首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Selecting three half orbits near the epicenter of Pu’er earthquake, we analyzed the Ne data recorded in their revis-ited orbits during a year before this earthquake, and extracted Ne precursors. The results show that: ① There are significant seasonal variations of ionospheric Ne in night time, which exhibit different shapes respectively in four seasons; ② There are three main shapes of Ne: single-peak, saddle-shaped and even-shaped, all of which may oc-cur in four seasons, but each season with its typical shape relatively; ③ Spatial images of Ne showed high values near the epicenter in 30 days before the earthquake, and there is a good correlation between anomaly and distribu-tion of earthquake in space and time, which reflects that these spatial anomalies were indeed concerned with the earthquake; ④There shows a certain similarity of the Ne curves among revisited orbits, which can provide back-ground information for distinguishing and identification of seismic anomaly.  相似文献   

2.
The earthquake catalog with the minimum completeness magnitude of ML=1.7 during the period from 1970 to 1976 has been used as basic data for the research on seismic quiescence in source area before occurrence of the July 1976 great Tangshan earthquake in China,based on the analyses of the detectability of seismic network,and of relation between earthquake magnitude and frequency in Northern China.The temporal processes of seismicity rate(January 1970-July 1976)before the July 1976 great Tangshan earthquake for four researched sub regions in and around source area(aftershock area)of the mainshock are investigated and compared.It is found that there exist abnormal seismic quiescence with duration of 38 months in the subregion located in western part of aftershock area,which is significant statistically at confidence level of 0.99 and larger by beta-test.In addition,because there were no false alarms except for the above abnormal interval in the west aftershock area,and the Tangshan mainshock and 85% of af  相似文献   

3.
In order to study the spatiotemporal evolution of the precursory anomalies 10 years before the Wenchuan M_S8. 0 earthquake in 2008, the epicentral distance of the precursory anomalies is calculated by using the geometric center of the rupture region and the elliptical centerline of the aftershock region. The result shows, precursor anomalies gradually increased about 2 years before the Wenchuan earthquake. The ratio of abnormal items is greater than 25% in the near source area (about twice the source scale) and 17%-24% in the remote area (about 3-5 times the source scale). There are three different stages of spatiotemporal evolution of precursory anomalies. During the α stage (including α_1 and α_2,between 700 to 3000 days before the main earthquake),the anomalies are mainly distributed in the southwest and northwest area of the Wenchuan aftershocks area. It is shown that the precursors of the far source region and the near source area have the characteristics of outward expansion. During the β stage (between 300 to 700 days before the main earthquake), the anomalies are distributed in the southwest and northern region of the aftershock region, showing a large range of anomalies. During the γ stage (including γ_1 and γ_2, 300 days before the main earthquake),the range of anomaly distribution is wide,and the anomalies are distributed in the southwest and northeast of the aftershock area. The anomalies converged to epicenter (γ_1) in the far source region and expand outwards (γ_2) in the near source region. Results of the experimental study and mechanical analysis of earthquake preparation process indicate that the three-stage characteristics of precursory anomalies in the process of earthquake preparation may be controlled by the seismogenic body,which is a form of expression in the process of earthquake preparation and a universal featureduring the earthquake preparation process,which has a certain guiding role in earthquake prediction.  相似文献   

4.
In this paper, using focal mechanism solutions of moderate-strong earthquakes in Yunnan and its adjacent areas, and based on the statistical analysis of the parameters of focal mechanism solutions, we discussed in detail the earthquake fault types and the characteristics of the modern tectonic stress field in the Yunnan region. The results show that most moderate-strong earthquakes occurring in the Yunnan region are of the strike-slip type, amounting to 80% of the total. Normal faulting and normal with strike-slip and reverse and reverse with strike-slip earthquakes is almost equivalent in proportion, about 8% each. The tectonic stress field of the Yunnan region is near-horizontal, and the dips of earthquake fault planes are large. There are three main dynamic sources acting on the Yunnan region: one is the NE, NNE and NNW-directed acting force from Myanmar, Laos and Vietnam; the second is the SE-SSE directed force from the Sichuan and Sichuan-Yunnan rhombus block and the third is the NW-NNW directed force from the South China block. These three acting forces have controlled the faulting behavior of the main faults and the characteristics of strong earthquake activity of Yunnan and its adjacent regions.  相似文献   

5.
A strong earthquake swarm including 7 earthquakes with M≥6.0 occurred in Jiashi, Xinjiang region from January to April, 1997, which is rare for intraplate seismicity. They occurred in Tarim Basin which is relatively stable, has no discovered surface rupture and where the deep-seated tectonics are not clear. The Seismological Bureau of Xinjiang Region has made three successful impending predictions for the strong aftershocks and succeeding earthquakes in Jiashi. The injuries and deaths of people have been greatly reduced because of effective measures taken by the local government, and the social and economic results are remarkable. The article introduces a summary of the strong earthquake swarm and the main processes of the prediction, sums up the scientific bases of an impending prediction, and shows that the occurrence of the Jiashi strong earthquake swarm revealed some important scientific problems which should be studied further. The practice of the Jiashi earthquake prediction indicates again that  相似文献   

6.
A destructive shock with magnitude of 6.3 occurred on 2 June 2007 at 21h34min56s UT in Pu’er region (23.0°N, 101.1°E), Yunnan Province, China. The data from DEMETER satellite during the period from 23 May to 2 June, i.e., ten days before the earthquake and one day just on the day of earthquake occurrence, were analyzed. Among the 284 orbits of DEMETER during the period, 29 orbits with the trace passing through the region within 1 888 km from the epicenter were selected to be studied. Seven anomalous events were found on the dataset of the seven orbits among the 29 ones. There existed synchronous perturbations on the variations of the spectrogram of the electric field and the variations of the density and temperature of the ions and electron, in contrast with the variations of its surround- ing area. And five events appeared in the space within 1 888 km from the epicenter while the other two were out of the studied area. Electrostatic turbulences were also recorded with the synchronous perturbations with that in the electron density and ions density in plasma in the region near the epicenter in the five events, which seems to sug- gest that there be some physical relation between these events and the preparation processes of Pu’er earthquake.  相似文献   

7.
A theory on information prediction process proposed by Weng Wenpo(1991)is applied to the earthquake prediction decision process.Four cycles represent the theory(conception),earthquake prediction decision result,anomalies,and earthquake assemblage,respectively.The interception and overlapping of the four cycles indicate different combinations,resulting in formation of 13 regions.In the case of decision conclusion on earthquake to occur,seven decision results of different characters are distinguished.The six other results were obtained in the case of absence of decision.Results of four characters show correct decision on earthquake to occur and those of three characters show the erroneous decision on earthquake to occur.Until now,theories of earthquake prediction have been incomplete,and the coincidence ratio of decision on earthquake to occur is also considerably low.Systematic analysis of the decision process is beneficial to understanding the causes for missing,virtual,pseudo,false,and correct earthqua  相似文献   

8.
Based on the IDP data from the French DEMETER satellite,global distribution is shown,which corresponds to three precipitation zones:the aural precipitation zone,the mid-high latitude precipitation zone and the South Atlantic precipitation zone.Then the Chili earthquake with M8.8 which occurred on February 27,2010 is taken as an example.The IDP fluxes from repeat orbits are compared and the results show that there is a clear enhancement on February 26,2010,just one day ahead of the Chili earthquake.In the south zone with L=2.1~2.7,the flux on February 26 is higher than that on previous days.However in the north zone with L=2.1~2.7,there is no clear change during the day but great enhancement during the night,which is close to the time of the earthquake.At the same time,the flux on February 26 near the equator is far lower than that on previous days.  相似文献   

9.
Using the four phases (1996~1999) of re-surveying data from the GPS network along the Shanxi fault zone, the recent state of horizontal movement of the fault zone and its relation with the Datong-Yanggao M5.6 earthquake (November 1, 1999), which took place on the north end of the monitored area, are analyzed. In the focal region, three areas with relatively higher strain (1×10 -6) appeared in Xinzhou and to the northeast of Jiexiu. The Shanxi fault zone is mainly controlled by the WNW-ESE-trending compressive stress field and the NNE-SSW-trending tensile stress field, and it does not have strike-slip movement. When examined for long-term tendency, attention should be paid to the junctures between the three moving elements.  相似文献   

10.
The Qianguo M_S5. 8 earthquake swarm of 2013 occurred in Qianguo,Jilin Province,China. There are five earthquakes with M_S≥5. 0 in the Qianguo earthquake swarm,with magnitudes of M_S5. 5,M_S5. 0,M_S5. 3,M_S5. 8 and M_S5. 0. In this study,the far-field seismic radiated energy characteristics of the earthquakes are compared based on the source spectrum and the ground motion spectrum of the earthquake swarm. The ground motion spectrum of the five earthquakes at Changchun seismic station( CN2),which is the national standard station,is first investigated with the recorded ground motions,and then the far-field seismic radiated energy is calculated and combined with the relationships of the source spectrum to describe the variable characteristics of the Qianguo earthquake swarm. Research results indicate that the second earthquake( No. 2) with M_S5. 0 is the key event of the earthquake swarm,which occurred on October 31,the same day following the first M_S5. 5 earthquake( No.1). In fact,the magnitude of event No. 2 decreased compared to event No.1,which did not agree with its large far-field seismic radiated energy. It needs to be pointed out that event No. 2 was the turning point event of the Qianguo earthquake swarm,as being a significant transition before the largest M_S5. 8 earthquake.  相似文献   

11.
Observations of the Langmuir Probe Instrument(ISL,Instrument Sonde de Langmuir) onboard the DEMETER satellite during four years from 2006 to 2009 were used to analyze the tempo-spatial variations of electron density(Ne) and temperature(Te) in the ionosphere.Twenty four research bins with each covering an area with 10° in longitude and 2° in latitude were selected to study the spatial distributions of Ne and Te.The results indicate that both Ne and Te have strong annual variations in the topside ionosphere at 660 km altitude.The semiannual anomaly and equinoctial asymmetry which are usually well known as the features of F-layer also exist in the topside ionosphere at low-and mid-latitudes.The yearly variation of Ne is opposite to the peak electron density of the F2-layer(NmF2) at higher latitudes in daytime and both are similar in nighttime.Also the yearly variations of Te at low-latitude are contrary to that at 600 km in daytime and similar in nighttime.An interesting feature of nighttime Te at low-latitude is an obvious annual variation in the northern hemisphere and semiannual variation in the southern hemisphere.The yearly variations of Te in daytime have negative and positive correlation with Ne at mid-and high-latitudes,respectively.Both Ne and Te in the neighborhood bins at the same latitude have a high correlation.In ionospheric events analyzing,this information may help to understand the characteristics of the variation and to distinguish the reliable abnormality from the normal background map.  相似文献   

12.
Introduction Earthquake magnitude is the most common measure of an earthquake′s size,and is one of the basic parameters of an earthquake.There are three most familiar scales of earthquake magnitude:ML(local earthquake magnitude),MS(surface wave magnitude)and mB/mb(body wave magni-tude).Richter(1935)introduced ML when studying earthquakes in Southern California.In1945,Gutenberg(1945a)put forward surface wave magnitude scale to determine earthquake magnitude(MS)using surface waves(20s)of s…  相似文献   

13.
Based on the data recorded by the regional digital seismic network of Yunnan and using new methods, the short-term variations of the ambient stress field of Yunnan and its adjacent areas are monitored in real time. With the in-depth analyses of the spatial-temporal evolution of the ambient stress field prior to the 2004, Shuangbai M_S5.0 earthquake, concrete procedures for predicting the three elements of the earthquake are presented.  相似文献   

14.
云南地区震前舒曼谐振异常初步分析   总被引:1,自引:0,他引:1  
There is a good correlation between anomalous Schumann resonance and seismic activities. Pre-earthquake anomalous Schumann resonance is an important manifestation of LAIC (Lithosphere-Atmosphere-Ionosphere Coupling), which is probably associated with seismic ionospheric disturbance. The observation system parameters of the Yunnan Schumann resonance monitoring stations and the results of statistical and seismic cases analysis are introduced in this paper. Three days before the March 10, 2011 MS5.8 Yingjiang earthquake, anomalous Schumann resonance in the By component (E-W) was observed by Yongsheng station, and two days before the Lincang MS4.0 earthquake of January 23, 2011, anomalous Schumann resonance in the By component was detected by the same station. Spectrum analysis results on the By component observations of Tonghai station show that strong disturbances were observed in spectral density corresponding to the first three Schumann resonant frequencies on the very day of the MS4.2 Honghe earthquake of May 22, 2011. Research shows that Schumann resonance monitoring is a feasible method for seismic-electromagnetic precursors monitoring.  相似文献   

15.
Introduction The 1303 Hongtong earthquake is an important earthquake in the eastern China. There is a lot of information in historical documents about the earthquake and many traces destroyed by the earthquake in the southern Shanxi Province. Many scholars have studied the earthquake from dif-ferent aspects, but mainly limited the definitions of the isoseismal and three factors of the earth-quake. Owing to being limited by the analysis technique, many useful damage information of the earthqu…  相似文献   

16.
Results of analysis of variation of cross fault short-baseline and short-range leveling in Western Yunnan Earthquake Test Site (WYETS), results show that among five observation stations of cross fault short-baseline and short-range leveling in WYETS before the Lijiang MS7.0 Earthquake occurred in February 1996 only Yongsheng observation station (epicentral distance 82 km) located at Chenghai fault shows great variation about one year before the earthquake. And the nearest observation station, Lijiang (epicentral distance 42 km); presents great coseismic variation, but does not show obvious anomalous variation before the earthquake. There are no significant variations related to the earthquake at the other three observation stations. Two methods are used in analysis of the observed data and some valuable results have been obtained.  相似文献   

17.
Following the M w 7.9 Wenchuan earthquake, the M w 6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous broadband ambient noise seismic data and earthquake event data from Chinese provincial digital seismic network, and then utilized ambient noise tomography method and receiver function method to obtain high resolution shear wave velocity structure, crustal thickness, and Poisson ratio in the earthquake source region and its surroundings. Based on the tomography images and the receiver function results, we further analyzed the deep seismogenic environment of the LFZ and its neighborhood. We reveal three main findings: (1) There is big contrast of the shear wave velocities across the LFZ. (2) Both the Lushan earthquake and the Wenchuan earthquake occurred in the regions where crustal shear wave velocity and crustal thickness change dramatically. The rupture faults and the aftershock zones are also concentrated in the areas where the lateral gradients of crustal seismic wave speed and crustal thickness change significantly, and the focal depths of the earthquakes are concentrated in the transitional depths where shear wave velocities change dramatically from laterally uniform to laterally non-uniform. (3) The Wenchuan earthquake and its aftershocks occurred in low Poisson ratio region, while the Lushan earthquake sequences are located in high Poisson ratio zone. We proposed that the effect of the dramatic lateral variation of shear wave velocity, and the gravity potential energy differences caused by the big contrast in the topography and the crustal thickness across the LFZ may constitute the seismogenic environment for the strong earthquakes in the LFZ, and the Poisson ratio difference between the rocks in the south and north segments of the Longmenshan Fault zone may explain the 5 years delay of the occurrence of the Lushan earthquake than the Wenchuan earthquake.  相似文献   

18.
The 2008 Wenchuan earthquake has a significant impact on the seismicity of nearby regions. The Longnan earthquake which occurred on September 12,2008 in Gansu Province was out of the aftershock zone. Reliable source parameters are essential for understanding the seismogenic process of this earthquake. Therefore,three approaches are adopted to study the source parameters of this event. The focal mechanism is obtained with the g CAP method that takes non-Double-Couple(non-DC)component into account. The two fault planes are NP1:150°/45°/81° and NP2:342°/45°/98°,while the non-DC component is about 53%. The focal depth is 1. 6 km,which indicates the Longnan earthquake is a shallow event. Furthermore,this result is also in good agreement with results obtained with two other approaches:amplitude spectra of Rayleigh wave and surface displacement from In SAR measurement. To analyze the cause of the event,coulomb failure stress change caused by the Wenchuan earthquake on the Longnan earthquake fault plane is calculated. The result shows that coulomb stress change is 30 k Pa around the Longnan earthquake hypocenter,which exceeds the typical triggering threshold of 10 k Pa. The research indicates that the Wenchuan earthquake probably promote the happening of the Longnan earthquake.  相似文献   

19.
In this paper, based on the results of tomographic image of Tangshan and Xingtai areas, the relations between the characteristics of the two strong earthquake sequences and their three-dimensional velocity structures are studied. The research results indicate that:① Mosaic distribution of low-velocity bodies and high-velocity bodies, especially the existence of high-velocity bodies with large size in crust are the common basis of development of the two earthquake sequences. ②Scale, depth, and heterogeneity of high-velocity and low-velocity bodies are the important factors to effect the characteristic of earthquake sequences.③ The depth of the high-velocity body in Tangshan area is less than that in Xingtai area, which is the principal reason why the dominant focal depth and the biggest focal depth of Tangshan earthquake sequence are less than Xingtai's.④The depth of the high-velocity bodies in Ninghe area is more than that in Tangshan-Luanxian area, which lead to the biggest magnitude and epicentral intensity are lower. These results could be helpful for predicting the main shock of strong swarm-type earthquakes and later strong aftershocks.  相似文献   

20.
Subarea characteristics of earthquake types in Yunnan   总被引:2,自引:0,他引:2  
Studies on the earthquake sequences and the source mechanisms of the strong earthquakes show that Yunnan hasmore obvious subarea characteristics of earthquake type.Strike-slip seismic fault and mainshock-aftershockearthquake sequences are dominant in whole Yunnan area.Considering the ratio of non strike-slip faults and nonmainshock-aftershock,Yunnan area can be divided into four subareas with different characteristics,which arestrike-slip mainshock-aftershock in central Yunnan(A1),incline-slip swarm in northwestern Yunnan(A2),strike-slip double shocks in western Yunnan(B1)and quasi-strike-slip mainshock-aftershock in southwestern Yun-nan(B2),respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号