首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia   总被引:1,自引:0,他引:1  
Summary The magnetic anisotropy of foliated rocks of several types has been measured by the torque-meter method, and shows that the alignment of long axes of magnetic grains in rocks normally follows the pattern of foliation evident in field observations. In a sharp fold in a lit-par-lit formation the magnetic anisotropy indicated an otherwise undetected lineation independent of the bedding and superimposed upon the foliation determined by the layering. In two adamellites, each with two alignment patterns separated by an angle of 30° the magnetic data are shown to be consistent with two foliations but not with one foliation plus a lineation. Magnetic anisotropy data can be ambiguous for rocks in which two or more grain alignment processes have operated, but combined with other observations magnetic measurements can provide a valuable new tool in the study of rock fabrics.  相似文献   

2.
Early in the crystallization of many tholeiitic basaltic magmas, plagioclase crystals cluster together into a 3-D cellular network, which forms a passive marker capable of recording the deformation that accompanies compaction of crystal mush. Although irregular in detail, the overall network is initially isotropic and only becomes anisotropic as a result of compaction. We have developed four independent methods to quantify the 3-D textural anisotropy of a basalt sample using at least three non-parallel thin sections. Three of the methods are based on the geometrical properties of digitized maps of the feldspar chain networks. One approach focuses on the angular variation of the mean intercept along parallel traverses through the network, another examines the orientation and size distribution of individual links, and the third considers the average shape of interstitial regions outlined by the plagioclase network. The fourth technique approximates the textural anisotropy by the variogram anisotropy of a scanned thin section image. We illustrate the methods using five oriented non-parallel thin sections from a sample of diabase 146 m above the base of the 300-m-thick Palisades sill of New Jersey. Compaction of crystal mush in this sill has previously been postulated on the basis of chemical evidence. The 3-D feldspar network anisotropy based on the first three approaches suggests nearly uniaxial compaction on the order of 8.6% in a direction within 3° of the intersection of the columnar joints at the sample site. A rigorous statistical test based on the statistics of elliptically contoured non-normal multivariate distributions documents that the link-vector distribution in vertical sections are statistically anisotropic at a 95% confidence level and that the overall compaction is 7.9±2.6%. The orientation and magnitude of the 3-D textural anisotropy determined by the image variogram of the non-opaque minerals is almost identical to the mean feldspar network anisotropy; 8.5% compaction in a direction 10° from the columnar joint intersections. The major silicate textural and feldspar network anisotropy axes both plunge almost directly down dip of the sill. On the other hand, the major axis of the variogram anisotropy of the opaque minerals is approximately parallel to the strike of the sill and to the major axis of the anisotropic magnetic susceptibility. The anisotropy of the silicate mineral fabric may reflect down-dip flow of a deformable melt-rich crystal mush, whereas the AMS and opaque textural anisotropy reflects the influence of gravitational stresses during the growth of magnetite in the final stages of melt crystallization. Evidently the Palisades sill was not originally horizontal but was intruded in an orientation close to its present attitude.  相似文献   

3.
The existence of cracks in a rock mass causes the reduction of seismic wave velocity and the anisotropy of seismic wave velocity, which is characteristic for rocks with preferred orientation of cracks. The present study concerns sedimentary rocks (sandstone, limestone) and igneous rocks (basalt, granite). Studying the relationship between seismic anisotropy and cracks anisotropy in rocks I was only interested in fractures perpendicular to the layering. This allowed me to calculate two-dimensional crack tensors and velocity tensors in planes parallel to the layer surface. An application of tensor calculus enables to take into account both geometry and orientation of cracks. The obtained results confirm that the directions of major axes of second-rank velocity tensor prove the relationship consistent with predictions of theoretical models. Owing to these dependences, seismic methods can be used to study the cracks anisotropy in rocks inaccessible for direct observations.  相似文献   

4.
In the interpretation of magnetic anomalies and in paleomagnetism, the anisotropy of magnetic susceptibility is commonly neglected. Nevertheless, this property has basic significance, because, owing to susceptibility anisotropy, the directions of the vectors of induced and remanent magnetization are deflected from the direction of the Earth's magnetic field. Almost all rock types investigated possess higher or lower degree of the susceptibility anisotropy. Effusive and sedimentary rocks have the lowest degree of anisotropy. For the latter, the “masking effect” of the paramagnetic mineral components has some influence on the anisotropy degree due to the low mean susceptibility of sedimentary rocks. Metamorphic and plutonic rocks usually exhibit a considerable degree of anisotropy. The highest degree of anisotropy has been found in the rocks containing ferromagnetic minerals with mimetic fabric. The dependence of the degree of the susceptibility anisotropy on the degree of metamorphism proved to be very complicated; of the rock sequence from slates to gneisses, the transient rocks (roofing slates and mica-schist-gneisses) showed the highest degree of anisotropy. This result can be used in geology for reliable determination of these rock types.  相似文献   

5.
To further evaluate the potential of magnetic anisotropy techniques for determining the origin of the natural remanent magnetization (NRM) in sedimentary rocks, several new remanence anisotropy measurement techniques were explored. An accurate separation of the remanence anisotropy of magnetite and hematite in the same sedimentary rock sample was the goal.In one technique, Tertiary red and grey sedimentary rock samples from the Orera section (Spain) were exposed to 13 T fields in 9 different orientations. In each orientation, alternating field (af) demagnetization was used to separate the magnetite and hematite contributions of the high field isothermal remanent magnetization (IRM). Tensor subtraction was used to calculate the magnetite and hematite anisotropy tensors. Geologically interpretable fabrics did not result, probably because of the presence of goethite which contributes to the IRM. In the second technique, also applied to samples from Orera, an anisotropy of anhysteretic remanence (AAR) was applied in af fields up to 240 mT to directly measure the fabric of the magnetite in the sample. IRMs applied in 2 T fields followed by 240 mT af demagnetization, and thermal demagnetization at 90°C to remove the goethite contribution, were used to independently measure the hematite fabric in the same samples. This approach gave geologically interpretable results with minimum principal axes perpendicular to bedding, suggesting that the hematite and magnetite grains in the Orera samples both carry a depositional remanent magnetization (DRM). In a third experiment, IRMs applied in 13 T fields were used to measure the magnetic fabric of samples from the Dome de Barrot area (France). These samples had been demonstrated to have hematite as their only magnetic mineral. The fabrics that resulted were geologically interpretable, showing a strong NW-SE horizontal lineation consistent with AMS fabrics measured in the same samples. These fabrics suggest that the rock's remanence may have been affected by strain and could have originated as a DRM or a CRM.Our work shows that it is important to account for the presence of goethite when using high field IRMs to measure the remanence anisotropy of hematite-bearing sedimentary rocks. It also shows that very high magnetic fields (>10 T) may be used to measure the magnetic fabric of sedimentary rocks with highly coercive magnetic minerals without complete demagnetization between each position, provided that the field magnetically saturates the rock.  相似文献   

6.
Many sheets of alkalic dolerites found in the Cretaceous formations in the Nemuro peninsula can be divided into the following two types. Differentiated sheets, more than 100 m in thickness. Gravitational differentiationin situ is distinguished, producing rock types such as picritic dolerite, dolerite, monzonite and syenite. Undifferentiated sheets, less than 30 m in thickness. Differentiationin situ is not observed, and dolerite is the only rock type. Distinguished pillow structures are commonly observed. Petrochemistry of these rocks indicates that K.O contents are high, especially in the middle and later stages, predominating over Na2O and that MgO content is rather high as compared with iron oxides. These features place the suite in a characteristic position clearly distinguished from the other alkalic rock suites in Japan. Fourteen trace elements were determined spectroscopically and their distribution during the differentiation is discussed. The parent magma of the Nemuro rocks is estimated to be shonkinitic in composition, rather rich in potash. Its possible genesis by the partial melting of the phlogopite-peridotite in the upper mantle under the continent is discussed.  相似文献   

7.
There are some puzzling features of the stress-dependence of magnetic susceptibility in rocks, although the behaviour in high fields appears to be well understood. As a test for the factors that cause low-field behaviour to differ from current theories we have made both high- and low-field torquemeter measurements of the stress-induced magnetic anisotropies of a number of rocks. Ratios of low- and high-field torques differing from expectation by factors up to 4 or so have been found in some rocks, although others conform well to expectation. A comprehensive study of magnetic and microscopic properties was undertaken to seek the cause(s) of the discrepancies. Stress sensitivity of susceptibility becomes particularly high in titanomagnetite with composition parameter x ≈ 0.6, at which the intrinsic anisotropy vanishes, and some other high values appear to be related to the presence of sulphide. It is concluded that current theory is satisfactory if but only if the magnetic minerals in a rock are simple titanomagnetites with x ? 0.4.  相似文献   

8.
Numerous green polished stone axes have been excavated from the Sannai-Maruyama site, one of Japan's largest archeological sites in the Jomon period (5.9–4.2 cal kyr BP). The axes are composed of weakly metamorphosed fine-grained volcaniclastic rock having a peculiar texture that includes numerous acicular actinolites growing in random directions within a quartz and albite matrix. Cobbles of Aotora stone found along the Nukabira River, Biratori town, southern Hokkaido, are the most likely raw material for these stone axes. Aotora stones have alternate bands of a soft dark-green picritic layer and a hard SiO2-rich pale-green layer. The pale-green layer has a texture similar to the stone axes. Basaltic and picritic volcanic rocks of the Sorachi-Yezo Belt occupy the area along the Shidoni River, a tributary of the Nukabira River. Volcaniclastic rocks similar in texture, mineralogy, and bulk rock compositions to the Aotora stone are exposed in the area. These rocks underwent metamorphism under the actinolite-pumpellyite facies conditions. Their protolith is submarine hyaloclastic rocks that are intercalated with laminated picrite detritus. The stone axes, pale-green layers of Aotora stone, and those of the volcaniclastic rocks of the Shidoni River area all have high SiO2 (~ 55 wt%), Cr (~ 840 μg/g), and Ni (~ 370 μg/g). The rare earth element patterns with abundant light rare earth elements and depleted heavy rare earth elements of stone axes were also consistent with the pale-green layers of the outcrop. These pale-green layers, interleaved with dark-green layers of picritic detritus, were the likely source rock of the stone axes. The high SiO2 content in the pale-green layer caused the crystallization of quartz and albite in the matrix, which resulted in high-quality raw material for making stone axes.  相似文献   

9.
岩石的磁化率张量的统计处理,传统的处理方法是用费歇尔法,但对于火成岩等磁化率各向异性较弱的岩石,这种方法存在着局限性。本文介绍了“自益再采样法”,并与传统的方法进行了对比,指出,自益再采样法不仅有助于消除测量过程中的误差,而且它是建立在数据的实际分布之上的,能更准确地反映磁化率轴的实际分布方位以及方位的分散程度。;  相似文献   

10.
Summary An induced anisotropy of magnetic susceptibility results from the domain alignment which is produced by treating stationary specimens in a strong alternating field. Appreciable domain re-orientation occurs in fields as low as 50 oersteds and the effect must therefore normally be an important part of the process of alternating field demagnetization. Induced anisotropy has been measured in a number of igneous rocks with a range of palaeomagnetic stabilities and in magnetite powders of controlled grain sizes, dispersed in plaster or kaolin specimens which were mechanically deformed to produce instrinsic magnetic anisotropy by grain alignment. The saturation magnitude of the induced anisotropy is not a function of grain size but the saturating field required increases with decreasing grain size. In the larger grains, induced anisotropy is a function of grain orientation.  相似文献   

11.
浙东南碰撞造山带的岩石磁组构及其构造意义   总被引:3,自引:1,他引:3       下载免费PDF全文
对浙江东南碰撞造山带龙泉等地的岩石磁组构测试,显示了普遍具优势取向的最小磁化率主轴方向,由此所揭示的NW-SE方向的主压应力与侏罗纪以后该地区的推覆构造所揭示的主压应力方向一致.结合已发表的邻近地区的古地磁、同位素年龄等资料,认为该地区应属中生代碰撞造山带,龙泉群的变质年龄也与此相当.  相似文献   

12.
The present study aims to apply the AMS method (Anisotropy of Magnetic Susceptibility) at a regional scale to track the fluid circulation direction that has produced an iron metasomatism within pre-existing dolomite host rock. The Urgonian formations hosting the Zn–Pb mineralizations in La Florida (Cantabria, northern Spain) have been taken as target for this purpose. Sampling was carried out, in addition to ferroan dolomite host rock enclosing the Zn–Pb mineralizations, in dolomite host rock and limestone to make the comparison possible between magnetic signals from mineralized rocks, where fluid circulation occurred, and their surrounding formations. AMS study was coupled with petrofabric analysis carried out by texture goniometry, Scanning Electron Microscopy (SEM) observations and also Shape Preferred Orientation (SPO) statistics. SEM observations of ferroan dolomite host rock illustrate both bright and dark grey ribbons corresponding respectively to Fe enriched and pure dolomites. SPO statistics applied on four images from ferroan dolomite host rock give a well-defined orientation of ribbons related to the intermediate axis of magnetic susceptibility K2. For AMS data, two magnetic fabrics are observed. The first one is observed in ferroan dolomite host rock and characterized by a prolate ellipsoid of magnetic susceptibility with a vertical magnetic lineation. The magnetic susceptibility carrier is Fe-rich dolomite. These features are probably acquired during metasomatic fluid circulations. In Fe-rich dolomite host rock, ?c? axes are vertical. As a rule, (0001) planes (i.e. planes perpendicular to ?c? axes) are isotropic with respect to crystallographic properties. So, the magnetic anisotropy measured in this plane should reflect crystallographic modification due to fluid circulation. This is confirmed by the texture observed using the SEM. Consequently, AMS results show a dominant NE–SW elongation interpreted as the global circulation direction and a NW–SE secondary elongation that we have considered as sinuosities of the fluid trajectory. The second type of magnetic fabric is essentially observed in the limestone and characterized by an oblate form of the ellipsoid of magnetic susceptibility, a horizontal magnetic foliation and mixed magnetic susceptibility carriers. It is interpreted as a sedimentary fabric.  相似文献   

13.
When re-heated to temperatures below the Curie temperature and subsequently cooled in a constant magnetic field (H T), rock samples which contain magnetic minerals can acquire an induced magnetic anisotropy (IMA). As the result of acquiring the IMA, a constriction develops in the hysteresis loop of the magnetization of these rocks at the values of the magnetizing field close or equal to the HT. Thus the IMA is capable of retaining the information on the palaeointensity of the geomagnetic field, i.e., if IMA was created in a rock in the geomagnetic field in a past geological epoch, it preserves the information on the intensity of that field. Investigations have shown, that when IMA is created in a rock under external stress, the stress has an impact on the magnetic memory. Here we also deal with the issue of how stress affects the magnetic memory of IMA. A mathematical model for the effect of stress on magnetic memory phenomena related to induced magnetic anisotropy in rocks containing multidomain magnetite and titanomagnetite grains is proposed herewith. The effect of temperature on the magnetic memory of rocks is discussed also.  相似文献   

14.
The magnetic fabric of rocks and sediments is most commonly characterized in terms of the anisotropy of low-field magnetic susceptibility (AMS). However, alternative methods based on remanent magnetization (measured in the absence of a magnetic field) rather than induced magnetization (measured in the applied field) have distinct advantages for certain geological applications. This is particularly true for; (1) adjunct studies in paleomagnetism, in order to assess the fidelity with which a natural remanence records the paleofield orientation; (2) studies of weakly magnetic or weakly deformed rocks, for which susceptibility anisotropy is very difficult to measure precisely; and (3) quantitative applications such as strain estimation. The fundamental differences between susceptibility and remanence (and their respective anisotropies) are due to several factors: (1) susceptibility arises from all of the minerals present in a sample, whereas remanence is carried exclusively by a relatively small number of ferromagnetic minerals; (2) ferromagnetic minerals are generally more anisotropic than para- and diamagnetic minerals; (3) for ferromagnetic minerals, remanence is inevitably more anisotropic than susceptibility; and (4) a number of common minerals, including single-domain magnetites, possess an inverse anisotropy of susceptibility, i.e., they tend to have minimum susceptibility parallel to the long axis of an individual particle; remanence is immune to this phenomenon. As a consequence of all these factors, remanence anisotropy may generally provide a better quantitative estimate of the actual distribution of particle orientations in a rock sample.Contribution number 9102 of the Institute for Rock Magnetism, University of Minnesota.  相似文献   

15.
Cross‐hole anisotropic electrical and seismic tomograms of fractured metamorphic rock have been obtained at a test site where extensive hydrological data were available. A strong correlation between electrical resistivity anisotropy and seismic compressional‐wave velocity anisotropy has been observed. Analysis of core samples from the site reveal that the shale‐rich rocks have fabric‐related average velocity anisotropy of between 10% and 30%. The cross‐hole seismic data are consistent with these values, indicating that observed anisotropy might be principally due to the inherent rock fabric rather than to the aligned sets of open fractures. One region with velocity anisotropy greater than 30% has been modelled as aligned open fractures within an anisotropic rock matrix and this model is consistent with available fracture density and hydraulic transmissivity data from the boreholes and the cross‐hole resistivity tomography data. However, in general the study highlights the uncertainties that can arise, due to the relative influence of rock fabric and fluid‐filled fractures, when using geophysical techniques for hydrological investigations.  相似文献   

16.
 We report a novel type of layering structure in igneous rocks. The layering structure in the Ogi picrite sill in Sado Island, Japan, is spatially periodic, and appears to be caused by the variation in vesicle volume fraction. The gas phase forming the vesicles apparently exsolved from the interstitial melt at the final stage of solidification of the magma body. We call this type of layering caused by periodic vesiculation in the solidifying magma body "vesicle layering." The presence of vesicle layering in other basic igneous bodies (pillow lava at Ogi and dolerite sill at Atsumi, Japan) implies that it may be a fairly common igneous feature. The width of individual layers slightly, but regularly, increases with distance from the upper contact. The layering plane is perpendicular to the long axes of columnar joints, regardless of gravitational direction, suggesting that the formation of vesicles is mainly controlled by the temperature distribution in the cooling magma body. We propose a model of formation of vesicle layering which is basically the same as that for Liesegang rings. The interplay between the diffusion of heat and magmatic volatiles in melt, and the sudden vesiculation upon supersaturation, both play important roles. Received: 15 February 1996 / Accepted: 24 June 1996  相似文献   

17.
The cleavage origin in rocks ranging from unmetamorphosed sediments, through slates to phyllites of the Nízký Jeseník Mts. (northern Moravia, Czechoslovakia), which show a range of deformation styles, from undeformed through fracture and slaty cleavage to the development of metamorphic foliation, was studied by means of magnetic anisotropy. These studies have shown that the fracture cleavage probably originated during a post-plastic rock deformation. Therefore the orientation of the fracture cleavage with respect to the strain-tensor components cannot be studied by means of magnetic anisotropy. The magnetic fabric of rocks with slaty cleavage was generated through componental movements during the ductile rock deformation. The slaty cleavage developed perpendicularly to the maximum shortening direction. In the rocks exhibiting macroscopically observable marks of slippage along the slaty cleavage, the slippage probably took place after the slaty cleavage developed, when the rock ductility was lower. The metamorphic foliation developed from the slaty cleavage in the course of continuous strain.  相似文献   

18.
Magnetic fabric allows to unravel the petrofabrics of sedimentary rocks and to assess their deformational history. The use of this technique, in addition to classical structural field observations in the limbs of seven asymmetric folds in the Pyrenees, helps to determine the differences of internal deformation as well as the folding kinematics. Three folds developed during the Variscan Orogeny in Ordovician and Devonian rocks, and four folds developed during the Pyrenean Orogeny in Eocene rocks, are studied. Folds show a variety of structural locations, in different thrust sheets of the Southern Central Pyrenees, different cleavage development, age, geometry and lithology. Sampling follows an equivalent lithological layer in the two limbs, except for one case, of the selected folds. Results show a modified tectonic magnetic fabric in most sites with the magnetic lineation on the tectonic foliation plane. A larger scattering of the magnetic lineation (maximum magnetic anisotropy axis) and a higher intensity of the preferred orientation of minerals (eccentricity of the anisotropy of magnetic susceptibility - AMS ellipsoid) is better observed in the overturned (short) limb of the asymmetric Variscan folds than in the normal (long) limb. On the other hand, the shape parameter in Alpine folds is generally larger in the overturned (short) limb then in the normal (long) one. A good clustering of the minimum magnetic anisotropy axes is observed in all limbs. The combination of the AMS data with the structural data helps to understand and better constrain the deformation degree in these asymmetric folds and to unravel the deformational history.  相似文献   

19.
Magnetite as well as ilmenohematite are contained by the Bergell granitic rocks, but the fabric of low field susceptibility is due to the magnetite only and is equivalent to the macroscopic biotite fabric. Microscopic observations and high field anisotropy measurements show that the ilmenohematite trigonal axes are aligned parallel to the directions of minimum low field susceptibility anisotropy. The deflection of the stable direction of natural remanent magnetization caused by the alignment of ilmenohematite is corrected using the susceptibility anisotropy data. The resulting virtual palaeopole position deviates from other Oligocene to Miocene pole positions of stable Europe suggesting that since the time of intrusion some 25 my ago the Bergell massif has been rotated anti-clockwise by an angle of ~30° about a vertical axis.  相似文献   

20.
The influence of magnetic interactions on the anisotropy of magnetic susceptibility (AMS) have been largely studied by several theoretical models or experiments. Numerical models have shown that when magnetostatic interactions occur, the distributions of particles over the volume rather than their individual orientations control the AMS. We have shown recently from a comprehensive rock magnetic study and from a theoretical 2-dimensional (2-D) model that single domain particles closely packed in globule aggregates could produce strong local random interaction magnetic fields which could influence the magnetic susceptibility and decrease the degree of anisotropy. In this paper, we first present in detail this 2-D theoretical model and then we extend it to the 3-D case. The possible distribution function of the magnetostatic interaction fields comprises two extreme states: it is either isotropic or ordered. The former case corresponds to the thermal-demagnetized state while the second case corresponds to the alternating field (AF) demagnetized state. We show that when easy axes of magnetization are not uniformly distributed, the degree of anisotropy decreases as the interaction field increases in both AF- and thermal-demagnetized states in 2-D and 3-D geometry. Thus we conclude that random magnetic fields generated by a random arrangement of magnetic particles over the sample volume decrease the degree of anisotropy of AMS and may alter the magnetic fabric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号