首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

The results of SHRIMP U-Pb ages and in situ Hf isotope of zircons from three granites in the southern Manzhouli region of northeast China, provide new data to understand the subduction process of Mongol-Okhotsk Plate beneath the Erguna massif. SHRIMP U-Pb zircon geochronology results yield an age of 265.5 Ma (middle Permian) for fine-grained monzogranite. Rocks from the Early–Middle Triassic are mainly granodiorite (247.4 ± 4.6 and 249.3 ± 4.9 Ma), the granites are with SiO2 = 60.0–77.4 wt.%, Al2O3 = 12.3–16.8wt.% and Na2O/K2O = 0.7–1.9. Chemically, they are metaluminous to peraluminous and belong to the high-K calc-alkaline series. Enrichments in the large ion lithophile elements (e.g., Rb, Ba, and K) and depletions in the high field strength elements (e.g., Nb, Ta, and Ti) are typical for these rock types. The monzogranite (~265 Ma) and granodiorite (~247 Ma) contain zircons with εHf(t) values of 6.3–8.5 and 5.1–7.9, yielding TDM2 model ages of 888–752 and 958–774 Ma, respectively. These geochemical and zircon Hf isotopic data indicate that primary magmas for Middle Permian–Early Triassic granites crystallized from primary magmas generated by Neoproterozoic crustal materials, formed in an active continental margin setting. The andesite of the Gegenaobao formation is similar with the Izu–Bonin–Mariana arc, relating to subduction initiation. Based on the characteristics of exposed rocks and zircon U-Pb ages of andesite and granitoid rocks in the study area, we conclude the onset subduction of Mongol-Okhotsk Plate beneath the Erguna massif may occur at early-middle Permian.  相似文献   

2.
Twenty granodioritic rocks and one amphibolitic enclave of the “basement” of the Suomussalmi-Kuhmo Archaean (2.65 Ga) greenstone belts (central-eastern Finland), have been chosen together with one greenstone sample for Rb-Sr and Sm-Nd geochronological and isotopic studies.The granitoïd rocks are subdivided into three groups: two generations of grey gneisses and a post-belt augen gneiss. The Rb-Sr ages of the first and second generation of grey gneisses are 2.86 ± 0.09 and 2.62 ± 0.07 Ga, respectively. These results are corroborated by Sm-Nd data. The post-belt augen gneiss gives an age of 2.51 ± 0.11 Ga. The results show that the two generations of grey gneisses, the greenstone belts and the post-greenstone augen gneiss, were developed over a period > 350 Ma. The two generations of grey gneisses show identical ISr values (0.7023 ± 8 and 0.7024 ± 6) which contrast with that of the augen gneiss (0.7049 ± 8). The low ISr and the near-chondritic ?TCHUR values indicate that the grey gneisses cannot derived from much older continental materials. Trace element studies suggest that these grey gneisses have had a multi-stage development. The augen gneiss with a moderately high ISr is likely to be derived from a granodiorite originated by partial melting of older sialic crust. The more probable parent rock seems to be the first generation grey gneisses. The ISr and average Rb/Sr values preclude the greenstone belt and the second generation of grey gneisses as the protolith.  相似文献   

3.
在欧龙布鲁克地块东部地区的正片麻岩中识别出呈透镜状产出的基性麻粒岩,部分已转变为斜长角闪岩。其主要矿物组合为单斜辉石、斜方辉石、斜长石、角闪石等,为典型中低压麻粒岩相组合。锆石SHRIMP U-Pb定年得到基性麻粒岩1928±9Ma的变质年龄,片麻岩围岩得到了1927±20Ma的变质年龄,以及2368±5Ma、2377±7Ma的岩浆结晶年龄。片麻岩锆石Hf同位素数据显示变质锆石及岩浆锆石均具有相似的Hf同位素成分,其二阶段模式年龄为2590~2830Ma,显示其可能源于太古代地壳物质的再造。欧龙布鲁克地块古元古代岩浆及变质演化历史与塔里木克拉通及华北克拉通很高的相似性,预示着在古元古代三者可能具有一定的亲缘性。  相似文献   

4.
The Laocheng granitoid pluton is located in the South Qinling tectonic domain of the Qinling orogenic belt,southern Shaanxi Province,and consists chiefly of quartz diorite,granodiorite and monzogranite.A LA-ICP-MS zircon U-Pb isotopic dating,in conjunction with cathodoluminescence images,reveals that the quartz diorite and granodiorite were emplaced from 220 Ma to 216 Ma,while the monzogranite was emplaced at~210 Ma.In-situ zircon Hf isotopic analyses show that theε_(Hf)(t) values of the quartz diorite a...  相似文献   

5.
The Chinese Altai in northwestern Xinjiang has numerous outcrops of granitoids which provide critical information on accretionary orogenic processes and crustal growth of the Central Asian Orogenic Belt.Zircon U-Pb ages, Hf-isotopic compositions and whole-rock geochemistry of monzogranite and granodiorites in the Qinghe County are employed to elucidate Paleozoic tectonics of the Chinese Altai. Granodiorites have crystallization ages of 424.6 ± 3.1 Ma(MSWD = 0.23) and 404.0 ± 3.4 Ma(MSWD = 0.18);monzogranite was emplaced in the early Permian with a crystallization age of 293.7 ± 4.6 Ma(MSWD = 1.06). Both granodiorites and monzogranite are I-type granites with A/CNK ratios of 0.92 -0.97 and 1.03 -1.06, respectively. They also show similar geochemical features of high HREE and Y contents, low Sr contents and Sr/Y ratios, as well as enrichment of Cs, Rb, Th and U, and depletion of Nb, Ta, P and Ti.These geochemical features indicate that the monzogranite and granodiorites were formed in an arc setting related to subduction. The gneissic monzogranites display high SiO_2 and K_2 O contents, and belong to the high-K calc-alkaline series. In the chondrite normalized REE distribution pattern, the monzogranite samples exhibit enrichment of LREE with strong negative Eu anomalies(σE u =0.44 -0.53), zircon εHf(t) values from +7.24 to +12.63 and two-stage Hf model ages of 463 -740 Ma. This suggests that the monzogranite was generated from the mixing of pelitic and mantle material. The granodiorite samples are calc-alkaline granites with lower contents of Si O_2 and Na_2 O + K_2 O, higher contents of TiO_2, Fe_2O_3~t, MgO and CaO compared to the monzogranite samples. They also show enrichment of LREE and moderate negative Eu anomalies(σE u= 0.54 =0.81), as well as slightly higher differentiation of LREE than that of HREE. The425 Ma granodiorite has zircon εHf(t) values from -0.51 to +1.98 and two-stage Hf model ages of 1133 -1240 Ma, whereas the 404 Ma granodiorite displays those of +2.52 to +7.50 and 816 -1071 Ma.Geochemistry and zircon Hf isotopic compositions indicate that granodiorites were formed by partial melting of juvenile lower crust. Together with regional geology and previous data, the geochemical and geochronological data of the monzogranite and granodiorites from this study suggest long-lived subduction and accretion along the Altai Orogen during ca. 425 -294 Ma.  相似文献   

6.
孟恩陶勒盖岩体侵位于兴蒙造山带晚古生代浅变质岩系内,根据岩石类型划分为中细粒英云闪长岩、花岗闪长岩和二长花岗岩3个填图单位,具有典型S型花岗岩的矿物组成和岩石化学特征.花岗闪长岩和二长花岗岩LA-ICP-MS锆石U-Pb同位素年龄测定结果分别为234±1 Ma和230±1 Ma,时代为中三叠世,代表孟恩陶勒盖岩体的侵位时代.  相似文献   

7.
海南岛地处华南陆块南缘,紧邻印支陆块,大地构造位置独特,其地质特征一直备受关注。厘定该地区中元古代岩石的成因对恢复华南中元古代构造演化具有重要意义。海南岛西部公爱地区花岗质岩石与围岩抱板群变沉积岩呈侵入接触关系,绝大部分岩石片麻状构造发育、韧性剪切标志明显。这些岩石高SiO_2、K_2O、Al_2O_3、Rb、U,贫CaO、MgO、FeO~T、TiO_2,铝饱和指数A/CNK1.1,具S型花岗岩特点,稀土元素配分模式类似于抱板群变沉积岩,全岩ε_(Nd)(t)=-2.02~-2.38,Nd同位素二阶段亏损模式年龄(t_(DM2)~(Nd))为2.2~2.3 Ga,锆石Hf同位素ε_(Hf)(t)=-5.4~4.0,Hf同位素二阶段亏损模式年龄t_(DM2)~(Hf)=1.71~2.53 Ga。对四个代表性花岗片麻岩样品进行LA-ICP-MS锆石U-Pb定年,其~(207)Pb/~(206)Pb加权平均年龄为1444±15 Ma、1439±19 Ma、1433±31 Ma和1450±23 Ma,属中元古代。综合区域研究资料认为,海南岛西部公爱地区中元古代花岗质岩石的熔融源区为类似抱板群变沉积岩组分,推测其产出于大陆边缘构造背景,是哥伦比亚超大陆边缘的增生产物。  相似文献   

8.
High-K granitoids are among the most abundant rock types in many Archean cratons. Late Neoarchean monzogranitic to syenogranitic gneisses with high-K affinities are widely distributed in the Anshan, Suizhong, Qinhuangdao, and Aolaishan areas on the northeastern margin of the North China Craton (NCC). In this contribution, we present an integrated study of zircon U–Pb–Hf–O isotopic compositions and whole-rock elemental compositions of amphibolites and trondhjemitic and monzo–syenogranitic gneisses of the Jinzhou area in the metamorphic basement of eastern Hebei–western Liaoning, with the aim of constraining their petrogenesis and geodynamic setting. Emplacement ages of the amphibolites and trondhjemitic–monzogranitic gneisses are 2543 ± 27, 2532 ± 19, and 2513 ± 7 Ma, respectively. The amphibolites are tholeiitic in composition with SiO2 contents of 49.7–50.8 wt%, variable degrees of light rare-earth-element (LREE) enrichment and high-field-strength element (HFSE) depletion, and high zircon εHf(t) values of +2.6 to +6.3, suggesting a depleted lithospheric mantle origin. The major- and trace-element compositions of the trondhjemitic gneisses are similar to those of the low-pressure tonalite–trondhjemite–granodiorite (TTG) suite. The zircon Hf (εHf(t) = +1.6 to +3.9) and O (δ18O = +3.76‰ to +5.73‰) isotopic compositions of the trondhjemitic gneisses indicate a juvenile basaltic source at the base of a thickened magmatic arc. The monzogranitic gneisses differ from their TTG counterparts in that they have lower SiO2 and higher MgO, K2O, and incompatible-element (especially Ba, Th, Sr, P, and LREE) contents. They also have slightly evolved zircon εHf(t) values (+0.6 to +3.8) and higher δ18O values (+4.69‰ to +6.13‰). These features suggest that the monzogranitic gneisses represent sanukitoid-type rocks, with a mantle source modified by crust-derived melts. The weakly deformed syenogranitic gneisses are characterized by high SiO2 and K2O, and very low MgO, Cr, and Ni contents, suggesting that they were formed by partial melting of local TTG rocks. Our results, together with those of previous investigations, suggest that the 2554–2513 Ma low- to high-K magmatism in the Jinzhou area most likely originated in an arc–back-arc tectonic setting on the northern margin of the NCC. The large volumes of high-K granitoids in eastern Hebei–western Liaoning are related to extensive mantle–crust interactions and crustal reworking in such a setting.  相似文献   

9.
内蒙古塔尔气地区位于大兴安岭中段兴安地块上,该区出露大面积晚古生代花岗岩。其锆石的 LA-ICP-MS U--Pb 测年结果显示,正长花岗岩形成于335 ± 5 Ma,二长花岗岩形成于313 ± 3 Ma,花岗闪长岩形成于320 ± 1 Ma,表明塔尔气地区花岗岩为晚古生代多期花岗质岩浆活动的产物。花岗质岩浆的就位与古生代时期古亚洲洋闭合中洋壳俯冲作用有重要关系。花岗闪长岩的176Hf /177Hf 为0. 282 833 ~ 0. 282 951,εHf ( t) 为+ 1. 1 ~ + 5. 6,TDM2 为525 ~ 752 Ma,暗示花岗岩的源岩为新元古代-早古生代时期亏损地幔来源的基性下地壳物质。结合目前已发表的花岗岩Sr --Nd 和锆石Hf 同位素资料,认为兴安地块可能从中元古代就开始地壳增生,峰期集中在新元古代-早古生代。  相似文献   

10.
U-Pb age and isotope-geochemical features were determined for zircon from kyanite gneisses and amphibolites of the Chupa Sequence of the Belomorian mobile belt (BMB) of the Fennoscandian shield. The cores of the zircon from the gneisses marks the Neoarchean events within 2700–2800 Ma known in the BMB, while those of the amphibolites correspond to the age of magmatic crystallization (2775 ± 12 Ma). The inner rims of zircon from the amphibolites and gneisses likely record two different Neoarchean metamorphic events (2650 ± 8 and 2599 ± 10 Ma, respectively). The outer rims record Paleoproterozoic metamorphism with an age of 1890 Ma, which formed the modern appearance and mineral assemblages of the rock association. The value of δ18O in the zircon from the gneiss is 8.6‰ in cores, slightly decreases to 8.0‰ in inner rims, and sharply decreases to 3.9‰ in outer rims. The value of δ18O in the zircon from the amphibolite is around 6.2‰ in cores, increases up to 8.6 in inner rims, and decreases to 5.2‰ in outer rims. A significant decrease of δ18O is likely related to the anomalous composition of Svecofennian metamorphic fluid restricted to local shear zones. The geochemical features of the zircons in combination with their morphology and anatomy make it possible to distinguish zircon generations of different age and change in metamorphic environments.  相似文献   

11.
The Río Negro-Juruena Province (RNJP) occupies a large portion of the western part of the Amazonian Craton and is a zone of complex granitization and migmatization. Regional metamorphism, in general, occurred in the upper amphibolite facies. The granites and gneisses of the RNJP yield Rb-Sr and Pb-Pb whole-rock isochron dates ranging from 1.8 Ga to 1.55 Ga, with initial 87Sr/86Sr ratios of ~ 0.703 and a single-stage model μ1 value of ~ 8.1. In order to improve the geochronological control, SHRIMP U-Pb zircon ages, conventional U-Pb zircon ages, and additional Pb-Pb whole-rock isochron ages were determined for samples of granitoids and gneisses from the Papuri-Uaupés and Guaviare-Orinoco rivers areas (northern part of the province) and Jamari-Machado rivers and Pontes de Lacerda areas (southern part). The granitoids from the northern part of the province yield conventional U-Pb zircon ages of 1709 ± 17 Ma and 1521 ± 31 Ma, and SHRIMP U-Pb concordant zircon results of 1800 ± 18 Ma. Samples of gneissic rocks from the southern part of the RNJP yielded SHRIMP U-Pb concordant ages of 1750 ± 24 Ma and 1570 ± 17 Ma and a Pb-Pb whole-rock isochron age of 1717 ± 120 Ma. These new U-Pb and Pb-Pb results confirm the previous Rb-Sr and Pb-Pb geochronological evidence that the main magmatic episodes within the RNJP occurred between 1.8 and 1.55 Ga, and suggest that this crustal province constitutes a segment of continental crust newly added to the Amazonian Craton at the end of the Early Proterozoic. In the area of the RNJP, there are several anorogenic rapakivi-type granite plutons. Because of the absence of recognized Archean material within the basement rocks, it is reasonable to consider the Early to Middle Proterozoic continental crust as the magmatic source for the rapakivi granite intrusions.  相似文献   

12.
258高地金矿床地处黑龙江省完达山成矿带东部,矿化与岩浆侵入活动密切相关。文章利用锆石LA-ICP-MS U-Pb定年方法,对258高地金矿区的二长花岗岩、花岗闪长岩及闪长玢岩进行了年代学研究,获得258金矿区花岗闪长岩的成岩年龄为(118.3±1.1)Ma;3件二长花岗岩样品的成岩年龄分别为(130.5±0.8)Ma、(122.1±0.7)Ma、(118.0±0.9)Ma;2件闪长玢岩的成岩年龄分别为(119.5±1.3)Ma、(107.4±2.2)Ma,表明本区中酸性岩体侵位时代介于131~107 Ma,与西太平洋构造域的早白垩世演化有关。定年结果同时表明矿区存在3期岩浆活动,其中122~118 Ma的二长花岗岩与花岗闪长岩、闪长玢岩的年龄在误差范围内一致,且与金矿成矿关系密切。岩石地球化学显示区内的中酸性侵入岩均为高钾钙碱性过铝质岩石,花岗闪长岩和二长花岗岩具有重熔型岩浆岩的特征,可能是加厚地壳物质部分熔融的产物;闪长玢岩脉具有典型壳幔源岛弧岩浆岩的特点。综合研究认为258高地金矿床形成于与板块俯冲有关的活动大陆边缘环境。  相似文献   

13.
刘平华  邹雷  田忠华  冀磊  施建荣 《地质通报》2019,38(10):1691-1710
乌拉山岩群是狼山地区最重要的前寒武纪变质基底之一,准确测定其原岩成岩与变质时代,对于进一步探讨狼山地区前寒武纪地质演化具有重要的意义。对狼山地区乌拉山岩群角闪黑云斜长片麻岩及其伴生的花岗质浅色脉体进行了岩石学和锆石U-Pb年代学研究。碎屑锆石U-Pb定年和野外地质调查表明,狼山地区乌拉山岩群角闪黑云斜长片麻岩碎屑锆石年龄介于2591~1800Ma之间,其中最小一组碎屑锆石年龄为1873Ma,结合其约270Ma的变质年龄,初步限定乌拉山岩群角闪黑云斜长片麻岩的原岩沉积年龄为1873~270Ma。综合新的研究资料,认为狼山地区乌拉山岩群除存在新太古代—古元古代变质岩外,可能还存在中元古代—晚古生代变沉积岩。锆石阴极发光图像与U-Pb定年结果综合表明,角闪黑云斜长片麻岩中发育大量变质锆石,获得的206Pb/238U年龄加权平均值为269±4Ma,代表狼山地区乌拉山岩群遭受晚古生代末期角闪岩相变质作用的时代,可能与华北板块与西伯利亚板块晚古生代末期碰撞造山作用有关。此外,采用预剥蚀方法,在乌拉山岩群高硅花岗质浅色脉体高U锆石中,获得的~(206)Pb/~(238)U年龄加权平均值为264±3Ma,被解释为乌拉山岩群花岗质浅色脉体的形成时代,代表本区晚古生代造山作用由同碰撞挤压向碰撞后伸展转换的时限。  相似文献   

14.
东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义   总被引:5,自引:0,他引:5  
应用激光烧蚀多接收器电感耦合等离子体质谱(LA-MC-ICPMS)方法,对东昆仑五龙沟地区花岗岩样品进行了锆石 U-Pb 定年研究。结果表明,黄龙沟中部的糜棱岩化二长花岗岩(B20-14)中岩浆锆石206Pb/238U年龄平均值为(417.7±2.0) Ma,黄龙沟上部的糜棱岩化二长花岗岩(B21-2)中岩浆锆石206Pb/238U年龄平均值为(419.7±2.3) Ma,深水潭粗中粒二长花岗岩(B20-8)中岩浆锆石206Pb/238U 年龄平均值为(419.9±2.0) Ma,红旗沟中部的粗中粒二长花岗岩(B25-9)岩浆锆石206Pb/238U年龄平均值为(419.0±2.0) Ma。它们代表了五龙沟地区所研究花岗岩的形成年龄,其形成时代均为晚志留世,记录了东昆仑早古生代的岩浆活动。本文获得的东昆仑五龙沟地区的晚志留世花岗岩可能与东昆仑早古生代洋盆闭合后的碰撞造山作用有关。花岗岩中1861 Ma、1666 Ma古元古代继承锆石的发现,表明东昆仑造山带的基底物质为古元古代。  相似文献   

15.
邦铺斑岩型钼(铜)矿床位于甲玛铜多金属矿床北东约30 km处,与钼(铜)成矿有关的岩体主要为二长花岗斑岩,次为花岗闪长斑岩及闪长(玢)岩.通过对二长花岗斑岩体进行LA-ICP-MS锆石U-Pb年龄测试,获得了含矿母岩的年龄,二长花岗斑岩的26颗锆石206Pb/238U加权平均年龄为(16.23±0.19)Ma(MSWD...  相似文献   

16.
通过LA-ICP-MS方法对柴北缘全吉地块基底的斜长角闪岩和花岗闪长岩进行了锆石U-Pb年代学及锆石微区微量元素的研究。斜长角闪岩中的岩浆锆石上交点年龄为2 396±26 Ma,代表了锆石结晶的年龄,下交点为905±140 Ma,代表了锆石发生铅丢失事件的年龄。其岩浆锆石具有U/Yb较高(0.1~1),Hf值较低(10 000×10~(-6)),U值较低(150×10~(-6))的特点,显示其岩浆源区与富集地幔密切相关。在锆石微量元素判别图解中数据主要落在陆弧区和洋岛区,指示其形成的构造环境为弧后盆地。花岗闪长岩中岩浆锆石的加权平均年龄为484±21 Ma,岩浆锆石具有U/Yb较高(1)和U值较高(平均值为640×10~(-6))的特点,显示岩浆源区为典型陆壳。锆石微量元素判别图解显示其形成于陆弧。研究结果表明,全吉地块基底除前寒武纪岩石外,还包含早古生代的岩石组合。全吉地块基底内部岩石组合与形成时代的复杂性,与全吉地块经历的多次洋壳俯冲、陆陆碰撞密切相关。  相似文献   

17.
青海南山东段花岗岩类岩石类型为二长花岗岩、花岗闪长岩及英云闪长岩。通过高精度LA-ICP-MS锆石U-Pb同位素测年,获得二长花岗岩、花岗闪长岩的年龄分别为241±3Ma、245±2Ma和249±3Ma,可代表其成岩年龄。花岗岩类构造环境判别图显示,岩石具俯冲型花岗岩类特征,可能代表早三叠世宗务隆洋的北向俯冲过程。通过对青海南山东段侵入岩体形成时代、岩石成因、构造环境等的研究,为青海宗务隆造山带在印支期的构造环境演化和动力学机制提供了重要的依据。  相似文献   

18.
ABSTRACT

The Tibetan Plateau is located in the eastern Himalayan–Alpine orogen, an area where previous research has focused on ophiolites and a high-pressure metamorphic belt, whereas comparatively little research has been undertaken on the Tibetan basement. Cambrian granitic gneiss crops out in the Duguer area of the South Qiangtang terrane in northern Tibet and yields zircon laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb ages of 502–492 Ma, providing insight into the possible existence of basement rocks within the South Qiangtang terrane. The granitic gneisses are geochemically similar to high-K, calc-alkaline S-type granites, and Hf isotopic analysis of zircons within the gneisses yields negative εHf(t) values (–7.4 to – 1.1) and old zircon Hf model ages (TDMC = 1757–1406 Ma). These granitic gneisses were generated by partial melting of ancient pelitic rocks, and the resulting melts were contaminated by a small amount of mantle-derived material. Combining our new data with previous research, we conclude that these Cambrian granitic gneisses developed in a post-collisional tectonic setting after Pan-African tectonism. This suggests that the South Qiangtang terrane might have the same early Palaeozoic crystalline basement as the Lhasa, Himalaya, Baoshan, Gongshan, and Tengchong terranes.  相似文献   

19.
The RbSr and UPb methods were used to study gneisses in the 712-minute Lake Helen quadrangle of the Big Horn Mountains, Wyoming. Two episodes of magmatism, deformation and metamorphism occurred during the Archean. Trondhjemitic to tonalitic orthogneisses and amphibolite of the first episode (E-1) are cut by a trondhjemite pluton and a calc-alkaline intrusive series of the second episode (E-2). The E-2 series includes hornblende-biotite quartz diorite, biotite tonalite, biotite granodiorite and biotite granite.A RbSr whole-rock isochron for E-1 gneisses indicates an age of 3007 ± 34 Ma (1 sigma) and an initial 87Sr/86Sr of 0.7001 ± 0.0001. UPb determination on zircon from E-1 gneisses yield a concordia intercept age of 2947 ± 50 Ma. The low initial ratio suggests that the gneisses had no significant crustal history prior to metamorphism, and that the magmas from which they formed had originated from a mafic source.A RbSr whole-rock isochron for E-2 gneisses gives an age of 2801 ± 31 Ma. The 87Sr/86Sr initial ration is 0.7015 ± 0.0002 and precludes the existence of the rocks for more than 150 Ma prior to metamorphism. The E-2 magmas may have originated from melting of E-1 gneisses or from a more mafic source.  相似文献   

20.
The Eastern Qinling Orogen (EQO) is a major composite collisional zone located between the North China and the Yangtze cratons. This contribution combines geological and Hf–isotopic data from magmatic rocks associated with mineralization to gain insights into links between the crust architecture and metallogeny, and to focus exploration in the orogen.The new zircon U–Pb dates reported in this study are 434 ± 2 Ma for diorite, 433 ± 2 and 436 ± 2 Ma for monzogranite, and 454 ± 2 Ma for granodiorite in the Nanzhao area; 225 ± 2 Ma for syenite and 160 ± 1 Ma for monzogranite at Songxian; and 108 ± 1 and 102 ± 1 Ma for syenogranite in eastern Fangcheng. Combining our data with those from the entire EQO reveals seven major magmatic events since the Cambrian. These magmatic events took place during the Cambrian–Silurian associated with subduction, Early Devonian magmatism related to a collisional event, Early Permian to Late Triassic magmatism related to subduction, Late Triassic collisional magmatism, Late Triassic to Early Jurassic post–collision magmatism, and Jurassic–Cretaceous magmatism during intra–continental subduction.Lu-Hf isotopic data collected from granitic rocks for this study give εHf(t) values of: − 1.4 to 10.9 for diorite and monzogranite at Nanzhao; − 27.1 to − 15.6 for syenite and − 27.5 to − 25.1 for monzogranite at Songxian; and − 12.9 to − 3.4 for syenogranite in the eastern Fangcheng. Combining Hf isotopic data for the EQO from previous studies, we have evaluated the spatio–temporal distribution of Hf isotopic compositions. The resultant Hf isotopic maps highlight the location of the Kuanping Suture as an important tectonic boundary between the North China and the Yangtze cratons, which separates the EQO into a north part with an old and reworked lower crust and a southern part representing a juvenile lower crust.The Hf isotopic mapping of the EQO also provides information on the distribution of mineral deposits. Porphyry and porphyry–skarn Mo(–W) deposits are associated with magmatic rocks were emplaced in zones with low–εHf and high TDMc values representing old and reworked crustal components. In contrast, porphyry and porphyry–skarn Cu(–Mo) deposits are associated with magmatic rocks emplaced in domains with variable εHf and TDMc values characterized by dominantly reworked old crustal components with minor juvenile material. The magmatic source for the intrusions is characterized by low–εHf and high TDMc values, which are granite–related Mo or Pb–Zn–Ag mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号