首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.  相似文献   

2.
Palaeoenvironmental data for the Late Glacial and Holocene periods are provided from Caleta Eugenia, in the eastern sector of Canal Beagle, southernmost Patagonia. The record commences at c. 16 200 cal a bp following glacier retreat in response to climatic warming. However, cooler conditions persisted during the Late Glacial period. The onset of more temperate conditions after c. 12 390 cal a bp is indicated by the arrival of southern beech forest and later establishment at c. 10 640 cal a bp , but the woodland growth was restricted by lower levels of effective moisture. The climate signal is then truncated by a rapid marine incursion at c. 8640 cal a bp which lasted until a more gradual emergence of the coast at c. 6600 cal a bp. During this period the pollen record appears to be dominated by the southern beech woodland. A punctuated hydroseral succession follows the isolation of the site from the sea leading to the re‐establishment of a peat bog. Between c. 5770 cal a bp and the present there were several periods of short rapid climatic change leading to drier conditions, probably as a result of late Holocene periods of climatic warming. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
以云南阳宗海1020 cm长的湖泊沉积物岩芯为研究对象,由7个木屑和树叶残体样的AMS14C测年建立岩芯年代框架,以18~19 cm间隔获取52个样品作花粉/炭屑分析,重建了阳宗海流域过去13000年的植被、气候以及森林火灾历史。研究结果表明,过去13000年植被演替、气候变化和森林火灾可分为5个阶段:1)13200~11000 cal.a B.P.,植被以常绿、落叶阔叶混交林为主,气候温凉湿润,森林火灾多发,后期(12300~11000 cal.a B.P.)随着温度和湿度的降低,森林火灾发生愈加频繁;2)11000~8000 cal.a B.P.,松林扩张,阔叶林缩小,气候较上阶段温暖偏干,森林火灾发生次数明显降低;3)8000~5000 cal.a B.P.,松林和常绿阔叶林占优势,且出现暖热性的枫香林,流域内气温升至13000 cal.a B.P.以来的最高值,湿度进一步降低,但森林火灾发生频率低;4)5000~800 cal.a B.P.,松林扩张至最盛,常绿阔叶林收缩,落叶阔叶林成分增加,气温和湿度均明显下降,森林火灾发生频率有所增加;5)800 cal.a B.P.至今,松林和常绿阔叶林收缩,落叶阔叶成分增加,草本植物中禾本科迅速上升,可能与人类活动有关,森林火灾发生频率低。阳宗海花粉/炭屑记录重建的植被、气候和森林火灾史表明,在滇中地区,落叶阔叶成分易引起森林火灾,冷气候导致多发的森林火灾,冷干气候是宜森林火灾发生的气候条件。  相似文献   

4.
The Pandeiros wetland is a high biodiversity ecosystem located within a semiarid region of the Cerrado biome, a neotropical savanna. This large wetland is of key importance for ecological and hydrological balance in central Brazil and for the conservation of the Cerrado fauna and flora. In this study, we present the first palaeoecological investigation of the Pandeiros wetland based on pollen analysis of a palm swamp sediment core encompassing the Late Holocene. Our results show that the wetland was subject to multicentennial-scale oscillations in water availability during the Late Holocene; in particular, higher local humidity was documented between 4100 and 3100 cal a bp and from 2600 to 1000 cal a bp , and two events of drier local conditions occurred at approximately 2900 and 900 cal a bp. Our results also indicate a general decreasing trend in arboreal density in the Pandeiros River Basin from the beginning of the Late Holocene to the present, with the greatest expansion of dry forest occurring between 3600 and 3100 cal a bp.  相似文献   

5.
Millennial-scale climatic variations have punctuated the Holocene characterised by abrupt changes from warm to cool or wetter to drier conditions. Amongst these climatic events, there is increased evidence for an abrupt multicentennial shift of climatic conditions around 3.8/3.7 kyr BP (4.1 cal. kyr BP) in mid- to low-latitude regions which had a profound impact on landscape and population migration. In the Mediterranean region, subtropical, tropical and equatorial Africa, a number of continental proxies (lake-levels, pollen sequences, stable isotopes) record this abrupt change towards drier conditions. However, regionalism in climatic conditions is reflected in the vegetation records, possibly in relation to orographic conditions and the influence of sea-surface conditions. Hitherto there have been very few marine sequences that record this particular climatic shift at high-resolution. We present here new data from the Congo deep-sea fan containing integrated marine and terrestrial proxies. Around 5–4 cal. kyr BP, shifts in surface conditions off the Congo River mouth are observed, with possible establishment of seasonal coastal upwelling, and lower sea-surface temperatures. In parallel, pollen data indicate fluctuations of herbaceous, afromontane taxa and charred grass cuticles, suggesting more open vegetation in the lowland regions and an increase in cloud forest and/or afromontane vegetation at higher altitudes within the Congolese region.  相似文献   

6.
Pollen records from two sites in western Oregon provide information on late-glacial variations in vegetation and climate and on the extent and character of Younger Dryas cooling in the Pacific Northwest. A subalpine forest was present at Little Lake, central Coast Range, between 15,700 and 14,850 cal yr B.P. A warm period between 14,850 and 14,500 cal yr B.P. is suggested by an increase inPseudotsugapollen and charcoal. The recurrence of subalpine forest at 14,500 cal yr B.P. implies a return to cool conditions. Another warming trend is evidenced by the reestablishment ofPseudotsugaforest at 14,250 cal yr B.P. Increased haploxylonPinuspollen between 12,400 and 11,000 cal yr B.P. indicates cooler winters than before. After 11,000 cal yr B.P. warm dry conditions are implied by the expansion ofPseudotsuga.A subalpine parkland occupied Gordon Lake, western Cascade Range, until 14,500 cal yr B.P., when it was replaced during a warming trend by a montane forest. A rise inPinuspollen from 12,800 to 11,000 cal yr B.P. suggests increased summer aridity.Pseudotsugadominated the vegetation after 11,000 cal yr B.P. Other records from the Pacific Northwest show an expansion ofPinusfrom ca. 13,000 to 11,000 cal yr B.P. This expansion may be a response either to submillennial climate changes of Younger Dryas age or to millennial-scale climatic variations.  相似文献   

7.
Macrofossil, pollen, lithostratigraphy, mineral magnetic measurements (SIRM and magnetic susceptibility), loss‐on‐ignition, and AMS radiocarbon dating on sediments from two former crater lakes, situated at moderate altitudes in the Gutaiului Mountains of northwest Romania, allow reconstruction of Late Quaternary climate and environment. Shrubs and herbs with steppe and montane affinities along with stands of Betula and Pinus, colonised the surroundings of the sites prior to 14 700 cal. yr BP and the inferred climatic conditions were cold and dry. The gradual transition to open PinusBetula forests, slightly higher lake water temperatures, and higher lake productivity, indicate more stable environmental conditions between 14 700 and 14 100 cal. yr BP. This development was interrupted by cooler and drier climatic conditions between 14 100 and 13 800 cal. yr BP, as inferred from a reduction of open forests to patches, or stands, of Pinus, Betula, Larix, Salix and Populus. The expansion of a denser boreal forest, dominated by Picea, but including Pinus, Larix, Betula, Salix, and Ulmus started at 13 800 cal. yr BP, although the forest density seems to have been reduced between 13 400 and 13 200 cal. yr BP. Air temperature and moisture availability gradually increased, but a change towards drier conditions is seen at 13 400 cal. yr BP. A distinct decrease in temperature and humidity between 12 900 and 11 500 cal. yr BP led to a return of open vegetation, with patches of Betula, Larix, Salix, Pinus and Alnus and individuals of Picea. Macrofossils and pollen of aquatic plants indicate rising lake water temperatures and increased aquatic productivity already by ca. 11 800 cal. yr BP, 300 years earlier than documented by the terrestrial plant communities. At the onset of the Holocene, 11 500 cal. yr BP, forests dominated by Betula, Pinus and Larix expanded and were followed by dense Ulmus forests with Picea, Betula and Pinus at 11 250 cal. yr BP. Larix pollen was not found, but macrofossil evidence indicates that Larix was an important forest constituent at the onset of the Holocene. Moister conditions were followed by a dry period starting about 10 600 cal. yr BP, which was more pronounced between 8600 and 8200 cal. yr BP, as inferred from aquatic macrofossils. The maximum expansion of Tilia, Quercus, Fraxinus and Acer between 10 700 and 8600 cal. yr BP may reflect a more continental climate. A drier and/or cooler climate could have been responsible for the late expansion (10 300 cal. yr BP) and late maximum (9300 cal. yr BP) of Corylus. Increased water stress, and possibly cooler conditions around 8600 cal. yr BP, may have caused a reduction of Ulmus, Tilia, Quercus and Fraxinus. After 8200 cal. yr BP moisture increased and the forests included Picea, Tilia, Quercus and Fraxinus. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a Holocene pollen record from an ombrotrophic bog in Southland, New Zealand, together with multiproxy data (testate amoebae, peat humification and plant macrofossils) from the same core to establish an independent semiquantitative record of peatland surface moisture. Linkages between reconstructed peatland surface moisture and regional forest composition are investigated using redundancy analysis of the forest pollen data constrained with predicted bog water‐table depths. Over 32% of the pollen data variance can be explained by surface moisture changes in the bog, suggesting a common cause of water‐table and regional vegetation change. Water tables were higher during the early to mid‐Holocene when the forest was dominated by podocarp taxa. Water tables lowered after about 3300 cal. yr BP coevally with the expansion of Nothofagus species, culminating with the dominance of Nothofagus subgenus Fuscospora in the past 1200 cal. yr BP. This is in apparent opposition to the warm/dry to cool/wet trend suggested by subjective interpretation of pollen data alone, from this and other studies. We suggest that during the late Holocene, drier summers associated with shifts in solar insolation caused reduced surface wetness and summer humidity, which together with a trend to cooler winters, apparently favoured the regeneration of Nothofagus species. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The late Quaternary evolution of central-eastern Brazil has been under-researched. Questions remain as to the origin of the Cerrado, a highly endangered biome, and other types of vegetation, such as the Capões – small vegetation islands of semi-deciduous and mountain forests. We investigated the factors that influenced the expansion and contraction of the Cerrado and Capões during the late Quaternary (last ~35 ka), using a multi-proxy approach: stable isotopes (δ13C, δ15N), geochemistry, pollen and multivariate statistics derived from a peat core (Pinheiro mire, Serra do Espinhaço Meridional). Five major shifts in precipitation, temperature, vegetation and landscape stability occurred at different timescales. Our study revealed that changes in the South Atlantic Convergence Zone (SACZ) seem to have been coeval with these shifts: from the Late Glacial Maximum to mid-Holocene the SACZ remained near (~29.6 to ~16.5k cal a bp ) and over (~16.5 to ~6.1 k cal a bp ) the study area, providing humidity to the region. This challenges previous research which suggested that climate was drier for this time period. At present, the Capões are likely to be a remnant of a more humid climate; meanwhile, the Cerrado biome seems to have stablished in the late Holocene, after ~3.1 k cal a bp .  相似文献   

10.
Sediment sequences retrieved from Lake Medvedevskoye (60°13'N; 29°54'E) and Lake Pastorskoye (60°13'N; 30°02'E), Karelian Isthmus, northwestern Russia, were analysed for lithology, pollen and diatom stratigraphy, total organic carbon content and mineral magnetic parameters. Age control for both sequences was provided by AMS 14C measurements and the Vedde Ash tephra. The reconstructed climatic and environmental development shows the deglaciation of the sites and the establishment of sparse shrub and herb/grass vegetation before 12650 cal. yrs BP ('Allerød'; GI-1a). Steppe tundra and cold, dry conditions prevailed until about 11000 cal. yrs BP, i.e. throughout the 'Younger Dryas' (GS-1) and the earliest Holocene. The establishment of open Picea-Pinus-Betula forest around the lakes at about 11 000 cal. yrs BP coincides with the first distinct change towards gradually warmer and more humid climatic conditions. Boreal forest with Picea, Pinus, Betula, Alnus incana and Corylus was present at the lower altitude site between c. 10700 and 10200 cal. yrs BP, while open Betula-Pinus forest continued to dominate the vegetation around the higher altitude site. After a short, possibly colder, phase around 10200-10000 cal. yrs BP, which is expressed by a marked reduction in vegetation cover and decreased lake productivity, climatic conditions became significantly warmer and possibly more humid. Boreal forest with Pinus, Betula, Picea, Alnus incana, Corylus and Ulmus became widespread in the region after 10000 cal. yrs BP. The delayed environmental response of the lakes and their catchment to hemispheric warming at the Pleistocene/Holocene boundary may be explained by a sustained blocking of westerly air masses due to the presence of the Scandinavian ice sheet and associated strengthened easterlies and anticy-clonic circulation and/or extensive permafrost.  相似文献   

11.
A consensus on Holocene climate variability at the modern northern fringe of the East Asian summer monsoon (EASM) region remains elusive. Here, we present a pollen-based reconstruction of vegetation history and associated climate variations of a sediment core from Huangqihai Lake, central Inner Mongolia. During 10.7 to 8.8 cal kaBP, typical steppe with small patches of forest dominated the lake area, suggesting a moderately wet climate, followed by ameliorating climatic conditions until 8.0 cal kaBP as deduced by the expansion of forest. Typical steppe recovered the lake area between 8.0 and 7.2 cal kaBP, reflecting a deterioration of climatic conditions; in combination with other proxy records in the study region, we noticed that severe aridity was prevailed in the lake area between 8.0 and 7.6 cal kaBP. During 7.2 to 3.2 cal kaBP, abundant tree pollen indicated dominance of forest-steppe around the lake, marking regionally wet conditions. A notable absence of broadleaved trees after 5.2 cal kaBP reveals a slight drying trend, and climate deterioration from 4.5 to 4.1 cal kaBP might be linked to the 4.2 ka event. After 3.2 cal kaBP, a transition to steppe was associated with dry conditions in the region. Based on our pollen record and prior paleoclimatic reconstructions in the Huangqihai Lake region, there was a generally-accepted, stepwise shift to a wet climate during the early Holocene, an overall humid climate from 7.2 to 3.2 cal kaBP, and then severe drought for the rest of the Holocene. Moreover, regional comparisons among pollen records derived from lakes situated in the temperate steppe region suggested a roughly synchronous pattern of vegetation and climate changes during the Holocene and demonstrated an intensified EASM during the middle Holocene.  相似文献   

12.
Small mountain lakes are natural archives for understanding long-term natural and anthropogenic impact on the environment. This study focused on long-term (last ca. 13 000 years) vegetation changes and sedimentary processes in the catchment area of Lake Planina pri jezeru (1430 m a.s.l.) by using mineralogical, geochemical and palynological methods. Palynological results suggest that regional vegetation between 12 900 and 11 700 cal a bp was a herbaceous–forest tundra (Pinus, Artemisia, Poaceae ). Climate warming at the beginning of the Holocene (ca. 11 700 cal a bp ) caused the transition from a wetland (Cyperaceae) to an eutrophic lake with alternating anoxic (pyrite) and oxic conditions (gypsum). In addition, the surrounding area became forested (Picea, Larix, Ulmus). Fagus expanded at 10 200 cal a bp and Abies at 8200 cal a bp. Between 7500 and 4300 cal a bp , human impact on the environment was barely noticeable and mostly limited to grazing. During 4300–430 cal a bp human impact became more evident and gradually increased. The greatest influence was observed from 430 cal a bp onwards, when excessive exploitation of the surrounding area (logging and grazing) severely eutrophicated the lake.  相似文献   

13.
Paleolake sediment, constrained by tephrochronology, from Onepoto basin volcanic crater in Auckland, Northern New Zealand (36° 48′S), provides one of the few uninterrupted records of paleovegetation for marine oxygen isotope stages (MIS) 4 and 3 (76,000–26,000 yr B.P.) in the region. This period was characterized by cool temperate conifer-hardwood forest that lacked some of the warmer taxa typical of the Holocene. The period 64,400–60,500 yr B.P. was marked by opening of forest canopy and expansion of small trees and shrubs, and correlates to the thermal minima of MIS 4. However, the landscape was never as open as the forest-shrubland mosaic of the MIS 2. The beginning of MIS 3 (60,500–50,500 yr B.P.) was marked by the dramatic expansion and then decline of conifer-hardwood forest dominated by Dacrydium cupressinum, a species that prefers wetter conditions. This forest was succeeded by the typically montane Nothofagus at 50,500 yr B.P., corresponding to a thermal decline. Thus, MIS 3 began with an abrupt change to moist cool conditions that lasted about 5000 yr, followed by gradual cooling and dryer conditions. This supports some interpretations from other parts of the southwest Pacific region, that MIS 3 was a period of increased precipitation. The widespread and stratigraphically important Rotoehu tephra, erupted from Okataina Volcanic Centre, has been variously dated at 45,000–65,000 yr B.P. At Onepoto, sedimentation rate and paleovegetation reconstruction imply an age of c. 44,300 yr B.P. The tephra provides a correlation horizon in the marine and terrestrial realms during a period (MIS 3) difficult to date by radiometric methods.  相似文献   

14.
The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.  相似文献   

15.
The construction of the A16-Transjurane motorway revealed evidence of Holocene sediment sequences in the Delémont valley (Canton of Jura, Switzerland). Certain processes begin during the Younger Dryas. Pine forests dominate this cold period, which was unfavourable for pedogenesis; they remain throughout the first half of the Holocene. The meandering river system then becomes stable for more than four millennia. The first signs of human impact on the vegetal cover begin to appear around 3,500 cal BC (Middle Neolithic). An increase in hydric activity occurs between 3,600 and 2,500 cal BC. However, the earliest evidence of the cultivation of cereals dates only to about 2,000 cal BC (Early Bronze Age). Extensive forest clearing and the emergence of cultivated plants occur after 1,400 cal BC. On the cleared slopes the soil erodes and at their foot colluvium deposits accumulate. The densification of the settlement from the Late Bronze Age (1,350–800 cal BC) until the beginning of the Iron Age (800–650 cal BC) contributes to alluvial destabilization. A palaeosol has been identified in all of the Holocene deposits in the valley. The deforestation intensifies between 400 and 100 cal BC while hydric activity decreases. The first centuries of our era record very limited pedo-sedimentary phenomena. However, human presence becomes less marked after 350 cal AD. The slopes are stabilized and the soil develops. From 550 cal AD, an important increase in hydric activity takes place, a probable consequence of a wet fluctuation in the climate. Contemporary forest clearing causes deep gullies. After 750 cal AD, drier conditions set in. This period of stability, marked by occasional rises in the water level, continues until 1,250–1,300 cal AD (Late Middle Ages). Then superficial flows resume and entrenchment of the main waterways occurs, combined consequences of the Little Ice Age and the upsurge in human activity.  相似文献   

16.
Records of past vegetation and fire history can be complicated by changes in the depositional environment of a sampling location. However, these changes can alternatively be used as a measure of climate variability. Our study site, ca. 18.0 cal. ka BP record from Little Brooklyn Lake, Wyoming, located near the crest of the Snowy Range, records three moisture states. Initially, the lake was likely a glacier‐fed pond indicated by the presence of Pediastrum algae colonies. Around 13.0 cal. ka BP this pond transitioned to a meadow environment, suggested by the loss of Pediastrum algae colonies and slow sedimentation rates. Meadow conditions were maintained until ca. 5.0 cal. ka BP when Pediastrum algae colony abundance increased,indicating the formation of a shallow lake. From 18.0 to ca. 5.0 cal. ka BP, the pollen record is suggestive of alpine vegetation conditions with relatively high spruce and herbaceous taxa. Low charcoal influx also characterizes the period between 18.0 and 5.0 cal. ka BP. After 5.0 cal. ka BP, the coincidence of the formation of shallow lake and pollen data, indicating a shift to a spruce and fir forest, suggests an increase in effective moisture. Fire remained rare in this basin over the entire record, however, once the lake established sedimentation rates and charcoal influx increased. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Pollen, micro-charcoal and total carbon analyses on sediments from the Turbuta palaeolake, in the Transylvanian Basin of NW Romania, reveal Younger Dryas to mid-Holocene environmental changes. The chronostratigraphy relies on AMS 14C measurements on organic matter and U/Th TIMS datings of snail shells. Results indicate the presence of Pinus and Betula open woodlands with small populations of Picea, Ulmus, Alnus and Salix before 12,000 cal yr BP. A fairly abrupt replacement of Pinus and Betula by Ulmus-dominated woodlands at ca. 11,900 cal. yr BP likely represents competition effects of vegetation driven by climate warming at the onset of the Holocene. By 11,000 cal yr BP, the woodlands were increasingly diverse and dense with the expansion of Quercus, Fraxinus and Tilia, the establishment of Corylus and the decline of upland herbaceous and shrubs taxa. The marked expansion of Quercus accompanied by Tilia between 10,500 and 8000 cal yr BP could be the result of low effective moisture associated with both low elevation of the site and with regional change towards a drier climate. At 10,000 cal yr BP, Corylus spread across the region, and by 8000 cal yr BP it replaced Quercus as a dominant forest constituent, with only little representation of Picea abies. Carpinus became established around 5500 cal yr BP, but it was only a minor constituent in local woodlands until ca. 5000 cal yr BP. Results from this study also indicate that the woodlands in the lowlands of Turbuta were never closed.  相似文献   

18.
Anthropogenic eutrophication and spreading anoxia in freshwater systems is a global concern. Little is known about anoxia in earlier historic times under weaker human impact, or under prehistoric natural conditions with different trophic, land cover and climatic regimes. We use a novel approach that combines high-resolution hyperspectral imaging with µ-XRF and HPLC-pigment data, which allows us to assess chloropigments (productivity) and bacteriopigments (anoxia) at seasonal subvarve-scale resolution. Our ~9700 cal a bp varved sediment record from NE Poland suggests that productivity increased stepwise from oligotrophic Early Holocene conditions (until ~9200 cal a bp ) to mesotrophic conditions in the Mid- and Late Holocene. Natural eutrophication was mainly a function of progressing landscape evolution with intense weathering under dense forest and warm-moist climatic conditions. Generally, anoxia increased with increasing productivity. Seasonal anoxia and some multi-decadal periods of meromixis were the common mixing patterns throughout the Holocene except for a period of persisting meromixis between ~5200 and 2000 cal a bp. Anthropogenic deforestation around 400 cal a bp resulted in substantially better lake oxygenation despite high productivity. In this small lake, aquatic productivity and lakeshore forest cover (wind shield) were more important factors controlling oxic/anoxic conditions than Holocene temperature variability.  相似文献   

19.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6"S, 79°06'41.5"W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.  相似文献   

20.
The record of Almoloya Lake in the Upper Lerma basin starts with the deposition of the late Pleistocene Upper Toluca Pumice layer. The data from this interval indicate a period of climatic instability that lasted until 8500 cal yr B.P., when temperature conditions stabilized, although moisture fluctuations continued until 8000 cal yr B.P. Between 8500 and 5000 cal yr B.P. a temperate climate is indicated by dominance of Pinus. From 5000 to 3000 cal yr B.P. Quercus forest expanded, suggesting a warm temperate climate: a first indication of drier environmental conditions is an increase in grassland between 4200 and 3500 cal yr B.P. During the Late Holocene (3300 to 500 cal yr B.P.) the increase of Pinus and grassland indicates temperate dry conditions, with a considerable increase of Pinus between 1100 and 950 cal yr B.P. At the end of this period, humidity increased. The main tendency during the Holocene was a change from humid to dry conditions. During the Early Holocene, Almoloya Lake was larger and deeper; the changing humidity regime resulted in a fragmented marshland, with the presence of aquatic and subaquatic vegetation types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号