首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared fish community structure in Guaratiba Mangrove, SE Brazil, among three seasons of the hydrological cycle [(i) spring, increasing temperature and rainfall, decreasing salinity; (ii) summer/early fall, high temperature and rainfall, intermediate salinity; (iii) late fall/winter, low temperature and rainfall, high salinity] and between the years 2002–2003 and 2008–2009. The aim was to test the hypothesis that the fish community structure changes seasonally, associated with seasonal changes in environmental conditions, and that changes occurred between the two yearly periods because of increased anthropogenic activities. The sampling protocol for the two surveys was identical. A total of 63 species was recorded, with 38 species occurring in 2002–2003, and 53 species in 2008–2009. The main changes in the mangrove's fish assemblage between 2002–2003 and 2008–2009 were (i) an increase in species richness, fish density and total biomass; and (ii) an increase in the zoobenthivorous species of gerreids Eucinostomus argenteus, Diapterus rhombeus and Ulaema lefroyi, and a decrease in the planktivorous clupeid Harengula clupeola. Other abundant species, such as the opportunistic atherinopsid. Atherinella brasiliensis, the detritivorous mullet Mugil liza and the zoobenthivorous pufferfish Sphoeroides testudineus did not differ in abundance between the two yearly periods. Ten species occurred only in 2002–2003, and 23 species only in 2008–2009, indicating significant changes in community structure over the 6‐year period. Seasonal changes in community structure were more conspicuous in 2008–2009, when species abundance and richness were greatest. The highest fish abundance was recorded in spring and in summer/early fall, and the lowest in late fall/winter. The increased abundance and richness over time may be at least partially attributable to protection policies because of the effective implementation of a biological reserve in the area.  相似文献   

2.
于2006年冬至2007年秋分四个季度对海南万宁小海近岸表层海水的弧菌种类分布及数量变化进行了调查.共分离到27种弧菌属细菌,其中副溶血弧菌、创伤弧菌、溶藻弧菌、霍乱弧菌、河流弧菌和拟态弧菌6种弧菌为主要弧菌.在6种主要弧菌中,溶藻弧菌、副溶血弧菌和霍乱弧菌在夏季和秋季检出率较高;河流弧菌在春季和夏季的检出率较高;拟态...  相似文献   

3.
Sendai Bay in northern Japan suffered serious damage from massive tsunamis generated by the 2011 off the Pacific coast of Tohoku earthquake. The physical disturbance caused by a tsunami may affect the coastal ecosystem, including the planktonic diatom community. We investigated seasonal changes in the diatom community structure at a coastal and an offshore station in Sendai Bay, from June 2011 (3 months after the tsunami) to April 2014. Diatom abundance increased at both stations during the spring. Sporadic increases were also recorded at the coastal station during the summer because of silicate input from river discharge. Seasonal succession of the diatom communities was similar at both the coastal and offshore stations. The onset of the spring bloom consisted mainly of Chaetoceros spp. when water temperatures were low. Subsequently, species such as Skeletonema costatum s.l. became dominant as salinity and nutrient concentrations decreased. Cell density decreased from summer into early winter. Leptocylindrus danicus became dominant in the summer, but was replaced by Thalassiosira cf. mala from autumn into winter. Redundancy analysis (RDA) showed that most of the variation in the diatom community could be explained by temperature, salinity, NO3 ?, NO2 ?, PO4 3?, and SiO2. In addition, the occurrence of diatom species before the tsunami showed a similar pattern to that after the tsunami, suggesting that the tsunami did not have a serious impact on the diatom community in Sendai Bay.  相似文献   

4.
Macrobenthic fauna in an estuarine Gwangyang Bay, southern Korean coast, were investigated to uncover recent variations in their community structures. In the study area, macrobenthic faunal communities were mainly composed of polychaete worms which were the most abundant faunal group with the highest values in species number and density, while mollusks accounted for the highest proportion in total biomass. There was no clear seasonal difference in species richness during the two year period of the investigation, but the mean density and biomass increased every spring and summer due to the mass recruitment of Theora fragilis. The Shannon’s diversity index (H') was more than 2.0 during most sampling seasons and did not show any significant seasonal difference except for the data in August, 2011 when azoic conditions occurred. The community structures of macrobenthos in Gwangyang Bay did not show any remarkable change in the dominance of the two top dominant species, Scoletoma longifolia and Heteromastus filiformis, which abundantly occurred in all seasons, except for the abundance peaks associated with high occurrence of T. fragilis and Paraprionospio cordifolia, especially in spring and summer and in autumn, respectively. These fauna changes reflected the changes in the macrobenthic community health status in Gwangyang Bay, where stable conditions and a healthy status prevailed in winter, but a slightly disturbed status prevailed from spring to autumn.  相似文献   

5.
黄河口鱼类群落分类学多样性的研究   总被引:2,自引:2,他引:0  
根据2013-2014年在黄河口水域进行的7个航次的鱼类资源底拖网调查数据,应用分类多样性指数分析了黄河口水域鱼类群落生物多样性的时空变化。黄河口鱼类主名录的平均分类差异指数△+理论平均值为75.5。2013-2014年调查中,该水域共捕获鱼类51种,隶属10目、27科、43属,以鲈形目、鲱形目和鲉形目鱼类居多。本次调查中鱼类群落分类多样性指数△和分类差异指数△*月变化范围分别为39.98~65.48和59.15~75.54,均表现为夏季月份最高,春、秋季月份次之,冬季最低。除春季月份外,其他月份鱼类平均分类差异指数△+均显著低于黄河口鱼类主名录的△+理论平均值。不同月份中平均分类差异指数△+也呈现一定的空间变化,夏、秋季月份绝大部分站位平均分类差异指数处于95%置信范围内,春、冬季月份个别站位的平均分类差异指数显著低于理论平均值,这与这些站位绝大多数种类集中在鲈形目有关。黄河口水域鱼类分类学多样性具有明显的时空变化,鱼类资源衰退,应加强该水域鱼类资源养护和多样性保护。  相似文献   

6.
Short‐term dynamics in juvenile fish assemblage structure were studied to test whether the most abundant species show temporal segregation, in order to assess whether selected environmental variables could predict species groupings, and to examine the stability of sunset–day–sunrise–night differences. Samplings were collected at 3‐h intervals over 48 h on a seasonal basis between spring 2005 and winter 2006. Fish species richness and abundance were higher in spring, and the lowest values occurred in winter. Harengula clupeola occurred mainly in spring, whereas Atherinella brasiliensis peaked in summer and autumn. On the other hand, Trachinotus carolinus, Umbrina coroides and Mugil liza were abundant in winter. Although temperature, salinity and dissolved oxygen were not found to have a strong effect on the abundance patterns of most species, they did appear to have a significant influence on assemblage groupings, according to canonical correspondence analysis and Spearman rank correlation. There is no consistency of diel usage patterns by a given species across seasons. The relative abundance differed between the time of day, which differed among the seasons; this further complicates an understanding of the dynamics of an assemblage. Studies of diel changes that pooled the sampling period as day or night can miss important changes that occur in a short time scale, such as a 3‐h period.  相似文献   

7.
《Oceanologica Acta》2002,25(1):13-22
This paper is the first to describe the spatio-temporal changes of mesozooplankton in the Seine estuary. Monthly samples were collected along the estuary in 1996 in order to analyse the seasonal changes of the mesozooplankton community and to identify the major environmental parameters that may influence the spatial distribution of zooplankton in this megatidal estuary. Statistical analysis (canonical correspondence analysis) showed that salinity was the main factor correlated with the longitudinal distribution of zooplankton. Marine species (Temora longicornis, barnacle larvae…) were located in the outer part of the estuary, while more oligohaline species (Eurytemora affinis) were recorded in the inner part of the estuary. A mixed zone was characterised by the presence of the neritic copepods Acartia spp. and Eurytemora affinis. The marine species (e.g. T. longicornis, Oikopleura dioica, Barnacle larvae) showed maximum abundance at the end of spring (June) while the most abundant estuarine species, E. affinis, peaked in late winter-spring and declined with the onset of summer. This copepod dominated the estuarine zooplankton throughout the year, and found in the Seine estuary very high favourable conditions to exhibit ultimate abundances (> 190 000 ind m–3) which is one order of magnitude higher than those found in other European estuaries. It represented the main prey for major planktonivorous species such as suprabenthic and fish species located living in the upstream zone of the Seine estuary.  相似文献   

8.
为了解黄骅港海域浮游动物群落结构的季节变化特征及其与环境因子的相关关系,分别于2014年2月(冬季)、5月(春季)、8月(夏季)和11月(秋季)对该海域进行4个航次的浮游动物和环境因子调查,采用优势度指数、物种多样性和聚类分析等方法分析该海域浮游动物的群落结构特征及其季节变化,采用冗余分析探究引起浮游动物群落结构变动的...  相似文献   

9.
The influence of climate variability on the diversity and distribution patterns of zooplankton communities was investigated in the Mondego estuary (Portugal) during four consecutive years characterized by highly variable precipitation and, consequently, river flow regime. Monthly samples were collected along the estuarine gradient at five sampling stations. Seasonal, inter-annual and spatial distributions were evaluated by multivariate analyses and three diversity indices were applied (Species number, Shannon Diversity and Average Taxonomic Distinctness). A two-year drought period presented significant differences in salinity values, especially in 2005 (extreme drought event). During the study period, copepoda was the main dominant group and Acartia tonsa the most abundant species, with the exception of autumn 2006, where high abundances of the cladoceran Penilia avirostris were noticed. Multivariate analysis indicated that zooplankton communities changed from a pre- to a post-drought period indicating the influence of hydrological parameters in communities' structure. The dry period was associated with an increase in zooplankton density, a reduction in seasonality and higher abundance and prevalence of marine species throughout the year. Seasonally, winter/spring communities were distinct from those in summer/autumn. Spatially, salinity-associated differences between upstream and downstream communities were reduced during the drought years, but during the post-drought year, these differences were detected again.  相似文献   

10.
The European flounder Platichthys flesus is a widely distributed epibenthic species and an important component of demersal fish assemblages in the European Atlantic coastal waters. In Portuguese estuaries, this species reaches high densities, especially in Minho estuary (NW Iberian Peninsula, Europe), potentially playing an important role in the system's ecology. In this context, the population structure, production and the habitat use of juvenile P. flesus were investigated. Sampling took place monthly, from February 2009 until July 2010 along the entire estuarine gradient (5 sampling stations distributed in the first 29 km from the river mouth, with S1 located near the river mouth, S2 inside a salt marsh, S3 in a salinity transition zone, while S4 and S5 were located in the upper estuary). Flounder's density varied significantly among sampling stations and seasons (two-way PERMANOVA: p < 0.001), with the majority of the individuals being found during the spring (30.1%) and in S3 and S4 (72.6%). Males and females presented an even distribution, with a higher proportion of males observed during summer. Fish length also differed among sampling stations and seasons (two-way PERMANOVA: p < 0.001), with larger fishes being found in S1 during the autumn (168.50 ± 59.50 mm) and the smallest in S4 during the spring (33.80 ± 3.12 mm). Size classes associated differently with environmental variables, with larger juveniles being more abundant in the downstream areas of the estuary, whereas smaller juveniles were related to higher water temperatures, suggesting a habitat segregation of P. flesus of different sizes. The fish condition of P. flesus in Minho estuary was higher than in other systems, probably due to the dominance of juveniles on the population. Also, the densities found in this estuary were up to 32 times higher than in other locations, suggesting that Minho estuary is an important nursery area for the species. The estimated secondary production of P. flesus was lower than previous studies acknowledged in the system (0.037 g.WWm 2.year 1), indicating that the production estimates of this species in estuaries can vary considerably depending on of several factors such as the sampling year and strategy, population and fish size.  相似文献   

11.
蒋玫  李磊  沈新强  全为民 《海洋学报》2014,36(6):131-137
根据2010—2011年春夏季对长江河口及邻近水域进行了仔稚鱼生态调查,应用单元和多元统计方法分析了春夏季长江河口及邻近水域仔稚鱼群落结构。4个航次调查共获得27个种类的仔稚鱼,隶属5目14科。优势种类主要包括鳀Engraulis japonicus、凤鲚Coilia mystus、康氏小公鱼Stolephorus commersonii、鮻Liza haematocheila、黄姑鱼Nibea albiflora、黄鳍刺虎鱼Acanthogobius flavimanus和寡鳞飘鱼Pseudolaubuca engraulis等。Shannon-Weaver指数(H′)在调查周期内的波动幅度较大,且2011年明显低于2010年。仔稚鱼群落结构和多样性指数春季年间较夏季年间差异性显著。调查区夏季群落结构年间相似性不高,春季群落结构格局年际变化则较明显。聚类分析表明,春夏季长江河口近岸水域仔稚鱼群落可划分为2个站位组,分别对应于长江河口淡水水域和长江口咸水水域。淡水水域组群落和咸水水域组群落总丰度与盐度相关性较高。表明盐度可能是造成长江河口仔稚鱼群落结构时空差异性的主要原因。  相似文献   

12.
Fish assemblages from two beaches, one in the inner and the other in the outer Sepetiba Bay (latitude: 22°54′–23°04′S; longitude: 43°34′–44°10′W), Southeast Brazil, were sampled by beach seine net, simultaneously, on both seasonal and diel scales, between August 1998 and June 1999. Sites were selected to encompass different environmental conditions which reflect the two bay zones, thus providing a comprehensive assessment of the factors influencing surf zone fish assemblages, and their spatial, seasonal and diel variations. A total of 55 fish species was recorded, mostly young-of-the-year. Anchoa tricolor, Micropogonias furnieri, Gerres aprion, Diapterus rhombeus, Harengula clupeola, Atherinella brasiliensis and Mugil liza were numerically dominant and contributed to 95.2% of the total fish catches. Strong differences in fish assemblages were observed between the two areas, with higher number of species in the outer bay. Increases in fish numbers occurred in winter, while the highest biomass occurred in winter and summer. Transparency, followed by salinity, was responsible for most of the spatial variability and played an important role in structuring fish assemblages. Overall, diel patterns did not reveal any significant trends; however, if we consider each season separately, an increase in fish numbers during the day with peak at sunset was observed in winter, and a higher biomass occurred at night in winter and summer. Species preferences for various combinations of environmental variables are responsible for shifts in the structure and overall abundance of assemblages and dictated some patterns. The sciaenid M. furnieri, the second most abundant species, occurred only in the inner zone, being more abundant in winter. The species of Engraulidae were more abundant in the outer zone in winter/spring during the day. The gerreids G. aprion and D. rhombeus occurred mainly in summer. Overall, temporal fluctuations act more at a specific level than at a structural one, and may be linked to some particular stages of the fish life cycle, but do not significantly influence the spatial organization.  相似文献   

13.
崇明东滩潮沟浮游动物数量分布与变动   总被引:3,自引:0,他引:3  
根据2008年4-12月对上海市崇明岛东滩潮沟进行4个季节的浮游动物调查资料,研究了崇明东滩潮沟浮游动物的数量分布及变动。结果表明,调查区浮游动物总丰度较高,四季变化明显。受潮汐作用的影响,夏、秋、冬三季落潮时丰度大于涨潮时,春季涨潮时丰度则大于落潮时。浮游动物在6条潮沟的平面分布不均匀,春季东旺沙边滩区和北八边滩区的数量明显多于近团结沙边滩区,夏、秋季分别以东旺沙边滩区和北八滧边滩区的数量最多,冬季则以近团结沙边滩区的数量最多。主要优势种细巧华哲水蚤(Sinocalanus tenellus)、中华华哲水蚤(Sinocalanus sinensis)、火腿许水蚤(Schmackeria poplesia)、四刺窄腹剑水蚤(Limnoithona etraspina)和四刺破足猛水蚤(Mesochra quadrispinosa)等数量的季节、潮汐变化及各时期的空间分布格局差异明显,其数量分布情况决定了浮游动物总数量的分布。盐度是影响冬、春季涨潮时浮游动物总丰度分布的主要因子,水温则是影响夏、秋季涨潮时总丰度分布的主要因子。此外,径流及潮流等动力因素对潮沟浮游动物数量的时空分布也产生重要影响。  相似文献   

14.
We collected mesozooplankton samples in the upper 100 m in spring or early summer each year between 1995 and 2000 along a section from Hamilton Bank (Labrador) to Cape Desolation (Greenland), and along additional sections in spring 1997 and early summer 1995. The North Atlantic waters of the central basin were characterised by the presence of the copepods Calanus finmarchicus, Euchaeta norvegica and Scolecithrocella minor and euphausiids. Calanus glacialis, Calanus hyperboreus and Pseudocalanus spp. were associated with the Arctic waters over the shelves. Amongst the other enumerated groups larvaceans were concentrated over the shelves and around the margins. Amphipods, pteropods and the copepods Oithona spp. and Oncaea spp. showed no definable relationships with water masses or bathymetry, while the diel migrant ostracods and chaetognaths were confined to deep water. Metrida longa, also a strong diel migrant, and Microcalanus spp., a mainly deep water species and possible diel migrant, were both sometimes quite abundant on the shelves as well as in the central basin, consistent with their likely Arctic origins.Analysis of community structure along the section across the Labrador Sea indicated that stations could be grouped into five different zones corresponding to: the Labrador Shelf; the Labrador Slope; the western and central Labrador Sea; the eastern Labrador Sea and Greenland Slope; and, the Greenland Shelf. The boundaries between zones varied spatially between years, but community composition was relatively consistent within a given zone and a given season (spring versus early summer). The relationship between community composition and water masses was not entirely straightforward. For example, Labrador Shelf water was generally confined to the shelf, but in spring 2000 when it also dominated the adjacent slope zone, the community in the Labrador Slope zone was similar to those found in other years. Conversely, in spring 1997, when Arctic organisms were unusually abundant in the Labrador Slope zone, there was no increased contribution of shelf water. In addition, North Atlantic organisms were often found on the shelves when no slope or central basin water was present.Although other organisms were sometimes very abundant, the mesozooplankton preserved dry weight biomass was dominated everywhere by the three species of Calanus, which together always accounted for ≥70%. One species, C. finmarchicus, comprised >60% of the total mesozooplankton biomass and >80% of the abundance of large copepods in spring and summer throughout the central Labrador Sea. In western and central regions of the central basin average C. finmarchicus biomass was ca 4 g dry weight m−2 and average abundance, ca 17?000 m−2 over both seasons. Highest levels (ca 7 g dry weight m−2, >100?000 m−2) occurred in the northern Labrador Sea in spring and in eastern and southwest regions in early summer. C. hyperboreus contributed ca 20% of the total mesozooplankton biomass in the central basin in spring and <5% in early summer, while C. glacialis accounted for <1%. Over the shelves, C. hyperboreus contributed a maximum of 54% and 3.6 g dry weight m−2, and C. glacialis, a maximum of 29% and 1 g dry weight m−2, to the total mesozooplankton biomass.  相似文献   

15.
We compared environmental effects on the macrobenthic community of the Han River Estuary in summer, when freshwater input from the Han River increased, and in spring, when freshwater input decreased. Field samples were taken from the upper region of the Shingok reservoir to the southern area of Ganghwado at 18 sampling sites after rainy (August 2006) and dry (March 2007) seasons. Macrobenthic fauna were collected using a Van Veen Grab (0.025 m2 and 0.1 m2) and environmental factors were measured simultaneously. Dominant species of macrobenthic fauna and the macrobenthic community were divided into two areas, the area of the Han River with no salinity (< 0.1 psu) and the southern part of Ganghwado with salinity (> 20 psu). The dominant species Byblis japonicus appeared at Junruri in the dry season. The distributions of two polychaetes, Hediste japonica and Nephtys caeca, were divided into the lower and upper areas of the Singok submerged weir. BIO-ENV (the matching of biotic to environmental patterns) analysis revealed that salinity was the most important factor affecting macrobenthic communities in the Han River Estuary, with other factors such as sediment grain size, bottom dissolved oxygen, and total organic carbon of sediment being secondary.  相似文献   

16.
Pronounced seasonality is a characteristic feature of polar ecosystems, but seasonal studies in the high-Arctic pack-ice zone are still scarce because of logistical constraints. During six expeditions (1994–2003) to the Fram Strait area between Greenland and Svalbard in winter, spring, early summer, late summer and autumn, the sub-ice habitat and fauna below the pack ice (0–1 m depth) were analyzed for seasonal patterns. Both environmental variables such as ice cover, temperature, salinity and chlorophyll a (chl a), as well as species composition, abundance and biomass of the sub-ice fauna showed distinct seasonal dynamics. Most species of the sub-ice fauna were found in early summer, followed by autumn, spring and late summer; the lowest number occurred in winter. The sub-ice fauna was dominated by copepod nauplii during all seasons. Next numerous was the small pelagic copepod Oithona similis, followed by occassional swarms of Pseudocalanus minutus and Calanus spp. Abundances of the sympagic fauna in the sub-ice water layer were much lower, with ectinosomatid copepods being usually the most numerous sympagic group. In the course of the year, total abundances of the sub-ice fauna showed a steep increase from the earliest sampling dates towards the end of winter/beginning of spring reaching maximum numbers then, and a decrease to minimum numbers in early summer. A second peak occurred in late summer, followed by a decrease towards autumn. This significant trend was due to the abundances of copepod nauplii and Oithona similis. Sympagic species were virtually absent during winter, and increased significantly in spring and early and late summer. A factor analysis revealed the variables ice cover and thickness, water temperature and salinity, as well as chl a as the major controlling factors for the seasonal patterns in different groups and species of the sub-ice fauna. Because of the special environmental conditions in the sub-ice habitat, and the unique species composition characterized by small taxa, young stages, and sympagic species, the seasonal dynamics of the Arctic sub-ice fauna differ substantially from those of the epipelagic zooplankton community in the Arctic Ocean.  相似文献   

17.
To test the hypothesis that phytoplankton assemblages dominated by different taxa have distinct biogeochemical characteristics and cycles, the temporal and spatial variations in phytoplankton biomass and composition were studied within the Ross Sea polynya, where diatoms and the haptophyte Phaeocystis antarctica are thought to have spatially distinct distributions. Two cruises were completed, with the first conducted in spring, 1994, and the second in late spring–early summer, 1995/1996. Ice concentrations decreased substantially from spring to summer. Mixed layer depths for the region decreased markedly in early spring and were relatively invariant thereafter; the strength of the stratification varied both in time and space. Mixed layers were greater in spring in assemblages dominated by diatoms (as determined by HPLC pigment concentrations) than those dominated by Phaeocystis antarctica, whereas in summer no difference was observed. Nutrient concentrations were initially high and near winter values, but decreased throughout November and December. Nitrate : phosphate removal ratios varied widely, with ratios exceeding 20 in spring but decreasing below 14 in summer. N : P removal ratios at stations dominated by diatoms were less than the Redfield ratio in both spring and summer, and at those stations dominated by P. antarctica the N : P removal ratio was ca. 19 in both seasons. Chlorophyll and particulate matter concentrations increased as nutrients decreased. Spatial and temporal variations of phytoplankton pigments occurred, with 19′-hexanoylfucoxanthin, a pigment of P. antarctica, exceeding 3.9 μg l−1 during spring in the south-central polynya, and fucoxanthin, an accessory pigment of diatoms, found in concentrations >1 μg l−1 in the western Ross Sea. The distributions were not mutually exclusive, and concentrations of both pigments were greatest in spring. The early growth of P. antarctica appears to be related to earlier stratification and disappearance of ice from the south-central Ross Sea. Ratios of FUCO/CHL were relatively invariant, but substantial changes in the HEX/CHL and POC/CHL ratios were observed through time. A one-dimensional nitrogen budget for the spring–early summer period suggests that much of the surface production was partitioned into particles, most (53%) of which remained in the upper 200 m. The rest was partitioned into dissolved organic matter (14%), remineralized as ammonium (19%), or sank from the surface layer as particles (13%). The region may serve as a useful analog to other polar systems, and an understanding of the processes controlling assemblage composition, production, and biomass accumulation may provide insights into biogeochemical cycles of other Antarctic environments.  相似文献   

18.
Several flatfishes spawn in oceanic waters and pelagic larvae are transported inshore to settle in the nursery areas, usually estuaries, where they remain during their juvenile life. Nursery areas appear as extremely important habitats, not only for juveniles but also for the earlier planktonic larval fish. Yet, the majority of nursery studies tend to focus only on one development stage, missing an integrative approach of the entire early life that fishes spent within a nursery ground. Thus, the present study assessed the influence of environmental parameters on the dynamics of the larval and juvenile flatfishes, throughout their nursery life in the Lima Estuary. Between April 2002 and April 2004, fortnightly subsurface ichthyoplankton samples were collected and juveniles were collected from October 2003 until September 2005. Larval assemblages comprised nine flatfish species, while only six were observed among the juvenile assemblages. Solea senegalensis and Platichthys flesus were the most abundant species of both fractions of the Lima Estuary flatfishes. Larval flatfish assemblages varied seasonally, without relevant differences between lower and middle estuary. Platichthys flesus dominated the spring samples and summer and autumn periods were characterized by an increase of overall abundance and diversity of larval flatfishes, mainly S. senegalensis, associated with temperature increase and reduced river flow. On the contrary, during the winter abundance sharply decreased, as a consequence of higher river run-off that might compromised the immigration of incompetent marine larvae. Juvenile flatfishes were more abundant in the middle and upper areas of the estuary, but the species richness was higher near the river mouth. Sediment type, distance from the river mouth, salinity, temperature and dissolved oxygen were identified as the main environmental factors structuring the juvenile flatfish assemblages. Juveniles were spatially discrete, with the most abundant species S. senegalensis and P. flesus associated with the middle and upper estuary, while the remaining species were associated with the lower estuarine areas. The larval fraction exhibited distinct dynamics from the juvenile estuarine flatfish community. Larval flatfishes showed a strong seasonal structure mainly regulated by biological features as the spawning season and also by seasonal variations of water characteristics. On the other hand, juvenile flatfishes were markedly controlled by site specific characteristics such as sediments structure, distance from the river mouth and salinity regime. The present study emphasized the idea that the environmental control varies throughout the ontogenetic development, stressing the importance of integrating all the early life of a species in flatfish nursery studies.  相似文献   

19.
Hydrographic and plankton surveys were conducted over the basin and slope of the southeastern Bering Sea during April, June/July and September of 1994 and in June/July 1995, and seasonal and spatial variations of zooplankton community were investigated in relation to the oceanographic conditions. In July 1994, sea surface temperature (SST) ranged 5.3–8.7 °C, and the thermocline was between 30 and 50 m. In July 1995, however, SST was warmer (7.3–12.4 °C), and the thermocline was shallower (20–30 m). The thermal front at the shelf was also stronger in July 1995 than in July 1994. Surface salinity was higher in 1994 than 1995. A total of 17 taxonomic groups of zooplankton were identified from the plankton samples. In 1994, the highest density was observed in September. Copepods were the major taxon during all surveys. While some taxa such as euphausiids, ostracods, and Neocalanus spp. were most abundant in spring, others such as Calanus spp., Metridia pacifica, chaetognaths, and pteropods were most abundant in September. Adults and late-stage copepodites of Eucalanus bungii were abundant in spring, and were replaced by 1st–3rd stages of copepodites in summer. Zooplankton density was ca. 4 times higher in 1995 than in 1994, in part because of warm water temperature.  相似文献   

20.
The abundance and community structure of metazoan meiofauna were studied in deep-sea sediments from the north and south Aegean Sea (Eastern Mediterranean) in summer 1997 and spring 1998. The two areas varied in their surface primary productivity with the northern area being more productive. Meiofaunal densities displayed strong spatial variability while no temporal changes were observed. Total metazoan density ranged from 128 to 1251 ind./10 cm2, with significantly higher values in the north. Meiofaunal biomass ranged from 27 to 391 μgC/10 cm2 with higher values also in the north. At all stations nematodes dominated the community, comprising on average more than 91% of the total abundance. On a broad scale, meiofaunal densities displayed a positive correlation with food availability (sediment-bound chloroplastic pigments, carbohydrates and lipids); carbon mineralization (an indicator of organic matter turnover) was significantly higher in the northern Aegean, providing evidence of high organic-matter input and intense benthic-pelagic coupling. The spatial structure of the nematode community indicated that the two areas were similar in terms of their dominant genera (Halalaimus, Acantholaimus, and Thalassomonhystera).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号