during the last phase of the Weichselian. This interpretation contrasts with some earlier studies that have reconstructed the formation of local glaciers in the higher parts of the Swedish mountains during deglaciation.  相似文献   

7.
Considerable Quaternary environmental reconstruction for the high Drakensberg is based on geomorphological and sedimentological work undertaken along the northern aspects of the Sekhokong mountain range of eastern Lesotho. Given that no previous investigations have focused on the southern aspects, this paper documents the observed geomorphology and provides a more complete palaeo-environmental picture for this range. Data on the morphology, sedimentology and micromorphology for two linear debris ridges are presented. It is demonstrated that the two ridges are most likely moraines originating from a small niche glacier. The combined use of macro- and micro-scale sedimentology is proven to be an essential tool in ascribing a glacial process origin for the landforms, given the complex depositional history they have undergone. AMS ages obtained from the deposits (14 700 cal. yrs bp and 19 350 cal. yrs bp ) places these in the time-scale of the Last Glacial Maximum. The study demonstrates rather contrasting aspect-controlled palaegeomorphological environments along the Sekhokong range, which is also reflected in the dissimilar contemporary biophysical micro-environments. It is suggested that the south-facing slopes were dominated by glacial processes during the Last Glacial Maximum (LGM), as is evident from the moraines, while the proposition for previously described north-facing glacial cirques is rejected based on the absence of erosional/depositional evidence and greater insolation received on these warmerequator-facing slopes. Rather, we propose that the observed north-facing hollows are a product of a multitude of geomorphic processes spanning several tens to hundreds of thousands of years.  相似文献   

8.
This paper highlights the importance for dating accuracy of initial studies of delay before colonization for both trees and lichens and tree age below core height, particularly in recently deglaciated terrain where colonization and growth rates may vary widely due to differences in micro-environment. It demonstrates, for the first time, how dendrochronology and lichenometry can be used together in an assessment of each other's colonization and growth rates, and then cross-correlated to provide a supportive dating framework. The method described for estimating tree age below core height is also new. The results show that on the east side of the North Patagonian Icefield in the Arco and Colonia valleys, Nothofagus age below a core height of 112 cm can vary from 5 to 41 years and delay before colonization may range from a maximum of 22 years near water to a minimum of 93 years on the exposed flanks of the Arenales and Colonia Glaciers. Tree age plus colonization delay supplied a maximum growth rate of 4.7 mm/year for the lichen Placopsis perrugosa and lichen colonization is estimated to take from 2.5 to approximately 13 years. A minimum lichenometric date of 1883 was estimated for an ice-formed trimline at the junction of the Arenales and Colonia glaciers and a maximum dendrochronological date of 1881 for a water-formed trimline in the Arco valley. Tree and lichen ages around the valley suggest that a glacial outburst drained the 1881 high level lake releasing approximately 265 million cubic metres of water. Repeated flooding, with a minimum of 38 high lake levels, is suggested by horizontal sediment lines on the Arco valley walls and moraine flanks. Dating confirmed diminishing flood levels with a last minor flood in 1963. The wider significance of the work is that it should produce more accurate dating of recent glacier fluctuations around the North Patagonia Icefield, an area where dated reference surfaces are extremely scarce.  相似文献   

9.
A unique 25-year lichen growth monitoring programme involving 2,795 individuals of the Rhizocarpon subgenus at 47 sites on 18 glacier forelands in the Jotunheimen–Jostedalsbreen regions of southern Norway is reported. The data are used to address fundamental questions relating to direct lichenometry: spatial and temporal variability in lichen growth rates, climatic effects on lichen growth rates, lichen growth models, and implications for lichenometric dating. Mean annual (diametral) growth rate ranged from 0.43 to 0.87 mm yr−1 between sites, which is attributed primarily to local habitat differences. Interannual variability in annual mean growth rate exceeded 1.0 mm yr−1 at some sites. Annual mean growth rates for all sites combined varied from 0.52 to 0.81 mm yr−1 and was positively correlated with annual mean temperature and winter mean temperature (both r = 0.64, p <0.005) but not with summer seasonal temperature: positive correlations with annual and winter precipitation were less strong and the correlation with summer precipitation was marginally significant (r = 0.41 p <0.10). Growth-rate models characterized by annual growth rates that remain approximately constant or increase with lichen size up to at least 120 mm tended to fit the data more closely than a parabolic model. This is tentatively attributed to a long 'linear/mature' phase in the growth cycle. Comparison with growth rates inferred from indirect lichenometry suggest that such high measured growth rates could not have been maintained over the last few centuries by the largest lichens used in southern Norway for lichenometric dating. Several hypotheses, such as the effects of competition and climate change, which might explain this paradox, are discussed.  相似文献   

10.
Variation in lichen growth rates poses a significant challenge for the application of direct lichenometry, i.e. the construction of lichen dating curves from direct measurement of growth rates. To examine the magnitude and possible causes of within‐site growth variation, radial growth rates (RaGRs) of thalli of the fast‐growing foliose lichen Melanelia fuliginosa ssp. fuliginosa (Fr. ex Duby) Essl. and the slow‐growing crustose lichen Rhizocarpon geographicum (L.) DC. were studied on two S‐facing slate rock surfaces in north Wales, UK using digital photography and an image analysis system (Image‐J). RaGRs of M. fuliginosa ssp. fuliginosa varied from 0.44 to 2.63 mm yr–1 and R. geographicum from 0.10 to 1.50 mm yr–1.5. Analysis of variance suggested no significant variation in RaGRs with vertical or horizontal location on the rock, thallus diameter, aspect, slope, light intensity, rock porosity, rock surface texture, distance to nearest lichen neighbour or distance to vegetation on the rock surface. The frequency distribution of RaGR did not deviate from a normal distribution. It was concluded that despite considerable growth rate variation in both species studied, growth curves could be constructed with sufficient precision to be useful for direct lichenometry.  相似文献   

11.
Lichenometric measurements using Rhizocarpon ssp. were carried out on 20 talus slopes in the cirques of the Finstertal valley (Austria) at an elevation of 2300–3000 m a.s.l. The aim was to assess activity patterns on selected slopes and between the slopes of the study area, to find evidence of rockfall pulses in the last centuries and to calculate rockwall retreat rates. A calibration curve was derived from five sites of known age and adapted to the prevailing size of talus boulders. We measured the five largest lichens on more than 300 boulders and the percentage coverage of Rhizocarpon‐free clasts on more than 1000 test fields. Most of the investigated talus cones are characterized by moderate rockfall supply, with the apex being more active than the talus foot and moderate redistribution by avalanche and debris flows. Considerably enhanced activity was found under rockwalls influenced by permafrost, particularly on the north faces at an elevation of >2600 m a.s.l. At currently moderately active sites, boulder falls seem to have been slightly more frequent in the late nineteenth and first half of the twentieth century. In positions where permafrost is expected in the rockwalls, a weak maximum in the late nineteenth century and highly active present‐day conditions were found, the latter being assigned to current permafrost melt. Rockwall retreat rates derived from lichen coverage are between 400 and 1500 mm/ka which is in good concurrence with talus volume assessments, but higher than the rates derived from direct rockfall measurements. The rates derived from lichen coverage have to be taken with caution as the effects of debris redistribution are hard to quantify.  相似文献   

12.
The retreat record of the Stabre Glacier into the Norra Storfjället mountains, after separation from the massive Tärnaån Glacier at some undetermined time in the Atlantic Chron, is documented by recessional moraines in the foreland. While poorly constrained by radiometric dating, the age of the middle group of moraines averages out to less than 4000 cal 14C yr BP, the older moraine group probably of Late Atlantic age, with the youngest deposits of Little Ice Age (LIA). Soils/paleosols range from Entisols (youngest) and Inceptisols (middle group) to mature Spodosols (outer group), existing either as single‐story profiles or within pedostratigraphic columns, buried pedons either surfaced with weathered glacial or mass wasted deposits. Some profiles exhibit convoluted properties which could place them in the Cryosolic order. The physico‐mineral‐chemical properties of soils/paleosols in recessional deposits across this sequence provide weathering indices over the mid to Late Holocene in the Swedish sub‐Arctic climate. It is likely the middle group of deposits represents stillstand of the retreating glacier offset by climatic deterioration with the onset of Early Neoglacial climate which altered the glacial mass balance, at least until termination of the LIA. Correlation to other alpine areas in the middle and tropical latitudes with similar records is attempted and discussed. While the Stabre Glacier disappeared after the LIA, the nearby Tärna Glacier remains extant on the land surface, a presumed result of slight elevation differences between the two cirques which affects storm tracks and resultant variations in glacial mass balances.  相似文献   

13.
Ian S. Evans   《Geomorphology》2006,80(3-4):245-266
Headward and downward erosion near glacier sources, at rates exceeding fluvial erosion, is important in recent discussions of orogen development and the limits to relief. This relates to a long history of debate on how the form of glacial cirques develops, which can be advanced by relating shape to size in large data sets. For 260 cirques in Wales, this confirms different rates of enlargement in the three dimensions: faster in length than in width, and slower in vertical dimension whether expressed as overall height range, axial height range or wall height. Maximum gradient, plan closure and number of cols increase with overall size. This allometric development applies over different cirque types, regions and rock types. Headwall retreat, often by collapse following glacial erosion at the base, is faster than downward erosion. Welsh cirques form a scale-specific population and, as in other regions, size variables follow Gaussian distributions on a logarithmic scale. As in England, width commonly exceeds length. Vertical dimensions correlate with length more than with width. Cirque form varies with geology, but also with relief as both vary between mountain groups. The main contrast is between larger, better-developed cirques and higher relief on volcanic rocks in the north-west, and smaller, less-developed cirques and lower relief on sedimentary rocks in the south.  相似文献   

14.
Lichenometric dating (lichenometry) involves the use of lichen measurements to estimate the age of exposure of various substrata. Because of low radial growth rates and considerable longevity, species of the crustose lichen genus Rhizocarpon have been the most useful in lichenometry. The primary assumption of lichenometry is that colonization, growth and mortality of Rhizocarpon are similar on surfaces of known and unknown age so that the largest thalli present on the respective faces are of comparable age. This review describes the current state of knowledge regarding the biology of Rhizocarpon and considers two main questions: (1) to what extent does existing knowledge support this assumption; and (2) what further biological observations would be useful both to test its validity and to improve the accuracy of lichenometric dates? A review of the Rhizocarpon literature identified gaps in knowledge regarding early development, the growth rate/size curve, mortality, regeneration, competitive effects, colonization, and succession on rock surfaces. The data suggest that these processes may not be comparable on different rock surfaces, especially in regions where growth rates and thallus turnover are high. In addition, several variables could differ between rock surfaces and influence maximum thallus size, including rate and timing of colonization, radial growth rates, environmental differences, thallus fusion, allelopathy, thallus mortality, colonization and competition. Comparative measurements of these variables on surfaces of known and unknown age may help to determine whether the basic assumptions of lichenometry are valid. Ultimately, it may be possible to take these differences into account when interpreting estimated dates.  相似文献   

15.
ABSTRACT. We report the results of glacial geomorphological mapping of the Strait of Magellan and Bahía Inútil, southernmost South America. Our aims are to determine the pattern and process of deglaciation during the last glacial–interglacial transition, and to provide a firm geomorphological basis for the interpretation of radiocarbon, cosmogenic isotope and amino acid dates for the timing of deglaciation. The area is important because it lies in a southerly location, providing a link between Antarctica and southern mid‐latitudes, and also lies in the zone of the southern westerlies which are a key element in regional climate change. Our mapping shows that it is possible to make a clear weathering and morphological distinction between last glaciation and older landforms and sediments. Within the last glacial deposits we have identified a number of former glacier limits. The key to delineating many of these limits is continuous meltwater channels that run for several kilometres along the outer edge of discontinuous moraine belts. There are four distinct belts of moraines within the deposits of the last glaciation in the central part of the Strait of Magellan. There are two closely spaced major limits (Band C) at the north end of the Strait that reach Punta Arenas airport on the west side, and Península Juan Mazia on the east side. A third limit (D) terminates south of Punta Arenas on the west side, and passes close to Porvenir on the east. In Bahía Inútil there is a more complex pattern with a prominent outer limit (C) and a series of four equally prominent limits (D1 to D4) on both sides of the bay. South of these limits, there is a fourth group of moraine limits (E) on both coasts of the northern end of Isla Dawson, reflecting the last fluctuations of the Magellan glacier before final deglaciation of the southern end of the Strait. There are a number of drumlins within the outer moraine limits. The drumlins are draped by small, younger moraines showing that they have been overridden by subsequent advance(s). The coastlines of the study area are cut by a number of shorelines which record the presence of ice‐dammed lakes in the Strait of Magellan and Bahía Inútil during the later stages of deglaciation. We conclude that there are four main readvances or stillstands that marked the transition from the Last Glacial Maximum to the onset of the Holocene.  相似文献   

16.
Moraine morphology is a valuable indicator of climate change. The glacial deposits of ten valleys were selected in the Parlung Zangbo River Basin, southeastern Tibetan Plateau, to study the glacial characteristics of the Last Glaciation and the climate change processes as revealed by these moraines. Investigation revealed that a huge moraine ridge was formed by ancient glacier in the Marine Isotope Stage 2 (MIS2), and this main moraine ridge indicates the longest sustained and stable climate. There are at least two smaller moraine ridges that are external extensions of or located at the bottom of the main moraine ridge, indicating that the climate of the glacial stage before MIS2 was severer but the duration was relatively shorter. This distribution may reflect the climate of MIS4 or MIS3b. The glacial valleys show multi-channel, small-scale moraine ridges between the contemporary glacial tongue and the main moraine ridge. Some of these multi-channel mo- raine ridges might be recessional moraine, indicating the significant glacial advance during the Younger Dryas or the Heinrich event. The moraine ridges of the Neoglaciation and the Little Ice Age are near the ends of the contemporary glaciers. Using high-precision system dating, we can fairly well reconstruct the pattern of climate change by studying the shape, extent, and scale characteristics of glacial deposits in southeastern Tibet. This is valuable research to understand the relationship between regional and global climate change.  相似文献   

17.
The endolithic lichen Lecidea auriculata is known to enhance rock surface weathering on the Little Ice Age moraines of the glacier Storbreen in Jotunheimen, central southern Norway. This study demonstrates the reduction in Schmidt hammer Rvalues that followed the rapid colonization by this lichen of pyroxene‐granulite boulders on terrain deglaciated over the last 88 years. In the absence of this lichen, the characteristic mean R‐value of boulder surfaces is 61.0 ± 0.3; where this lichen is present, R‐values are lower by at least 20 units on surfaces exposed for 30–40 years. A similar reduction in rock hardness on rock surfaces without a lichen cover requires about 10 ka. The rapid initial weakening of the rock surfaces is indicative of rates of biological weathering by endolithic lichens that may be two orders of magnitude (200–300 times) faster than rates of physico‐chemical weathering alone. If not avoided, the effects of this type of lichen are likely to negate the effectiveness of the Schmidt hammer and other methods for exposure‐age dating, including cosmogenic‐nuclide dating, in severe alpine and polar periglacial environments. The results also suggest a new method for dating rock surfaces exposed for <50 years.  相似文献   

18.
This article examines how snow plays a role in current erosive processes in a high mountain area (1800—2400 m a.s.l.) known as Peñalara, located in Spain's Central Range (40°50' N; 3°58' W). The hypothesis maintains that snow becomes an important erosive factor when it accumulates over sedimentary or weathered materials, therefore geomorphological heritage is a key factor in nival erosion. To test this hypothesis, the authors identified the landforms in the study area and determined their relative ages by weathering and lichenometry ( Rizocarpon geographicum ag. ), differentiating between preglacial, glacial (Recent Pleistocene) and postglacial (Holocene) forms. The information was used to plot a reticulate pattern of observation sites for the study area. Snow depth and the movement of selected blocks at each site were recorded from October 1991 to June 1995. The relationship between late-lying snowpatches, geomorphological heritage and current erosive processes was determined. Between 1800 and 2000 m a.s.l., there is an indirect relationship between snowpatches and predominant processes (stream incision and gelifluction) on terminal moraines. Between 2000 and 2200 m, direct action is present where there are late-laying snowpatches on lateral moraines and some glacial steps. Between 2200 and 2400 m, gelifraction and gravity processes are also in direct relation to snowpatches.  相似文献   

19.
ABSTRACT. We examine the deglaciation of the eastern flank of the North Patagonian Icefield between latitudes 46° and 48°S in an attempt to link the chronology of the Last Glacial Maximum moraines and those close to present-day outlet glaciers. The main features of the area are three shorelines created by ice-dammed lakes that drained eastwards to the Atlantic. On the basis of 16 14C and exposure age dates we conclude that there was rapid glacier retreat at 15–16 ka (calendar ages) that saw glaciers retreat 90–125 km to within 20 km of their present margins. There followed a phase of glacier and lake stability at 13.6–12.8 ka. The final stage of deglaciation occurred at c. 12.8 ka, a time when the lake suddenly drained, discharging nearly 2000 km3 to the Pacific Ocean. This latter event marks the final separation of the North and South Patagonian Icefields. The timing of the onset of deglaciation and its stepped nature are similar to elsewhere in Patagonia and the northern hemisphere. However, the phase of lake stability, coinciding with the Antarctic Cold Reversal and ending during the Younger Dryas interval, mirrors climatic trends as recorded in Antarctic ice cores. The implication is that late-glacial changes in southern Patagonia were under the influence of the Antarctic realm and out of phase with those of the northern hemisphere.  相似文献   

20.
Jansson and Glasser (Jansson, K.N., Glasser, N.F., 2008. Modification of peripheral mountain ranges by former ice sheets: the Brecon Beacons, southern UK. Geomorphology 97, 178–189.) have recently provided unconventional interpretations of selected glacial erosional and depositional landforms in the Brecon Beacons, UK, based on remotely sensed imagery. These new interpretations contradict well-established and reliable evidence for the origins and ages of certain glacial landforms of this upland area and elsewhere. They suggest that during a post-Last Glacial Maximum (LGM) ice-sheet event ice flowed up supposed, essentially “fluvial” valleys producing “glacial lineations” and depositing marginal moraines at the valley heads and on cirque floors. We argue that their interpretations of some key landforms are incorrect and that they have ignored much of the previous dating and field geomorphological evidence. Sedimentary and morphological evidence (e.g., lack of erratic content; convex planform with respect to the headwall; relatively large height range of moraines; and close association with headwall extent, height, and steepness) all indicate that higher level cirque-floor and valley-head moraines in the Brecon Beacons (> c. 400 m) were formed by cirque glaciers. Available dating evidence indicates a Younger Dryas age. We demonstrate that the supposed “fluvial” valleys, comprising trough heads with steep headwalls, have more nearly parabolic than V-shaped cross profiles indicating substantial glacial modification. Field evidence shows that proposed key exemplar post-LGM glacial lineations are in fact debris flow deposits. We conclude that whilst the adoption of a macroscale approach can shed new light on large-scale, ice-sheet movements, this approach should not be undertaken without consideration of the associated field evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号