首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An idealized process-based model is developed to investigate tidal dynamics in the North Sea. The model geometry consists of a sequence of different rectangular compartments of uniform depth, thus, accounting for width and depth variations in a stepwise manner. This schematization allows for a quick and transparent solution procedure. The solution, forced by incoming Kelvin waves at the open boundaries and satisfying the linear shallow water equations on the f plane with bottom friction, is in each compartment written as a superposition of eigenmodes, i.e. Kelvin and Poincaré waves. A collocation method is employed to satisfy boundary and matching conditions. First, the general resonance properties of a strongly simplified geometry with two compartments, representing the Northern North Sea and Southern Bight, are studied. Varying the forcing frequency while neglecting bottom friction reveals Kelvin and Poincaré resonance. These resonances continue to exist (but with lower amplification and a modified spatial structure) when adding the Dover Strait as a third compartment and separating the solutions due to forcing from either the north or the south only. Including bottom friction dampens the peaks. Next, comparison with tide observations along the North Sea coast shows remarkable agreement for both semi-diurnal and diurnal tides. This result is achieved with a more detailed geometry consisting of 12 compartments fitted to the coastline of the North Sea. Further simulations emphasize the importance of Dover Strait and bottom friction. Finally, it is found that a sea level rise of 1 m, uniformly applied to the entire North Sea, amplifies the M2-elevation amplitudes almost everywhere along the coast, with an increase of up to 8 cm in Dover Strait. Bed level changes of ±1 m, uniformly applied to the Southern Bight only, imply weaker changes, with changes in coastal M2-elevation amplitudes below 5 cm.  相似文献   

2.
This paper addresses the impact of atmospheric variability on ocean circulation in tidal and non-tidal basins. The data are generated by an unstructured-grid numerical model resolving the dynamics in the coastal area, as well as in the straits connecting the North Sea and Baltic Sea. The model response to atmospheric forcing in different frequency intervals is quantified. The results demonstrate that the effects of the two mechanical drivers, tides and wind, are not additive, yet non-linear interactions play an important role. There is a tendency for tidally and wind-driven circulations to be coupled, in particular in the coastal areas and straits. High-frequency atmospheric variability tends to amplify the mean circulation and modify the exchange between the North and the Baltic Sea. The ocean response to different frequency ranges in the wind forcing is area-selective depending on specific local dynamics. The work done by wind on the oceanic circulation depends strongly upon whether the regional circulation is tidally or predominantly wind-driven. It has been demonstrated that the atmospheric variability affects the spring-neap variability very strongly.  相似文献   

3.
Thermal and optical remote sensing data were used to investigate the spatial and temporal distribution of sea surface temperature (SST) and of suspended particulate matter (SPM) in the southern North Sea. Monthly SST composites showed pronounced seasonal warming of the southern North Sea and delineated the English coastal and continental coastal waters. The East-Anglia Plume is the dominant feature of the English coastal waters in the winter and autumn SPM composites, and the Rhine region of freshwater influence (ROFI), including the Flemish Banks, is the dominant feature of the continental waters. These mesoscale spatial structures are also influenced by the evolution of fronts, such as the seasonal front separating well-mixed water in the southern Bight, from the seasonally stratified central North Sea waters. A harmonic analysis of the SST and SPM images showed pronounced seasonal variability, as well as spring-neap variations in the level of tidal mixing in the East Anglia Plume, the Rhine ROFI and central North Sea. The harmonic analysis indicates the important role played by the local meteorology and tides in governing the SST and near-surface SPM concentrations in the southern North Sea. In the summer, thermal stratification affects the visibility of SPM to satellite sensors in the waters to the north of the Flamborough and Frisian Fronts. Haline stratification plays an important role in the visibility of SPM in the Rhine ROFI throughout the year. When stratified, both regions typically exhibit low surface SPM values. A numerical model study, together with the harmonic analysis, highlights the importance of tides and waves in controlling the stratification in the southern North Sea and hence the visibility of SPM.  相似文献   

4.
The paper addresses the individual and collective contribution of different forcing factors (tides, wind waves, and sea-level rise) to the dynamics of sediment in coastal areas. The results are obtained from simulations with the General Estuarine Transport Model coupled with a sediment transport model. The wave-induced bed shear stress is formulated using a simple model based on the concept that the turbulent kinetic energy (TKE) associated with wind waves is a function of orbital velocity, the latter depending on the wave height and water depth. A theory is presented explaining the controls of sediment dynamics by the TKE produced by tides and wind waves. Several scenarios were developed aiming at revealing possible trends resulting from realistic (observed or expected) changes in sea level and wave magnitude. The simulations demonstrate that these changes not only influence the concentration of sediment, which is very sensitive to the magnitude of the external forcing, but also the temporal variability patterns. The joint effect of tides and wave-induced bed shear stress revealed by the comparison between theoretical results and simulations is well pronounced. The intercomparison between different scenarios demonstrates that the spatial patterns of erosion and deposition are very sensitive to the magnitude of wind waves and sea-level rise. Under a changing climate, forcing the horizontal distribution of sediments adjusts mainly through a change in the balance of export and import of sediment from the intertidal basins. The strongest signal associated with this adjustment is simulated North of the barrier islands where the evolution of sedimentation gives an integrated picture of the processes in tidal basins.  相似文献   

5.
Cai  Shuqun  Wu  Yuqi  Xu  Jiexin  Chen  Zhiwu  Xie  Jieshuo  He  Yinghui 《中国科学:地球科学(英文版)》2021,64(10):1674-1686
Numerous internal solitary waves(ISWs) have been observed in the southern Andaman Sea. In this study, the two-dimensional Massachusetts Institute of Technology general circulation model is applied to investigate the dynamics of ISWs and explore the effects of the bottom topography and tidal forcing on the generation and propagation of ISWs in the southern Andaman Sea. The results show that the large-amplitude depression ISWs are mainly generated via the oscillating tidal flow over the sill of the Great Channel, and the generation of ISWs is subject to the lee wave regime. The Dreadnought Bank cannot generate ISWs itself; however, it can enhance the amplitudes of eastward-propagating ISWs generated from sill A, owing to constructive interference of internal tide generation between the sill of the Great Channel and the Dreadnought Bank. The eastward-propagating ISWs generated by the eastern shallow sill near the continental shelf can propagate to the shelf, where they evolve into elevation waves because of the shallow water. Sensitivity runs show that both the semidiurnal and diurnal tides over the sill of the Great Channel can generate ISWs in this area. However, the ISWs generated by diurnal tides are much weaker than those generated by semidiurnal tides. Mixed tidal forcing has no significant effect on the generation of ISWs.  相似文献   

6.
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25–27 October 2013), and about a month later, the storm Xaver (5–7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20–30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.  相似文献   

7.
We present a two-dimensional vertical (2DV) flow and morphological numerical model describing the behaviour of offshore sand waves. The model contains the 2DV shallow water equations, with a free water surface and a general bed load formula. The water movement is coupled to the sediment transport equation by a seabed evolution equation. Using this model, we investigate the evolution of sand waves in a marine environment. As a result, we find sand wave saturation for heights of 10–30% of the average water depth on a timescale of decades. The stabilization mechanism, causing sand waves to saturate, is found to be based on the balance between the shear stress at the seabed and the principle that sediment is transported more easily downhill than uphill. The migration rate of the sand waves decreases slightly during their evolution. For a unidirectional steady flow the sand waves become asymmetrical in the horizontal direction and for a unidirectional block current asymmetrical in the vertical. A sensitivity analysis showed the slope effect of the sediment transport plays an important role herein. Furthermore, the magnitude of the resistance at the seabed and the eddy viscosity influence both the timescale and height of sand waves. The order of magnitudes found of the time and spatial scales coincide with observations made in the southern bight of the North Sea, Japan and Spain.  相似文献   

8.
Classical models of the residual circulation in the North Sea predict a north-bound residual flow in the Southern Bight. A more refined model, taking into account the mesoscale Reynolds stress exerted in the mean on the residual flow by the non-linear interactions of mesoscale processes (tides, storm surges, etc.), shows on the contrary off the Belgian coast a south-bound coastal current in relation with a residual coastal gyre. Observations of the physico-chemical characteristics of coastal waters confirm the existence of the gyre. The dynamics of coastal ecosystems here are found to be determined by the gyre; successive stages of the pelagic food chain displaying a typical spatial distribution along the deflected plume of the Scheldt estuary around the gyre ‘outerlagoon’.  相似文献   

9.
《Continental Shelf Research》1999,19(9):1221-1245
This paper presents some recent results of drifters released on the West Florida Shelf during 1996–1997 and compares with the numerical model results of the wind-driven circulation. Using satellite tracked surface drifters during the one year period from February 1996 to February 1997, a drifter free region, called the “forbidden zone”, is found over the southern portion of the West Florida Shelf. This finding is consistent with historical drift bottle data and with a recent numerical model study of the West Florida Shelf circulation response to climatological wind forcing. Direct drifter simulations by numerical model during March 1996 show a good agreement with both the in situ ADCP current observation and drifter observation. Three mechanisms are proposed for the observed Lagrangian features. The primarily dynamic mechanism is the along-shore wind forcing, which induces a coastal jet that tends to leave the coast and the bottom onshore and near surface offshore transports. The second one is the convergent coastal geometry and bottom topography for the southward flow in central shelf near Tampa Bay that enforces the coastal jet and the bottom and near surface transport. The last is a kinematic one, simply due to the short along-shore Lagrangian excursion, driven by the typical synoptic weather systems. Thus near surface shelf waters over the north may not reach the southern coast of the West Florida. Implication is that surface hazard such as oil spill that may occur outside of the southern West Florida shelf may not greatly impact the southern coastal region except Florida Keys. However, the biological and chemical patches over the north that may occur in the water column such as red tides still can easily reach the southern coastal region through the subsurface and bottom waters.  相似文献   

10.
A three-dimensional model covering the northwest European Shelf and part of the adjacent Atlantic Ocean is used to examine the influence of water depth change upon the distribution of maximum tidal bed stress. The direction of bed stress is an indicator of sediment movement as bed load and various regions of convergence and divergence in good agreement with observations are identified. Calculations are performed with water depths reduced by 35 m, corresponding to 10 000 years before present (B.P.). Initially, the model is forced by only the M2 tide, although subsequently five constituents, namely M2, S2, N2, K1 and O1, are used for tidal forcing. Although the distribution of extreme bed stresses computed with only M2 tidal forcing is comparable to that computed with five tides, the additional tidal constituents modify the magnitude of the bed stress. In particular the diurnal tides show regions of local enhanced current amplitude in the shelf-edge region with corresponding changes in bed stress. When water depths are reduced such that the North Sea and English Channel are separated, then there is a significant change in the tidal distribution in the shallow Southern Bight which influences bed-stress distributions and hence bed-load sediment transport in the area. Besides changes in shallow regions, the distribution of tides at the shelf edge is affected. A discussion of the limitations of the present coarse-grid model in shelf-edge regions and how it can be used to provide boundary conditions for limited-area three-dimensional models that can include stratification is presented. Also the importance of stratification for sediment movement at the shelf edge is briefly discussed.Responsible Editor: Phil Dyke  相似文献   

11.
《Continental Shelf Research》2007,27(3-4):431-451
The sediment-transport mechanisms that contribute to and redistribute the modern sediment deposits on the western Adriatic continental shelf were evaluated utilizing data collected from two instrumented benthic tripods deployed at 12-m water depth, one in the northern Adriatic basin on the Po River subaqueous delta, and the other in the central Adriatic basin on the Pescara River shelf. Sediment-resuspension events driven by cold, northeasterly Bora winds dominate the along-shelf transport climatology at both tripod locations, but at the Po delta site, the southwesterly Scirocco wind events also play a significant role. At the Pescara shelf site, interaction between Bora wind-driven currents and the Western Adriatic Coastal Current strongly contributes to the resuspension and advection of suspended sediment. Interannual variability of the forcing mechanisms (including strength, frequency, and relative mix of Bora and Scirocco wind events) is evident in the three winters of data collected on the Po River subaqueous delta. In both types of wind events, and throughout all years of data collection, the net along-shelf sediment transport is significantly larger than the net across-shelf transport at the 12-m sites. This may be characteristic of low-energy environments, where sediment resuspension and transport occurs in such shallow water that it is not subjected to strong downwelling features characteristic of higher-energy environments.  相似文献   

12.
Understanding across-margin transport has long been recognized as crucial for wise management of our coastline and shelf waters. Issues related to sewage outfalls, nutrient and pollutant dispersal, carbon export, and shoreline sediment budgets all require an understanding of these processes. Across-margin transport of water and sediment at cuspate foreland headlands has been largely unrecognized, and the processes responsible for this export unappreciated. We examined physical process on Cape Lookout Shoal, a cape-associated shoal on the North Carolina continental shelf, through numerical modeling and field observations of near-bottom currents. The cuspate foreland setting of the northern South Atlantic Bight has been previously characterized as wave-dominated with a principal alongshore directed sediment transport and physical circulation forced by wave and wind-driven currents along the inner and mid-shelf. Our findings instead suggest that a seaward-directed, tidal-driven headland flow many play a significant role in the direction of net sediment transport on the shoal and ultimately its location and long-term maintenance. The shoal's location relative to the promontory-induced residual eddies and the region of active deposition differs from traditionally held ideas on sedimentary processes at headland-related sand banks. In addition, the headland flows may also serve as a first-order mechanism for rapidly exporting nearshore and estuarine waters to the outer-shelf.  相似文献   

13.
Concentrations of dissolved copper, zinc and cadmium have been measured in the Dutch and Belgian coastal and offshore regions of the Southern Bight (North Sea), with the aim to compare levels in the central, most saline part of the Bight with those in the coastal region that is under the influence of the rivers Rhine and Scheldt, as well as with those in open ocean surface waters.  相似文献   

14.
The German Wadden Sea (southern North Sea) sediments are composed of both cohesive and non-cohesive deposits. The spatial distribution patterns are mainly driven by wind-induced waves and tidal currents. Transport intensity and duration depend on the hydrodynamic conditions, which vary over time. In this paper, the transport of suspended sediment was investigated on seasonal, tidal and hourly time scales in the back-barrier system of Spiekeroog Island. Long- and short-term data of fair weather periods and two storm events were investigated based on stationary and mobile measurements of currents and waves by Acoustic Doppler Current Profiler (ADCP), in situ particle size and suspended sediment concentration (SSC) measurements by laser in situ scattering and transmissometry (LISST) as well as wind records. The ADCP backscatter intensities were calibrated by means of LISST volume concentration data in order to quantify longer term SSCs and fluxes in the back-barrier system. Values up to 120 mg l−1 were recorded, but concentrations more commonly were below 60 mg l−1. The long-term results confirm former observations of a balanced budget during low-energy (fair weather) conditions in the study area. In general, SSCs were higher during spring tides than during neap tides. The data also clearly show the remobilisation of sediment by tidal current entrainment. The records include two severe storm events, “Britta” (1st November 2006) and “Kyrill” (18th January 2007). The data reveal very complex temporal flow and transport patterns. During both storm events, the export of material was mainly controlled by the interaction of wind, waves and tidal phase. The typical ebb-dominance occurring during fair-weather conditions was temporarily neutralised and even reversed to a flood-dominated situation. During “Kyrill”, the wind and high-waves setup in conjunction with the tidal phase was even able to compress the duration of two successive ebb cycles by over 70%. Although SSCs increased during both storms and higher turbulence lifted particle clouds upwards, an export of suspended matter towards the North Sea was only observed under the conditions taking place during “Britta”. Such fluxes, however, are currently still difficult to quantify because the backscatter intensity during high energy events includes a substantial amount of noise produced by the high turbulence, especially near the water surface.  相似文献   

15.
Blue crab larvae are advected out of Middle Atlantic Bight estuaries immediately after spawning occurs in the estuary entrance. For the next 30 to 50 days the larvae are found offshore and mainly at the surface where they are influenced by wind-driven currents. Using a previously derived circulation model and winds from Norfolk (VA) airport, a backward trace is made from where relatively dense concentrations of megalopae were found in the Chesapeake Bight during 1983 to a point of origin (spawning).During 1983, the megalopae encountered on the shelf had their origin in Chesapeake Bay and took, at minimum, 31 to 36 days to grow to the megalopae stage. Wind forcing dominated the inner shelf region in the summer of 1983 and the resulting dispersion of Chesapeake Bay megalopae occurred briefly in the southern sector early in the season, but toward the northern sector over most of the season. Although no firm conclusions could be drawn regarding the mechanism for return, it did not seem likely that wind advection back to the point of origin would be effective.  相似文献   

16.
A three-dimensional sigma coordinate numerical model with wetting and drying (WAD) and a Mellor–Yamada turbulence closure scheme has been used in an idealized island configuration to evaluate how tidally driven dynamics and mixing are affected by inundation processes. Comprehensive sensitivity experiments evaluate the influence of various factors, including tidal amplitudes (from 1- to 9-m range), model grid size (from 2 to 16 km), stratification, wind, rotation, and the impact of WAD on the mixing. The dynamics of the system involves tidally driven basin-scale waves (propagating anticlockwise in the northern hemisphere) and coastally trapped waves propagating around the island in an opposite direction. The evolutions of the surface mixed layer (SML) and the bottom boundary layer (BBL) under different forcing have been studied. With small amplitude tides, wind-driven mixing dominates and the thickness of the SML increases with time, while with large-amplitude tides, tidal mixing dominates and the thickness of the BBL increases with time. The inclusion of WAD in the simulations increases bottom stress and impacts the velocities, the coastal waves, and the mixing. However, the impact of WAD is complex and non-linear. For example, WAD reduces near-coast currents during flood but increases currents during ebb as water drains from the island back to the sea. The impacts of WAD, forcing, and model parameters on the dynamics are summarized by an analysis of the vorticity balance for the different sensitivity experiments.  相似文献   

17.
The characteristics and forcing mechanisms of high-frequency flow variations (periods of minutes to days) were investigated near Gladden Spit, a reef promontory off the coast of Belize. Direct field observations and a high-resolution (50-m grid size) numerical ocean model are used to describe the flow variations that impact the initial dispersion of eggs and larvae from this site, which serves as a spawning aggregation site for many species of reef fishes. Idealized sensitivity model experiments isolate the role of various processes, such as internal waves, wind, tides, and large-scale flow variations. The acute horizontal curvature and steep topography of the reef intensify the flow, create small-scale convergence and divergence zones, and excite high-frequency oscillations and internal waves. Although the tides in this area are relatively small (∼10-cm amplitude), the model simulations show that tides can excite significant high-frequency flow variations near the reef, which suggests that the preference of fish to aggregate and spawn in the days following the time of full moon may not be coincidental. Even small variations in remote flows (2–5 cm s−1) due to say, meso-scale eddies, are enough to excite near-reef oscillations. Model simulations and the observations further suggest that the spawning site at the tip of the reef provides initial strong dispersion for eggs, but then the combined influence of the along-isobath flow and the westward wind will transport the eggs and larvae downstream of Gladden Spit toward less turbulent region, which may contribute to enhanced larval survival.  相似文献   

18.
Abstract

Results are presented of calculations on the generation of residual vorticity by tidal currents over the bottom topography of the Southern Bight of the North Sea. A typical order of magnitude is 10?6 to 10?7 s ?1. This is compared with current measurements on calm days, when similar magnitudes are found. At windspeeds less than about 5 m/s tidal generation of residual vorticity is important; at higher windspeeds wind effects begin to dominate. Our results are relevant in understanding the spatial variability of residual currents, because a non-zero vorticity implies the existence of horizontal gradients in the residual current field.  相似文献   

19.
Greater Cook Strait (GCS) lies between the North and the South Islands of New Zealand. Its location at the convergence of the Pacific and Indo-Australian tectonic plates leads to interesting bathymetry with an adjacent shallow shelf and deep ocean trench as well as numerous crossing faults and complex shoreline geometry. Our purpose in this study is to examine tides and currents in GCS and, in particular, identify the major forcing mechanisms for the residual currents. Toward this end, we use an unstructured-grid numerical model to reproduce the tides and currents, verify these results with observations and then use the model to separate the various forcing mechanisms. The physical forcing includes nonlinear generation from tides and tidal currents, differences in sea level between the Pacific Ocean and Tasman Sea boundaries, density variations, wind stress and river discharge into GCS. Each of these mechanisms is important in different areas.  相似文献   

20.
Suspended sediment-transport processes in Santa Monica and San Pedro Bay are analyzed using the sediment-transport capabilities of the Regional Oceanic Modeling System (roms). A one-month simulation for December 2001 has been carried out with a set of nested domains. The model inputs include tides, winds, surface waves, and idealized initial sediment conditions for sand and non-cohesive silt. Apart from the control run, the sensitivity of the results to surface waves, ripple roughness and bed armoring has been analyzed. From the control experiment, the horizontal transport of sand turns out to be limited to within a few km of the nearshore erosion zones. During high wave events, silt is transported over further distances and also partly offshelf in distinct plumes. The effectiveness of horizontal silt transport depends strongly on vertical mixing due to both surface wind stress and wave-enhanced bottom stress. High wave events coincident with strong winds (hence strong vertical mixing) are the most optimal conditions for sediment-transport. Excluding wave effects in the simulation shows that surface waves are the dominant factor in resuspending bed material on the Southern Californian shelves. The sensitivity experiments also show that the direct influence of additional ripple roughness on erosion and deposition is relatively weak. Switching off bed armoring locally results in increases of near-bottom concentrations by a factor of 20 for silt and a factor of 5 for sand as well as stronger spatial gradients in grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号