首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 138 毫秒
1.
Eruptions of Mount St Helens (Washington, USA) decreased in intensity and explosivity after the main May 18, 1980 eruption. As the post-May 18 eruptions progressed, albitic plagioclase microlites began to appear in the matrix glass, although the bulk composition of erupted products, the phenocryst compositions and magmatic temperatures remained fairly constant. Equilibrium experiments on a Mount St Helens white pumice show that at 160 MPa water pressure and 900°C, conditions deduced for the 8 km deep magma storage zone, the stable plagioclase is An47. The microlites in the natural samples, which are more albitic, had to grow at lower water pressures during ascent. Isothermal decompression experiments reported here demonstrate that a decrease in water pressure from 160 to 2 MPa over four to eight days is capable of producing the albitic groundmass plagioclase and evolved melt compositions observed in post-May 18 1980 dacites. Because groundmass crystallization occurs over a period of days during and after decreases in pressure, microlite crystallization in the Mount St Helens dacites must have occurred during the ascent of each magma batch from a deep reservoir rather than continuously in a shallow holding chamber. This is consistent with data on the kinetics of amphibole breakdown, which require that a significant portion of magma vented in each eruption ascended from a depth of at least 6.5 km (160 MPa water pressure) in a matter of days. The size and shape of the microlite population have not been studied because of the small size of the experimental samples; it is possible that the texture continues to mature long after chemical equilibrium is approached. As the temperature, composition, crystal content and water content of magma in the deep reservoir remained approximately constant from May 1980 to at least March 1982, the spectacular decrease in eruption intensity during this period cannot be attributed to changes in viscosity or density of the magma. Simple fluld mechanical considerations indicate, however, that the observed changes in mass flux of magma can be modelled by a five-fold decrease in conduit radius from 35 to 7 m, produced perhaps by plating of magma along the conduit walls. The decreased ascent rates which accompanied the decrease in conduit radius can explain the change from closed-system to open-system degassing and the shift from explosive to effusive eruptions during 1980.  相似文献   

2.
The 2007 effusive eruption of Stromboli followed a similar pattern to the previous 2002–2003 episode. In both cases, magma ascent led to breaching of the uppermost part of the conduit forming an eruptive fissure that discharged lava down the Sciara del Fuoco depression. Both eruptions also displayed a ‘paroxysmal’ explosive event during lava flow output. From daily effusion rate measurements retrieved from helicopter- and satellite-based infrared imaging, we deduce that the cumulative volume of lava erupted before each of the two paroxysms was similar. Based on this finding, we propose a conceptual model to explain why both paroxysms occurred after this ‘threshold’ cumulative volume of magma was erupted. The gradual decompression of the deep plumbing system induced by magma withdrawal and eruption, drew deeper volatile-rich magma into the conduit, leading to the paroxysms. The proposed model might provide a basis for forecasting paroxysmal explosions during future effusive eruptions of Stromboli.  相似文献   

3.
Syn-eruptive degassing of volcanoes may lead to syn-eruptive crystallization of groundmass phases. We have investigated this process using textural and compositional analysis of dome material from Merapi volcano, Central Java, Indonesia. Samples included dome lavas from the 1986–88, 1992–93, 1994 and 1995 effusive periods as well as pyroclastic material deposited by the November 1994 dome collapse. With total crystallinities commonly in excess of 70% (phenocrysts+microlites), the liquids present in Merapi andesites are highly evolved (rhyolitic) at the time of eruption. Feldspar microlites in dome rocks consist of plagioclase cores (Ab63An29Or8) surrounded by alkali feldspar rims (Ab53An5Or42), compositional pairs which are not in equilibrium. A change in the phase relations of the ternary feldspar system caused by degassing best explains the observed transition in feldspar composition. A small proportion of highly vesicular airfall tephra grains from the 1994 collapse have less evolved glass compositions than typical dome material and contain rimless plagioclase microlites, suggesting that the 1994 collapse event incorporated less-degassed, partially liquid magma in addition to fully solidified dome rock.As decompression drives volatile exsolution, rates of degassing and resultant microlite crystallization may be governed by magma ascent rate. Microlite crystallinity is nearly identical among the 1995 dome samples, an indication that similar microlite growth conditions (PH2O and temperature) were achieved throughout this extrusive period. However, microlite number density varied by more than a factor of four in these samples, and generally increased with distance from the vent. Low vent-ward microlite number densities and greater microlite concentrations down-flow probably reflect progressively decreasing rates of undercooling at the time of crystal nucleation during extrusion of the 1995 dome. Comparison between dome extrusion episodes indicates a correlation between lava effusion rate and microlite number density, suggesting that extrusion slowed during 1995. Crystal textures and compositions in the 1992–93 and 1994 domes share the range exhibited by the 1995 dome, suggesting that transitions in crystallization conditions (i.e., rates of undercooling determined by effusion rate) are cyclic.  相似文献   

4.
 Lascar Volcano (5592 m; 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor. Received: 12 December 1996 / Accepted: 6 May 1997  相似文献   

5.
A series of experiments was conducted to test concepts of porous flow degassing of rhyolitic magma during ascent and of the subsequent collapse of vesicles in degassed magma to form obsidian. Dense, synthetically hydrated, natural glasses were pressurized under water-saturated conditions and then decompressed to achieve a range of porosities in the presence of a tracer vapor, D2O. Rapid isotopic exchange indicative of vapor transport rather than of simple diffusion occurred at a porosity >60 vol.%, in accord with earlier gas permeability measurements on cold natural samples. In another series of experiments, natural and synthetic pumices, vesiculated by degassing to atmospheric pressure, rapidly collapsed to dense glass on repressurization to the modest pressures prevailing in lava flows. No relict bubble textures remained. These results support the hypothesis that effusive eruptions result from the syneruptive escape of gas from permeable magmatic foam, and that a process analogous to welding yields dense lavas when such foams are extruded.  相似文献   

6.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

7.
Lava lakes, consisting of molten degassing lava in summit craters of active basaltic volcanoes, sometimes exhibit complex cycles of filling and emptying on time-scales of hours to weeks such as recorded at Pu’u’O’o in Hawaii and Oldoinyo Lengai in Tanzania. Here we report on a new series of analogue laboratory experiments of two-phase flow in a reservoir-conduit-lava lake system which spontaneously generates oscillations in the depth of liquid within the lake. During the recharge phase, gas supplied from a subsurface reservoir of degassing magma drives liquid magma up the conduit, causing the lake to fill. As the magmastatic pressure in the lake increases, the upward supply of magma, driven by the gas bubbles, falls. Eventually the upflow becomes unstable, and liquid drains downwards from the lake, driven by the magmastatic pressure of the overlying lake, suppressing the ascent of any more bubbles from the chamber. At a later stage, once the lake has drained sufficiently, the descent speed of liquid through the conduit decreases below the ascent speed of the bubbles, and the recharge cycle resumes. Application of a quantitative model of the experiments to the natural system is broadly consistent with field data.  相似文献   

8.
9.
A series of 88 Vulcanian explosions occurred at the Soufrière Hills volcano, Montserrat, between August and October, 1997. Conduit conditions conducive to creating these and other Vulcanian explosions were explored via analysis of eruptive products and one-dimensional numerical modeling of magma ascent through a cylindrical conduit. The number densities and textures of plagioclase microlites were documented for twenty-three samples from the events. The natural samples all show very high number densities of microlites, and > 50% by number of microlites have areas < 20 μm2. Pre-explosion conduit conditions and decompression history have been inferred from these data by comparison with experimental decompressions of similar groundmass compositions. Our comparisons suggest quench pressures < 30 MPa (origin depths < 2 km) and multiple rapid decompressions of > 13.75 MPa each during ascent from chamber to surface. Values are consistent with field studies of the same events and statistical analysis of explosion time-series data. The microlite volume number density trend with depth reveals an apparent transition from growth-dominated crystallization to nucleation-dominated crystallization at pressures of ∼ 7 MPa and lower. A concurrent sharp increase in bulk density marks the onset of significant open-system degassing, apparently due to a large increase in system permeability above ∼ 70% vesicularity. This open-system degassing results in a dense plug which eventually seals the conduit and forms conditions favorable to Vulcanian explosions. The corresponding inferred depth of overpressure at 250–700 m, near the base of the dense plug, is consistent with depth to center of pressure estimated from deformation measurements. Here we also illustrate that one-dimensional models representing ascent of a degassing, crystal-rich magma are broadly consistent with conduit profiles constructed via our petrologic analysis. The comparison between models and petrologic data suggests that the dense conduit plug forms as a result of high overpressure and open-system degassing through conduit walls.  相似文献   

10.
Vulcanian eruptions are common at many volcanoes around the world. Vulcanian activity occurs as either isolated sequences of eruptions or as precursors to sustained explosive events and is interpreted as clearing of shallow plugs from volcanic conduits. Breadcrust bombs characteristic of Vulcanian eruptions represent samples of different parts of these plugs and preserve information that can be used to infer parameters of pre-eruption magma ascent. The morphology and preserved volatile contents of breadcrust bombs erupted in 1999 from Guagua Pichincha volcano, Ecuador, thus allow us to constrain the physical processes responsible for Vulcanian eruption sequences of this volcano. Morphologically, breadcrust bombs differ in the thickness of glassy surface rinds and in the orientation and density of crack networks. Thick rinds fracture to create deep, widely spaced cracks that form large rectangular domains of surface crust. In contrast, thin rinds form polygonal networks of closely spaced shallow cracks. Rind thickness, in turn, is inversely correlated with matrix glass water content in the rind. Assuming that all rinds cooled at the same rate, this correlation suggests increasing bubble nucleation delay times with decreasing pre-fragmentation water content of the melt. A critical bubble nucleation threshold of 0.4–0.9 wt% water exists, below which bubble nucleation does not occur and resultant bombs are dense. At pre-fragmentation melt H2O contents of >∼0.9 wt%, only glassy rinds are dense and bomb interiors vesiculate after fragmentation. For matrix glass H2O contents of ≥1.4 wt%, rinds are thin and vesicular instead of thick and non-vesicular. A maximum measured H2O content of 3.1 wt% establishes the maximum pressure (63 MPa) and depth (2.5 km) of magma that may have been tapped during a single eruptive event. More common H2O contents of ≤1.5 wt% suggest that most eruptions involved evacuation of ≤1.5 km of the conduit. As we expect that substantial overpressures existed in the conduit prior to eruption, these depth estimates based on magmastatic pressure are maxima. Moreover, the presence of measurable CO2 (≤17 ppm) in quenched glass of highly degassed magma is inconsistent with simple models of either open- or closed-system degassing, and leads us instead to suggest re-equilibration of the melt with gas derived from a deeper magmatic source. Together, these observations suggest a model for the repeated Vulcanian eruptions that includes (1) evacuation of the shallow conduit during an individual eruption, (2) depressurization of magma remaining in the conduit accompanied by open-system degassing through permeable bubble networks, (3) rapid conduit re-filling, and (4) dome formation prior to the subsequent explosion. An important part of this process is densification of upper conduit magma to allow repressurization between explosions. At a critical overpressure, trapped pressurized gas fragments the nascent impermeable cap to repeat the process.  相似文献   

11.
To investigate the relationship between volatile abundances and eruption style, we have analyzed major element and volatile (H2O, CO2, S) concentrations in olivine-hosted melt inclusions in tephra from the 2000 yr BP eruption of Xitle volcano in the central Trans-Mexican Volcanic Belt. The Xitle eruption was dominantly effusive, with fluid lava flows accounting for 95% of the total dense rock erupted material (1.1 km3). However, in addition to the initial, Strombolian, cinder cone-building phase, there was a later explosive phase that interrupted effusive activity and deposited three widespread ash fall layers. Major element compositions of olivine-hosted melt inclusions from these ash layers range from 52 to 58 wt.% SiO2, and olivine host compositions are Fo84–86. Water concentrations in the melt inclusions are variable (0.2–1.3 wt.% H2O), with an average of 0.45±0.3 (1σ) wt.% H2O. Sulfur concentrations vary from below detection (50 ppm) to 1000 ppm but are mostly ≤200 ppm and show little correlation with H2O. Only the two inclusions with the highest H2O have detectable CO2 (310–340 ppm), indicating inclusion entrapment at higher pressures (700–900 bars) than for the other inclusions (≤80 bars). The low and variable H2O and S contents of melt inclusions combined with the absence of less soluble CO2 indicates shallow-level degassing before olivine crystallization and melt inclusion formation. Olivine morphologies are consistent with the interpretation that most crystallization occurred rapidly during near-surface H2O loss. During cinder cone eruptions, the switch from initial explosive activity to effusive eruption probably occurs when the ascent velocity of magma becomes slow enough to allow near-complete degassing of magma at shallow depths within the cone as a result of buoyantly rising gas bubbles. This allows degassed lavas to flow laterally and exit near the base of the cone while gas escapes through bubbly magma in the uppermost part of the conduit just below the crater. The major element compositions of melt inclusions at Xitle show that the short-lived phase of renewed explosive activity was triggered by a magma recharge event, which could have increased overpressure in the storage reservoir beneath Xitle, leading to increased ascent velocities and decreased time available for degassing during ascent.  相似文献   

12.
A steady-state, one-dimensional, and nonhomogeneous two-phase flow model was developed for the prediction of local flow properties in volcanic conduits. The model incorporates the effects of relative velocity between the phases and for the variable magma viscosity. The resulting set of nonlinear differential equations was solved by a stiff numerical solver and the results were verified with the results of basaltic fissure eruptions obtained by a homogeneous two-phase flow model, before applying the model to the eruptions of Mt. St. Helens and Vesuvius volcanoes. This verification, and a study of the sensitivity of several modeling parameters, proved effective in establishing the confidence in the predicted nonequilibrium results of flow distribution in the conduits when the mass flow rate is critical or maximum. The application of the model to the plinian eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79, demonstrates the sensitivity of the magma discharge rate and distributions of pressure, volumetric fraction, and velocities of phases, on the hydrous magma viscosity feeding the volcanic conduits. Larger magma viscosities produce smaller mass discharge rates (or greater conduit diameters), smaller exit pressures, larger disequilibrium between the phases, and larger difference between the local lithostatic and fluid pressures in the conduit. This large pressure difference occurs when magma fragments and may cause a rupture of the conduit wall rocks, producing a closure of the conduit and cessation of the volcanic eruption, or water pouring into the conduit from underground aquifers leading to phreatomagmatic explosions. The motion of the magma fragmentation zone along a conduit during an eruption can be caused by the varying viscosity of magma feeding the volcanic conduit and may cause intermittent phreatomagmatic explosions during the plinian phases as different underground aquifers are activated at different depths. The variation of magma viscosity during the eruptions of Mt. St. Helens in 1980 and Vesuvius in AD 79 is normally associated with the tapping of magmas from different depths of the magma chambers. This variation of viscosity, which can include different crystal and dissolved water contents, can also produce conduit wall erosion, the onset and collapse of volcanic columns above the vent, and the onset and cessation of pyroclastic flows and surges.  相似文献   

13.
Soputan is a high-alumina basalt stratovolcano located in the active North Sulawesi-Sangihe Islands magmatic arc. Although immediately adjacent to the still geothermally active Quaternary Tondono Caldera, Soputan’s magmas are geochemically distinct from those of the caldera and from other magmas in the arc. Unusual for a basalt volcano, Soputan produces summit lava domes and explosive eruptions with high-altitude ash plumes and pyroclastic flows—eight explosive eruptions during the period 2003–2011. Our field observations, remote sensing, gas emission, seismic, and petrologic analyses indicate that Soputan is an open-vent-type volcano that taps basalt magma derived from the arc-mantle wedge, accumulated and fractionated in a deep-crustal reservoir and transported slowly or staged at shallow levels prior to eruption. A combination of high phenocryst content, extensive microlite crystallization and separation of a gas phase at shallow levels results in a highly viscous basalt magma and explosive eruptive style. The open-vent structure and frequent eruptions indicate that Soputan will likely erupt again in the next decade, perhaps repeatedly. Explosive eruptions in the Volcano Explosivity Index (VEI) 2–3 range and lava dome growth are most probable, with a small chance of larger VEI 4 eruptions. A rapid ramp up in seismicity preceding the recent eruptions suggests that future eruptions may have no more than a few days of seismic warning. Risk to population in the region is currently greatest for villages located on the southern and western flanks of the volcano where flow deposits are directed by topography. In addition, Soputan’s explosive eruptions produce high-altitude ash clouds that pose a risk to air traffic in the region.  相似文献   

14.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

15.
16.
We give an overview of the 2005–2011 eruptions of Shiveluch Volcano together with the seismicity and deformations of the lava dome during dome growth. It is shown that the generation of the intracrater intrusive dome proceeded at a variable rate. The maximum discharge of erupted lava reached 0.6 million cubic meters per day. Increased explosive activity preceded periods of intensive growth of the lava dome. We determined the volumes and depths of the magma chambers that supplied magma for large eruptions of the volcano on November 12, 1964, February 28, 2005, and October 27, 2010. We calculated the effective viscosity of the 2007 and 2011 lava flows.  相似文献   

17.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

18.
This study assesses the effect of decompression rate on two processes that directly influence the behavior of volcanic eruptions: degassing and permeability in magmas. We studied the degassing of magma with experiments on hydrated natural rhyolitic glass at high pressure and temperature. From the data collected, we defined and characterized one degassing regime in equilibrium and two regimes in disequilibrium. Equilibrium bubble growth occurs when the decompression rate is slower than 0.1 MPa s–1, while higher rates cause porosity to deviate rapidly from equilibrium, defining the first disequilibrium regime of degassing. If the deviation is large enough, a critical threshold of super-saturation is reached and bubble growth accelerates, defining the second disequilibrium regime. We studied permeability and bubble coalescence in magma with experiments using the same rhyolitic melt in open degassing conditions. Under these open conditions, we observed that bubbles start to coalesce at ~43 vol% porosity, regardless of decompression rate. Coalescence profoundly affects bubble texture and size distributions, and induces the melt to become permeable. We determined coalescence to occur on a time scale (~180 s) independent of decompression rate. We parameterized and incorporated our experimental results into a 1D conduit flow model to explore the implications of our findings on eruptive behavior of rhyolitic melts with low crystal contents stored in the upper crust. Compared to previous models that assume equilibrium degassing of the melt during ascent, the introduction of disequilibrium degassing reduces the deviation from lithostatic pressure by ~25%, the acceleration at high porosities (>50 vol%) by a factor 5, and the associated decompression rate by an order of magnitude. The integration of the time scale of coalescence to the model shows that the transition between explosive and effusive eruptive regimes is sensitive to small variations of the initial magma ascent speed, and that flow conditions near fragmentation may significantly be affected by bubble coalescence and gas escape.Editorial responsibility: D. Dingwell  相似文献   

19.
Phenocrysts in volcanic rocks are commonly used to deduce crystallization processes in magma chambers. A fundamental assumption is that the phenocrysts crystallized in the magma chambers at isobaric and nearly equilibrium conditions, on the basis of their large sizes. However, this assumption is not always true as demonstrated here for a porphyritic alkali basalt (Kutsugata lava) from Rishiri Volcano, northern Japan. All phenocryst phases in the Kutsugata lava, plagioclase, olivine, and augite, have macroscopically homogeneous distribution of textures showing features characteristic of rapid growth throughout the crystals. Rarely, a core region with distinct composition is present in all phenocryst phases. Phenocrysts, excluding this core, are occasionally in direct contact with each other, forming crystal aggregates. The equilibrium liquidus temperature of plagioclase, the dominant phase (35 vol%) in the Kutsugata lava, can never exceed the estimated magmatic temperature, unless the liquidus temperature increases significantly due to vesiculation of the magma during ascent. This suggests that most phenocrysts in the Kutsugata lava were formed by decompression of the magma during ascent in a conduit, rather than by cooling during residence in a magma reservoir. In the magma chamber before eruption, probably located at depth of more than 7 km, only cores of the phenocrysts were present and the magma was nearly aphyric (<5 vol% crystals), though the observed rock is highly porphyritic with up to 40 vol% crystals. The Kutsugata magma is inferred to have been rich in dissolved H2O (>4 wt.%) in the magma chamber, and liquidus temperatures of phenocryst phases were significantly suppressed. Large undercooling caused by decompression and degassing of the magma was the driving force for significant crystallization during ascent because of the increase in liquidus temperature due to vapor exsolution. Low ascent rate of the Kutsugata magma, which is suggested by pahoehoe lava morphology and no association of pyroclastics, gave sufficient time for crystallization. Furthermore, the large degree of superheating of plagioclase in the magma chamber caused plagioclase crystallization with low population density and large crystal size, which characterizes the porphyritic nature of the Kutsugata lava. Alkali basalt is likely to satisfy these conditions and similar phenomena are suggested to occur in other volcanic systems.  相似文献   

20.
The results from two different types of gas measurement, telemetered in situ monitoring of reducing gases on the dome and airborne measurements of sulfur dioxide emission rates in the plume by correlation spectrometry, suggest that the combination of these two methods is particularly effective in detecting periods of enhanced degassing that intermittently punctuate the normal background leakage of gaseous effluent from Mount St Helens to the atmosphere. Gas events were recorded before lava extrusion for each of the four dome-building episodes at Mount St Helens since mid-1984. For two of the episodes, precursory reducing gas peaks were detected, whereas during three of the episodes, COSPEC measurements recorded precursory degassing of sulfur dioxide. During one episode (October 1986), both reducing gas monitoring and SO2 emission rate measurements simultaneously detected a large gas release several hours before lava extrusion. Had both types of gas measurements been operational during each of the dome-building episodes, it is thought that both would have recorded precursory signals for all four episodes. Evidence from the data presented herein suggests that increased degassing at Mount St Helens becomes detectable when fresh upward-moving magma is between 2 km and a few hundred meters below the base of the dome and between about 60 and 12 hours before the surface extrusion of lava.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号