首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mineralogy of slightly metamorphosed manganese ore at the South Faizulino hydrothermalsedimentary deposit in the southern Urals has been studied; 32 minerals were identified. Quartz, hausmannite, rhodochrosite, tephroite, ribbeite, pyroxmangite, and caryopilite are major minerals; calcite, kutnahorite, alleghanyite, spessartine, rhodonite, clinochlore, and parsettensite are second in abundance. This mineralic composition was formed in the process of gradual burial of ore beneath the sequence of Middle Devonian-Lower Carboniferous rocks. The highest parameters of metamorphism are T ≈ 250°C and P ≈ 2.5 kbar. The relationships between minerals and their assemblages made it possible to reconstruct the succession of ore transformation with gradually increasing temperature and pressure. Manganese accumulated in the initial sediments as oxides and a gel-like Mn-Si phase. Rhodochrosite and neotocite were formed at the diagenetic stage. In the course of a further increase in temperature and pressure, neotocite was replaced with caryopilite; ribbeite, tephroite, pyroxmangite, and other silicates crystallized afterwards. In addition to the PT parameters, the formation of various metamorphic mineral assemblages was controlled by the Mn/(Mn + Si) ratio in ore and X CO2 in pore solution. The latter parameter was determined by the occurrence of organic matter in the ore-bearing rocks. Ore veinlets as products of local hydrothermal redistribution of Mn, Si, and CO2 were formed during tectonic deformations in the Middle Carboniferous and Permian.  相似文献   

2.
Mn-rich members of the pyrosmalite-family [(Mn, Fe)8Si6O15(OH, Cl)10], friedelite and schallerite have been identified as rock-forming minerals together with caryopilite, in several metamorphosed carbonate Mn-deposits. The phase assemblages and mineral compositions are described for eight of these localities each of which represents a distinct geologic situation. Friedelite is always Cl-bearing and occurs both as a prograde phase in low-grade metamorphic rocks (Pyrenees, Haute-Maurienne) and as a secondary phase formed by retrogressive replacement of primary anhydrous phases in higher-grade rocks. Schallerite, an Asbearing relative of friedelite, occurs in the greenschist metamorphic deposit of the Ködnitztal (Austria) together with other As-minerals. In these deposits, caryopilite is typically formed during retrograde metamorphism by alteration of, generally anhydrous, Mn-silicates. Based upon these occurrences, a qualitative petrogenetic grid for the system MnO-SiO2-CO2-H2O with the phases friedelite, caryopilite, pyroxmangite/rhodonite, tephroite, rhodochrosite, quartz, CO2, and H2O is proposed. The phase relations imply that Cl- (or As-) free friedelite is not stable in hydrous systems with respect to caryopilite. From the mineral assemblages containing hydrous Mn silicates, waterrich fluids are inferred during the retrograde metamorphic evolution of the investigated deposits. Chemical data for Mn-rich chlorites, which are basically members of the clinochlore-pennantite series which coexist with the pyrosmalite minerals, show the absence of intermediate Mn/Mg ratios. This supports the existence of a miscibility gap as previously hypothesized by other authors.  相似文献   

3.
A mineralogical investigation of metamorphosed manganese rocks was carried out at ore deposits related to the Devonian volcanic complexes of the Magnitogorsk paleovolcanic belt of the South Urals. The mineralogical appearance of these rocks is determined by three consecutively formed groups of mineral assemblages: (1) assemblages occupying the main volume of orebodies and formed during low-grade regional metamorphism (T = 200−250°C, P = 2–3 kbar); (2) assemblages of segregated and metasomatic veinlets that fill the systems of late tectonic fractures; and (3) assemblages of near-surface supergene minerals. Sixty-one minerals have been identified in orebodies and crosscutting hydrothermal veinlets. The major minerals are quartz, hematite, hausmannite, braunite, tephroite, andradite, epidote, rhodonite, caryopilite, calcite, and rhodochrosite. The mineral assemblages of metamorphosed manganese rocks (metamanganolites) are characterized. Chemical compositions of braunite, epidote-group minerals, piemontite, pyroxenes, rhodonite, pyroxmangite, and winchite are considered. The bibliography on geology and mineralogy of the South Ural manganese deposits is given.  相似文献   

4.
Garnet-bearing mineral assemblages are commonly observed in pelitic schists regionally metamorphosed to upper greenschist and amphibolite facies conditions. Modelling of thermodynamic data for minerals in the system Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O, however, predicts that garnet should be observed only in rocks of a narrow range of very high Fe/Mg bulk compositions. Traditionally, the nearly ubiquitous presence of garnet in medium- to high-grade pelitic schists is attributed qualitatively to the stabilizing effect of MnO, based on the observed strong partitioning of MnO into garnet relative to other minerals. In order to quantify the dependence of garnet stability on whole-rock MnO content, we have calculated mineral stabilities for pelitic rocks in the system MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O for a moderate range of MnO contents from a set of non-linear equations that specify mass balance and chemical equilibrium among minerals and fluid. The model pelitic system includes quartz, muscovite. albite, pyrophyllite, chlorite, chloritoid, biotite, garnet, staurolite, cordierite, andalusite, kyanite. sillimanite, K-feldspar and H2O fluid. In the MnO-free system, garnet is restricted to high Fe/Mg bulk compositions, and commonly observed mineral assemblages such as garnet–chlorite and garnet–kyanite are not predicted at any pressure and temperature. In bulk compositions with XMn= Mn/(Fe + Mg + Mn) > 0.01, however, the predicted garnet-bearing mineral assemblages are the same as the sequence of prograde mineral assemblages typically observed in regional metamorphic terranes. Temperatures predicted for the first appearance of garnet in model pelitic schist are also strongly dependent on whole-rock MnO content. The small MnO contents of normal pelitic schists (XMn= 0.01–0.04) are both sufficient and necessary to account for the observed stability of garnet.  相似文献   

5.
Moderately manganiferous siliceous pelagites near Meyers Pass, Torlesse Terrane, South Canterbury, New Zealand, have been metamorphosed in the prehnite–pumpellyite facies. A conodont colour index measurement suggests T max in the range 190–300 °C. Porphyroblastic manganaxinite, manganoan pumpellyite, manganoan chlorite and trace spessartine-rich garnet and sphalerite have formed in an extremely fine-grained quartz–albite–berthierine–phengite–titanite groundmass. Porphyroblastic manganaxinite semischists and schists are distinctive rocks in prehnite–pumpellyite to lower-grade greenschist and blueschist facies of New Zealand and Japan. Mn in the manganoan pumpellyites substitutes for Ca in W sites. Total Fe/(Fe+Mg) ratios in chlorite are dependent on oxidation state, being ≤0.22 in red hematitic hemipelagites, and ≥0.61 in low-f O2 grey metapelagites. In the low-f O2 metapelagites, manganoan berthierine with little or no chlorite is inferred in the groundmass and iron-rich chlorite occurs as porphyroblasts and veinlets, whereas in the red rocks, Mg-rich chlorite occurs both in groundmasses and veinlets. Variably high Si in the manganoan chlorites correlates with evidence for contaminant phases. The Mn content of chlorite contributing to garnet growth is dependent on metamorphic grade; incipient spessartine indicates a saturation value of 6–8% MnO in chlorite in low-f O2 rocks at Meyers Pass. Lower MnO contents are recorded for otherwise analogous rocks with increasing metamorphic grade, but at a given grade coexisting chlorite and garnet are richer in Mn where f O2 is high. Manganaxinite and manganoan pumpellyite also contributed to reactions forming grossular–spessartine solid solutions. Formation of garnet in siliceous pelagites is dependent on both Mn and Ca content. The spessartine component increases with grade into the greenschist facies. Partial recrystallization of berthierine to chlorite and the growth of porphyroblastic patches of other minerals was facilitated by brittle fracture and access of fluids to an otherwise impermeable matrix; to this extent the very low-grade metamorphism was episodic.  相似文献   

6.
Manganocummingtonite occurs with spessartine, quartz and pyrolusite in the Chikmara area, Sausar fold belt, central India. Its composition is [Ca0.3–0.35(Mg3.3–3.5Mn1.6–1.8Fe2+ 1.4–1.5)(Si7.931–7.997Aliv 0.003–0.069)O22(OH1.5–2.0F0.0–0.5)] being fairly rich in Ca, which is indicative of metamorphic temperature in the amphibolite facies. The garnet contains 77.5% spessartine, 13% almandine and minor andradite, grossular and pyrope components. Unusually, there is no carbonate, pyroxene, pyroxmangite, rhodonite, magnetite or hematite. The available Al in the rock stabilized garnet and this mineral incorporated minor Fe3+ present in the rock as andradite component. The manganocummingtonite-garnet pairs developed at ~600°C during amphibolite facies metamorphism in low $X_{CO_2 } $ system, stabilized with $X_{Mn/(Mn + Fe^{2 + } + Mg)} $ = 0.25 to 0.28 in the amphibole and 0.85 in the garnet and formed under unusually low fO 2 conditions for the Sausar region, near channelized fluids which deposited quartz may have controlled the fO 2 .  相似文献   

7.
Orogenic gold mineralization at the Damang deposit, Ghana, is associated with hydrothermal alteration haloes around gold‐bearing quartz veins, produced by the infiltration of a H2O–CO2–K2O–H2S fluid following regional metamorphism. Alteration assemblages are controlled by the protoliths with sedimentary rocks developing a typical assemblage of muscovite, ankerite and pyrite, while intrusive dolerite bodies contain biotite, ankerite and pyrrhotite, accompanied by the destruction of hornblende. Mineral equilibria modelling was undertaken with the computer program thermocalc , in subsets of the model system MnO–Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–CO2–H2O–TiO2–Fe2O3, to constrain conditions of regional metamorphism and the subsequent gold mineralization event. Metapelites with well‐developed amphibolite facies assemblages reliably constrain peak regional metamorphism at ~595 °C and 5.5 kbar. Observed hydrothermal alteration assemblages associated with gold mineralization in a wide compositional range of lithologies are typically calculated to be stable within P–T–X(CO2) arrays that trend towards lower temperatures and pressures with increasing equilibrium fluid X(CO2). These independent P–T–X(CO2) arrays converge and the region of overlap at ~375–425 °C and 1–2 kbar is taken to represent the conditions of alteration approaching equilibrium with a common infiltrating fluid with an X(CO2) of ~0.7. Fluid‐rock interaction calculations with M–X(CO2) diagrams indicate that the observed alteration assemblages are consistent with the addition of a single fluid phase requiring minimum fluid/rock ratios on the order of 1.  相似文献   

8.
The paper summarizes experimental and calculation data on the effect of oxygen fugacity on the origin of mineral assemblages in Mn-bearing rocks and demonstrates the possibility of application of these data to the reconstruction of conditions under which metalliferous deposits were metamorphosed. A new variant of the T-log\(f_{O_2 } \) diagram is proposed for the Mn-Si-O system, which differs from previous ones by the location of the lines for the formation (decomposition) of braunite and tephroite. These two minerals are the most universal indicators of oxygen fugacity during the metamorphism of Mn-bearing deposits, because these minerals are widespread in nature and can be formed in diverse environments: braunite at high \(f_{O_2 } \) values in the pore solution, and tephroite at low \(f_{O_2 } \) values. The occurrence of Mn oxides and rhodonite (pyroxmangite) in a rock makes it possible to constrain the oxygen fugacity range. An original T-log\(f_{O_2 } \) diagram is constructed for the Ca-Mn-Si-O system. As follows from this diagram, a Ca admixture expands the stability field of rhodonite toward higher oxygen fugacity values. Johannsenite can be formed in these rocks at even higher \(f_{O_2 } \). The stability of both minerals is constrained in the region of low \(f_{CO_2 } \). The paper reports data on the Fe-Si-O and Mn-Fe-Si-O systems and discusses the possibility of applying the results of experiments in the Mn-Al-Si-O system to the estimation of conditions under which andalusite, spessartine, and galaxite can be formed in Mn-bearing rocks. Data on the mineralogy of numerous Mn deposits metamorphosed under various PTX parameters indicate that the origin of Mn-bearing mineral assemblages depends not so much on the temperature and pressure as on the oxygen fugacity, which is, in turn, controlled primarily by the composition of the pristine sediments (the presence or absence of organic matter in them) and host rocks and depends on the permeability of the rocks to oxygen, the P-T conditions, and the duration of the metamorphic processes.  相似文献   

9.
The paper presents the results of study of ferromanganese carbonate rocks in the Sob area (Polar Urals), which is located between the Rai-Iz massif and the Seida–Labytnangi Railway branch. These rocks represent low-metamorphosed sedimentary rocks confined to the Devonian carbonaceous siliceous and clayey–siliceous shales. In terms of ratio of the major minerals, ferromanganese rocks can be divided into three varieties composed of the following minerals: (1) siderite, rhodochrosite, chamosite, quartz, ± kutnahorite, ± calcite, ± magnetite, ± pyrite, ± clinochlore, ± stilpnomelane; (2) spessartite, rhodochrosite, and quartz, ± hematite, ± chamosite; (3) rhodochrosite, spessartite, pyroxmanite, quartz ± tephroite, ± fridelite, ± clinochlore, ± pyrophanite, ± pyrite. In all varieties, the major concentrators of Mn and Fe are carbonates (rhodochrosite, siderite, kutnahorite, Mn-calcite) and chlorite group minerals (clinochlore, chamosite). The chemical composition of rocks is dominated by Si, Fe, Mn, carbon dioxide, and water (L.O.I.): total SiO2 + Fe2O 3 tot + MnO + L.O.I. = 85.6?98.4 wt %. The content of Fe and Mn varies from 9.3 to 55.6 wt % (Fe2O 3 tot + MnO). The Mn/Fe ratio varies from 0.2 to 55.3. In terms of the aluminum module AlM = Al/(Al + Mn + Fe), the major portion of studied samples corresponds to metalliferous sediments. The δ13Ccarb range (–30.4 to–11.9‰ PDB) corresponds to authigenic carbonates formed with carbon dioxide released during the microbial oxidation of organic matter in sediments at the dia- and/or catagenetic stage. Ferromanganese sediments were likely deposited in relatively closed seafloor zones (basin-traps) characterized by periodic stagnation. Fe and Mn could be delivered from various sources: input by diverse hydrothermal solutions, silt waters in the course of diagenesis, river discharges, and others. The diagenetic delivery of metals seems to be most plausible. Mn was concentrated during the stagnation of bottom water in basin-traps. Interruption of stagnation promoted the precipitation of Mn. The presence of organic matter fostered a reductive pattern of postsedimentary transformations of metalliferous sediments. Fe and Mn were accumulated initially in the oxide form. During the diagenesis, manganese and iron oxides reacted with organic matter to make up carbonates. Relative to manganese carbonates, iron carbonates were formed under more reductive settings and higher concentrations of carbon dioxide in the interstitial solution. Crystallization of manganese and iron silicates began already at early stages of lithogenesis and ended during the regional metamorphism of metalliferous sediments.  相似文献   

10.
It is generally thought that garnet in metapelites is produced by continuous reactions involving chlorite or chloritoid. Recent publications have suggested that the equilibrium temperatures of garnet‐in reactions may be significantly overstepped in regionally metamorphosed terranes. The growth of small spessartine–almandine garnet crystals on Mn‐siderite at the garnet isograd in graphitic metapelites in the Proterozoic Black Hills orogen, South Dakota, demonstrates that Mn‐siderite was the principal reactant that produced the initial garnet in the schists. Moreover, the positions of garnet compositions in isobaric, T–(C/H) pseudosections for the schists show that the temperature of the garnet‐in reaction from Mn‐siderite was overstepped minimally at the most. In the Black Hills, garnet was initially produced during regional metamorphism beginning at c. 1755 Ma due to the collision of Wyoming and Superior cratons, and was subsequently partially or fully re‐equilibrated at more elevated temperatures and pressures during intrusion of the Harney Peak Granite (HPG) at c. 1715 Ma. Garnet occurs in graphitic schists in garnet, staurolite and sillimanite zones, the latter being a product of contact metamorphism by HPG. During metamorphism, coexisting fluid contained both CO2 and CH4. In the garnet zone, garnet crystals contain petrographically distinct cores with inclusions of quartz, graphite and other minerals. Centres of the cores have distinctly elevated Y concentrations that mark the positions of garnet nucleation. The elevated Y is thought to have come from the Mn‐siderite onto which Y was probably absorbed during precipitation in an ocean. In the upper garnet and staurolite zones, the cores were overgrown by inclusion‐poor mantles. Mantles are highly zoned and have more elevated Fe and Mg and lower Mn and Ca than cores. The growth of mantles is attributed to late‐orogenic heating by leucogranite magmas and attendant influx of H2O that caused consumption of graphite in rock matrices. A portion of the Proterozoic terrane that includes the HPG is surrounded by four large faults. In this ‘HPG block’, garnet is inclusion‐poor and its composition does not preserve its early growth history. This garnet appears to have re‐equilibrated by internal diffusion of its major components and/or recrystallization of an earlier inclusion‐rich garnet. It has equilibrated within the kyanite stability range, and together with remnant kyanite in the high‐strain aureole of the HPG, indicates that the HPG block had a ≥6 kbar history. The HPG block has undergone decompression during emplacement of the HPG. The decompression is evident in occurrences of retrograde andalusite and cordierite in the thermal aureole of the HPG. The data support a polybaric metamorphic history of the Black Hills orogen with different segments of the orogen having their own clockwise P–T–t paths.  相似文献   

11.
Abstract The Siluro-Devonian Waits River Formation of north-east Vermont was deformed, intruded by plutons and regionally metamorphosed during the Devonian Acadian Orogeny. Five metamorphic zones were mapped based on the mineralogy of carbonate rocks. From low to high grade, these are: (1) ankerite-albite, (2) ankerite-oligoclase, (3) biotite, (4) amphibole and (5) diopside zones. Pressure was near 4.5kbar and temperature varied from c. 450° C in the ankerite-albite zone to c. 525° C in the diopside zone. Fluid composition for all metamorphic zones was estimated from mineral equilibria. Average calculated χco2[= CO2/(CO2+ H2O)] of fluid in equilibrium with the marls increases with increasing grade from 0.05 in the ankerite-oligoclase zone, to 0.25 in the biotite zone and to 0.44 in the amphibole zone. In the diopside zone, χCO2 decreases to 0.06. Model prograde metamorphic reactions were derived from measured modes, mineral chemistry, and whole-rock chemistry. Prograde reactions involved decarbonation with an evolved volatile mixture of χCO2 > 0.50. The χCO2 of fluid in equilibrium with rocks from all zones, however, was generally <0.40. This difference attests to the infiltration of a reactive H2O-rich fluid during metamorphism. Metamorphosed carbonate rocks from the formation suggests that both heat flow and pervasive infiltration of a reactive H2O-rich fluid drove mineral reactions during metamorphism. Average time-integrated volume fluxes (cm3 fluid/cm2 rock), calculated from the standard equation for coupled fluid flow and reaction in porous media, are (1) ankerite-oligoclase zone: c. 1 × 104; (2) biotite zone: c. 3 × 104; (3) amphibole zone: c. 10 × 104; and diopside zone: c. 60 × 104. The increase in calculated flux with increasing grade is at least in part the result of internal production of volatiles from prograde reactions in pelitic schists and metacarbonate rocks within the Waits River Formation. The mapped pattern of time-integrated fluxes indicates that the Strafford-Willoughby Arch and the numerous igneous intrusions in the field area focused fluid flow during metamorphism. Many rock specimens in the diopside zone experienced extreme alkali depletion and also record low χCO2. Metamorphic fluids in equilibrium with diopside zone rocks may therefore represent a mixture of acid, H2O-rich fluids given off by the crystallizing magmas, and CO2-H2O fluids produced by devolatilization reactions in the host marls. Higher fluxes and different fluid compositions recorded near the plutons suggest that pluton-driven hydrothermal cells were local highs in the larger regional metamorphic hydrothermal system.  相似文献   

12.
Whole-rock major element chemical analyses of progressively metamorphosed impure carbonate rocks and pelitic schists, collected from the same metamorphic terrain, reveal similarities and differences in the chemical response of these rock types to the metamorphic event. Relative to a constant aluminum reference frame, both schist and carbonate exhibit no detectable change in their contents of Fe, Mg, Ti, Si, and Ca with change in metamorphic grade. Carbonate rocks become progressively depleted in K and Na with increasing grade of metamorphism, while schists exhibit no statistically significant change in their contents of K and Na. Both rock types become depleted in volatiles (principally CO2 and H2O) with increasing grade.Whole-rock chemical data permit two mechanisms for migration of K and Na from the carbonate rocks during metamorphism: (a) diffusion of alkalis from carbonate to adjacent schist; (b) transport of alkalis by through-flowing metamorphic fluid (infiltration). Mineral equilibria in schist and metacarbonate rock from the same outcrops allow calculation of the affinity for cation exchange between the two rock types during metamorphism. Measured affinities indicate that if mass transport of K and Na occurred by diffusion, chemical potential gradients would have driven the alkalis from schist into carbonate rock. Because diffusion cannot produce the observed chemical trends in the metacarbonates, K and Na are believed to have been removed during metamorphism by infiltration.The disparity in chemical behavior between the pelitic schists and metacarbonate rocks may be a result of enhanced fluid flow through the carbonates. The carbonate rocks may have acted as metamorphic aquifers; the greater flow of fluid through them would then have had a correspondingly greater effect on their whole-rock chemistry.  相似文献   

13.
Calc-silicate boudins from the Rauer Group, East Antarctica, were metamorphosed under granulite facies conditions during late Proterozoic (ca. 1,000 Ma) M3 metamorphism. Boudin cores contain low to moderate aCO 2 assemblages including wollastonite, grossularandradite (grandite) garnet, clinopyroxene, scapolite, plagioclase, quartz±calcite. Petrological and stable isotopic evidence suggests that these core assemblages resulted from pre-peak M3 infiltration of water-rich fluids; there is no evidence for a pervasive fluid phase under peak M3 conditions. The boudins are separated from the surrounding Fe-rich pelites and semi-pelites by a series of concentric, high-variance reaction zones developed under peak M3 conditions. Variations in mineral assemblage, mineral composition and whole rock composition across these zones suggest that they formed by diffusional masstransfer, controlled principally by a chemical potential gradient in Ca across the original calc-silicate-paragneiss lithological boundary. As a consequence of the nearcomplete decarbonation of the calc-silicatesbefore the M3 peak, development of the diffusion-controlled reaction zones did not liberate significant CO2 during granulite facies metamorphism. Similar calcite-poor, low aCO 2 calc-silicate horizons in other granulite facies terrains are unlikely to have been important local fluid sources during deep crustal metamorphism.  相似文献   

14.
The geological position, composition of mineral assemblages, and typomorphism of major minerals from garnet-bearing rocks at the Berezitovoe gold-base-metal deposit in the Upper Amur Region have been studied in detail. These are ore-bearing metasomatic rocks and metamorphosed porphyritic dikes. The garnet-bearing metasomatic rocks reveal zoning, which is caused by various degrees of metasomatic transformation of the Paleozoic porphyritic granodiorite that hosts the ore zone. The metasomatic replacement of granodiorite was accompanied by loss of Na, Ca, Ba, Sr and gain of K, Mn, and Rb. Garnet-bearing metamorphosed intermediate dikes occur within the metasomatic zone. The PT conditions of metamorphism and metasomatism are similar and estimated at 3.9 kbar and 500°C from various mineral equilibria. The results of physicochemical simulation of garnet-bearing mineral assemblages carried out by minimizing the Gibbs free energy and the geological data show that garnet-bearing mineral assemblages arose at the Berezitovoe deposit as a result of local high-temperature thermal metamorphism of previously formed low-temperature metasomatic rocks close in composition to classic beresite. In this connection, we propose considering garnet-bearing metasomatic rocks as high-temperature metamorphosed beresites.  相似文献   

15.
The article describes the thermal metamorphism of siliceous carbonate rocks near the dolerite intrusive body in Eastern Siberia. The mineral associations at the immediate contact with dolerite are the following: wollastonite+rankinite, rankinite+spurrite (+melilite?), spurrite+melilite+merwinite+calcite and merwinite+monticellite+melilite+calcite. The melilite in these associations is usually unzoned; its composition being essentially gehlenitic. During the regressive stage of contact metamorphism new akermanite-rich melilite and calcite were formed by replacement of merwinite and earlier gehlenitic melilite through participation of CO2. The newly forming melilite grains have sharp compositional zoning. The origin of zoning was connected with the fall of temperature and decrease of the mole fraction of CO2 in the fluid equilibrated with the minerals.  相似文献   

16.
Fluid inclusions in mineralized graphite-sillimanite-mica schist from the Rampura-Agucha Pb-Zn-(Ag) deposit, Rajasthan, northwest India, have been investigated by microthermometry and Raman microspectrometry. Three different main types of fluid inclusions in quartz can be distinguished: (1) gaseous (CO2, partially mixed with CH4-N2), (2) low salinity aqueous inclusions (0–8 eq. wt% NaCl) and (3) high salinity aqueous inclusions (NaCl ± MgCl2-CaCl2). Low density CO2-rich and low salinity H2O inclusions are contemporaneous and occur, together with CH4-N2 inclusions, in close association with sulfide mineral inclusions. This indicates immiscibility between the gaseous and aqueous phase and participation of these fluids during the deposition or remobilization of the ore, which occurred over a wide P (1220 to 200 bar) and T (450 to 250 °C). Raman spectra of graphite indicate upper greenschist-facies metamorphic conditions, although host rocks have been metamorphosed at upper amphibolite-facies metamorphic conditions. This indicates that graphite re-equilibrated with the CO2-rich phase during retrograde metamorphism.  相似文献   

17.
Aluminous pelitic rocks of the Late Precambrian Horsethief Creek Group of southeastern British Columbia contain the assemblage chloritoidmuscovite-paragonite-quartz-chlorite (biotite zone). Additional members of the assemblage may include graphite, Fe-Mg carbonate, rutile, ilmenite and pyrite. No albite was detected. Lower grade pelitic rocks (chlorite zone) contain muscovite-chlorite and rare paragonite.Chloritoids from carbonate-free assemblages show a narrow range of composition (85±5 mol % Fe-chtd) and most porphyroblasts are zoned with higher Mn in cores and higher Mg in rims. For eight chloritoid-chlorite pairs, K D = (Mg/Fe chtd/Mg/Fe chl) = 0.188±0.0234.Correlation of these mineral assemblages with experimental and computed phase equilibria and oxygen isotope temperatures suggest a minimum pressure near 4.5 Kbar, a minimum temperature near 335 ° C and an upper limit on temperature near 460 ° C. Variation in X CO 2 content of fluids attending metamorphism is inferred from the alternate appearance of either Fe-Mg carbonate + rutile or ilmenite-bearing assemblages. The assemblage paragonite-chloritoid-quartz-Fe-Mg carbonate-rutile is inferred to be stable at a T near 360 ° C, an X CO 2 near 0.9 and P near 5 Kbar.  相似文献   

18.
GOLDIE  R. 《Journal of Petrology》1979,20(2):227-238
The Archaean Flavrian and Powell Plutons are believed to beportions of a single intrusion which has been tectonically disrupted.Both plutons were metamorphosed during the Kenoran Orogeny.The metamorphic minerals formed in the Flavrian Pluton at thistime survived later retrograde metamorphism because this plutonconsists mostly of massive rocks. In the Powell Pluton, however,pervasive fracturing permitted recrystallization of the originalmetamorphic minerals. A model system of 10 components, 10 mineral phases, and CO2and H2O provides a suitable basis for mapping isograds in theFlavrian Pluton. According to this model, the stability of amineral assemblage is controlled by temperature and fluid composition;and the distribution of mineral assemblages is related to variationsin these parameters. Application of the model to the plutonsrevealed the presence of 3 areas of high metamorphic temperatures,and a zone where the fluid composition was relatively high inCO2.  相似文献   

19.
An inescapable consequence of the metamorphism of greenstone belt sequences is the release of a large volume of metamorphic fluid of low salinity with chemical characteristics controlled by the mineral assemblages involved in the devolatilization reactions. For mafic and ultramafic sequences, the composition of fluids released at upper greenschist to lower amphibolite facies conditions for the necessary relatively hot geotherm corresponds to those inferred for greenstone gold deposits (XCO2= 0.2–0.3). This result follows from the calculation of mineral equilibria in the model system CaO–MgO–FeO–Al2O3–SiO2–H2O–CO2, using a new, expanded, internally consistent dataset. Greenstone metamorphism cannot have involved much crustal over-thickening, because very shallow levels of greenstone belts are preserved. Such orogeny can be accounted for if compressive deformation of the crust is accompanied by thinning of the mantle lithosphere. In this case, the observed metamorphism, which was contemporaneous with deformation, is of the low-P high-T type. For this type of metamorphism, the metamorphic peak should have occurred earlier at deeper levels in the crust; i.e. the piezothermal array should be of the ‘deeper-earlier’type. However, at shallow crustal levels, the piezothermal array is likely to have been of ‘deeper-later’type, as a consequence of erosion. Thus, while the lower crust reached maximum temperatures, and partially melted to produce the observed granites, mid-crustal levels were releasing fluids prograde into shallow crustal levels that were already retrograde. We propose that these fluids are responsible for the gold mineralization. Thus, the contemporaneity of igneous activity and gold mineralization is a natural consequence of the thermal evolution, and does not mean that the mineralization has to be a consequence of igneous processes. Upward migration of metamorphic fluid, via appropriate structurally controlled pathways, will bring the fluid into contact with mineral assemblages that have equilibrated with a fluid with significantly lower XCO2. These assemblages are therefore grossly out of equilibrium with the fluid. In the case of infiltrated metabasic rocks, intense carbonation and sulphidation is predicted. If, as seems reasonable, gold is mobilized by the fluid generated by devolatilization, then the combination of processes proposed, most of which are an inevitable consequence of the metamorphism, leads to the formation of greenstone gold deposits predominantly from metamorphic fluids.  相似文献   

20.
Mineralogical and mineral chemical evidence for prograde metamorphism is rarely preserved in rocks that have reached ultrahigh‐temperature (UHT) conditions (>900 °C) because high diffusion and reaction rates erase evidence for earlier assemblages. The UHT, high‐pressure (HP) metasedimentary rocks of the Leverburgh belt of South Harris, Scotland, are unusual in that evidence for the prograde history is preserved, despite having reached temperatures of ~955 °C or more. Two lithologies from the belt are investigated here and quantitatively modelled in the system NaO–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O: a garnet‐kyanite‐K‐feldspar‐quartz gneiss (XMg = 37, A/AFM = 0.41), and an orthopyroxene‐garnet‐kyanite‐K‐feldspar quartzite (XMg = 89 A/AFM = 0.68). The garnet‐kyanite gneiss contains garnet porphyroblasts that grew on the prograde path, and captured inclusion assemblages of biotite, sillimanite, plagioclase and quartz (<790 °C, <9.5 kbar). These porphyroblasts preserve spectacular calcium zonation features with an early growth pattern overgrown by high‐Ca rims formed during high‐P metamorphism in the kyanite stability field. In contrast, Fe‐Mg zonation in the same garnet porphyroblasts reflects retrograde re‐equilibration, as a result of the relatively faster diffusivity of these ions. Peak PT are constrained by the occurrence of coexisting orthopyroxene and aluminosilicate in the quartzite. Orthopyroxene porphyroblasts [y(opx) = 0.17–0.22] contain sillimanite inclusions, indicative of maximum conditions of 955 ± 45 °C at 10.0 ± 1.5 kbar. Subsequently, orthopyroxene, kyanite, K‐feldspar and quartz developed in equilibrated textures, constraining the maximum pressure conditions to 12.5 ± 0.8 kbar at 905 ± 25 °C. P–T–X modelling reveals that the mineral assemblage orthopyroxene‐kyanite‐quartz is compositionally restricted to rocks of XMg > 84, consistent with its very rare occurrence in nature. The preservation of unusual high P–T mineral assemblages and chemical disequilibrium features in these UHT HP rocks is attributed to a rapid tectonometamorphic cycle involving arc subduction and terminating in exhumation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号