首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
National hydrographic offices need a better means of assessing the adequacy of existing nautical charts in order to plan and prioritize future hydrographic surveys. The ability to derive bathymetry from multispectral satellite imagery is a topic that has received considerable attention in scientific literature. However, published studies have not addressed the ability of satellite-derived bathymetry to meet specific hydrographic survey requirements. Specifically, the bathymetry needs to be referenced to a chart datum and statistical uncertainty estimates of the bathymetry should be provided. Ideally, the procedure should be based on readily-available, low-cost software, tools, and data. This paper describes the development and testing of a procedure using publicly-available, multispectral satellite imagery to map and portray shallow-water bathymetry in a GIS environment for three study sites: Northeast United States, Nigeria, and Belize. Landsat imagery and published algorithms were used to derive estimates of the bathymetry in shallow waters, and uncertainty of the satellite-derived bathymetry was then assessed using a Monte Carlo method. Results indicate that the practical procedures developed in this study are suitable for use by national hydrographic offices.  相似文献   

2.
Remote sensing bathymetry inversion can quickly obtain water depth data of large areas, but this process relies on a large number of in-situ depth data points. USV-based (Unmanned Surface Vehicle) technique can obtain the bathymetry data of shallow water where ordinary ships are inaccessible, but this technique is inefficient and generally only data along survey line can be collected. The combination of USV and high-resolution remote sensing provides a new solution for water depth surveying and mapping around an island. This paper focuses on the key techniques, using USV sounding data and GeoEye-1 multispectral remote sensing images covering the region of Wuzhizhou island in the experiment. The results show that the MAE (Mean Absolute Error) of USV sounding is 0.25 m, while the MRE (Mean Relative Error) is 1.41%, and the MRE of remote sensing bathymetry aided by USV sounding can be controlled within 20%. Errors are mainly from areas shallower than 5 m, and are also affected by the USV sounding position accuracy. It shows that it is feasible to combine the USV sounding and high-resolution remote sensing bathymetry, and this technique has broad application prospects in the field of bathymetry in large shallow areas.  相似文献   

3.
Spatial distribution patterns of John Dory (Zeus faber, L.) were examined in relation to sea bottom temperature, bathymetry, locational covariates and season. Data were collected during a 2-year period (1996–1997) of seasonal sampling using demersal trawl surveys in the Aegean Sea (eastern Mediterranean). The ecological preferences of the species throughout four seasons were elucidated and the degree in which these environmental relationships might be modulated by the different hydrographic and topographic regime was also considered. Key determinants of the species' spatial aggregation in all four seasons were the water depth, the sea bottom temperature and the latitude. The sea bottom temperature had a significant effect on seasonal John Dory abundance both directly, as a main effect, and indirectly, through its interactive effect with the water depth. John Dory seasonal abundance was consistently greater in the shallower regions of the area having warmer bottom waters. Results indicated a distinct southward shift as progressing through the year, with peak abundances being observed in gradually lower latitudes of shallow areas as seasons evolved. John Dory appeared to avoid the deeper waters regardless of their bottom temperature and geographic position. The present results also suggested a seasonal pattern of habitat associations for specific locations characterised by weak hydrographic activity. John Dory preferences for certain water depth zones, sea bottom temperatures and substrate types are hypothesized to modulate the seasonal spatial aggregation of the species to preferred grounds.  相似文献   

4.
Abstract

Shallow water bathymetry has proved to be a challenging task for remote sensing applications. In this work, Green-Wavelength Terrestrial Laser Scanning (GWTLS) is employed to survey nearshore bathymetry under clear atmospheric and water conditions. First, the obtained seabed points were corrected for refraction and then geo-registration, and filtering processes were exerted to obtain an accurate bathymetric surface. Terrain analysis was performed with respect to a reference surface derived from classical surveying techniques. The overall analysis has shown that the best results stem from 35° to 50° incident angles, whereas for angles higher than 65° measurements are not acceptable, although for the same angle in front and close to the instrument accuracy is considered acceptable due to the high laser power. Also, high resolution micro-topography, shallower than 1?m water depth, was managed to be captured. Systematic experimental approaches are expected to improve the GWTLS technique to detect bathymetry, which is anticipated to assist in mapping very shallow foreshore, tidal, and deltaic environments, to contribute conceptual into developing hybrid observation systems for coastal monitoring, and also to be applied in various maritime applications.  相似文献   

5.
Bed load is a type of sand drift and accumulation on the sea-bed. Sand drift is a very important index to survey the erosion or deposition of coastal zone. The change of water depths indicates the change of bed load in shallow waters. The conventional method for measuring water depth uses the shipboard echo sounder, which is accurate for point-measurement, but is a time-consuming and labor-intensive task. For periodic survey of bathymetry as synoptic scale, the remote sensing method may be a viable alternative. Wave spectrum bathymetric (WSB) method takes advantages of remote sensing to obtain the bathymetry of shallow waters safely, economically and quickly. The WSB method is feasible to detect the change of water depths over coastal zones where water depths are less than about 12 m. This remote sensing method is worthy to be well developed and efficiently applied to change detection of water depths and bed load in shallow waters.  相似文献   

6.
Abstract

The Canadian program for obtaining hydrographic data by aerial methods consists of merging laser bathymeter data with photogrammetric depth data. The main deficiency of the photogrammetric approach for bathymetric measurements is that incomplete stereomodels can occur in areas where little or no land appears. This problem is overcome by using an inertial navigation system (INS) hardmounted to the aerial camera to provide the orientation parameters of position and attitude for each photograph. In order to meet the high accuracy requirement, the INS and other complementary navigation data are processed through a post‐mission track recovery software package. The photogrammetric depths are improved further by merging them with the waterline height information and the laser bathymeter depths using a least‐squares adjustment algorithm. The photogrammetric compilation, depth measurements, shoreline plots, and laser bathymeter integration is done in an analytical stereoplotter. This instrument provides an on‐line refraction correction necessary because of the two‐media mode of operation. Results of a recent pilot project indicate that the integrated system is capable of obtaining depth measurements that agree with echo sounder depth measurements to a precision of .65 m (RMS), and that it can position measured depths to a precision of .74 m (RMS) relative to local control.  相似文献   

7.
《Marine Geodesy》2012,35(1):23-43
Abstract

Remote sensing is becoming common in the estimation of bathymetry for navigational charting through a process known as Satellite Derived Bathymetry (SDB). Most SDB techniques currently used by hydrographic offices employ an empirical approach, requiring the use of in-situ data to calibrate a relationship between spectral information and coincident depths. This article reports on a multi-site test of an alternative SDB method which uses photogrammetry to extract depths from stereo WorldView-2 imagery. In areas with heterogeneous seafloors, the empirical approach faces difficulties in establishing the relationship between colour and depth, while the photogrammetric approach uses the contrasting seafloor features for triangulation. Additionally, the photogrammetric method may be applied in areas lacking previous survey data. Five study areas in Nunavut, Canada were selected to test the robustness of the method in different environments and under different imaging conditions. Study areas were (with resulting RMSE/Bias given in metres) Coral Harbour (0.84/?0.47), Cambridge Bay (1.16/?0.15), Queen Maud Gulf (0.97/0.06), Arviat (0.99/?0.009), and Frobisher Bay, where extraction largely failed due to environmental conditions. Accuracies demonstrated here are similar to those seen using the empirical approach, suggesting that these two methods may be used in conjunction, each applied to regions where they are better suited.  相似文献   

8.
Regular surveys of coastal zone seabed deliver important information about geomorphologic processes such as silting of waterways. The recent introduction of the Sentinel series of sensors has allowed for the use of satellite sensing for shallow bathymetry morphology monitoring. In this context, this article presents a dedicated Geographic Information System for Baltic Sea shallow water depth monitoring on the basis of Sentinel-2 imagery. The system employs Geovisual Analytics for differential analysis of bathymetry changes as well as monitoring the visibility of known wrecks in the coastal waters of Southern Baltic Sea. Results are verified with regard to known changes in shallow water bathymetry between 28 June 2015 and 3 March 2017.  相似文献   

9.
利用WorldView-2四波段卫星数据和电子海图数据,基于改进的耀斑改正算法和双波段比值算法,反演获得了3处典型海域的浅水水深。通过不同海域、不同耀斑条件下水深反演实验,探讨了RED,NIR波段在典型四波段水深反演中的作用和影响,发现在双波段比值法水深反演中,引入RED+NIR波段进行耀斑改正处理,可以增加珊瑚、海藻等绿色物质覆盖海底的反射率,有效地提高该类海域的水深反演精度。基于耀斑改正的多光谱水深反演方法,适用于中轻度耀斑条件下,水质较清澈的浅海水深反演,可在国内外典型四波段卫星数据水深反演中推广应用。  相似文献   

10.
多波束水深测量中受潮汐因素的影响,测量垂直基准是变化的,具有瞬时性。传统多波束测量,需在测区内设立一个或多个验潮站进行同步水位观测,最终将水深归算到深度基准面上。针对多波束水深测量中垂直基准转换的复杂性问题,文中基于地球重力场模型,结合测区内实测的GNSS/水准数据,通过插值算法建立了测区范围内似大地水准面精化模型,构建了多波束无验潮水深测量的垂直基准转换模型。通过实例表明,该方法有效地消除了潮汐、动态吃水及涌浪等因素影响,直接获取深度基准面的水深值,提高工作效率,可满足近岸多波束水深测量的工作需求。  相似文献   

11.
海图修测是海洋测绘的重要任务,实际生产中尚未建立采集、编辑、入库一体化的立体影像海图修测技术。分析了立体测图技术的现状和发展趋势,以及海图修测技术特点和需求,提出了基于Arc GIS的立体影像海图修测技术方案,论述了功能模块组成和软件嵌入方法,给出了软件研制的技术要求。该技术方案能够实现海图修测的立体采集、直接入库的应用要求,拓展海图修测数据源,提高作业效率,为海洋测绘航空摄影测量体系建设提供参考。  相似文献   

12.
Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for preliminary engineering application.  相似文献   

13.
利用多波段卫星数据进行浅海水深反演方法研究   总被引:18,自引:1,他引:18  
党福星  丁谦 《海洋通报》2003,22(3):55-60
以遥感反演水深的基本原理为基础,利用我国南海永暑礁景区的TM数据和实测水深资料,通过TM多波段数据辐射校正、图像与海图地理配推、底质类型分区、潮汐改正和实测水深数据与相应的图像辐射值回归分析,建立了浅海水深反演模型,并进行了浅海岛礁水深的实际计算,总标准误差为2.14m。对我国南海30m以浅岛礁水深地形研究有很好的应用价值。  相似文献   

14.
15.
针对浅海测深的数据特点和应用需求,以我国南海甘泉岛为例,研究了利用ICESat-2(Ice,Cloud,and Land Elevation Satellite-2)激光卫星数据和光学遥感影像开展主被动融合水深测量的方法。首先通过信号点提取、水面/水底识别、水下点折射改正等步骤处理ICESat-2数据,获得水深值,随后以激光点作为控制,计算光学水深反演模型参数,最后由点及面地获取大范围高精度水深。实验表明,甘泉岛区域主被动融合测深中误差优于1.30m,基于激光卫星数据的主被动融合测深方法能够为浅水水深测量提供新手段。  相似文献   

16.
本文基于海浪波折射现象和浅水波理论,提出了一种基于单景高分辨率光学遥感影像的浅海地形提取方法。首先,基于浅水波理论推导出适用于浅海区域的水深与海浪波长、频率的定量关系,针对近岸光学遥感图像复杂的海浪特征,讨论了两种海浪波长提取方法,即FFT方法和剖面线法。然后提出了基于长距离波长波动分析的海浪频率计算方法,解决了单景遥感影像的波浪频率计算难题。最后,利用单景QuickBird高分辨率光学遥感影像,以海南岛三亚湾为研究区域进行了应用实验,结果表明,对12m以浅的浅海区域,在不需要任何辅助参数的情况下,反演获得了浅海地形(DEM),经与1:25000比例尺海图的水深对比验证,地形趋势吻合良好,反演水深的均方根误差为1.07m,相对水深误差为16.2%,表明该方法适合于浅海水下地形的提取,且具有无需实测水深数据和环境参数的支持的优点。  相似文献   

17.
受船载仪器、海况等要素限制,传统水深测量中浅水区域无法对浅海水深进行测量。为克服此困难,利用近年来新兴的机载激光测深系统(light detection and ranging system,简称LiDAR)进行浅海水深测量,用LiDAR获取的点云数据进行处理后得到的水下地形等深线与海图图载水深进行直观对比,同一坐标点下的点云水深与截图水深进行定量分析。结果表明,LiDAR获取的水深精度高,水深点密集,可更快获得浅海区域详细的高精度的水下地形。这些优点使其在近岸浅海海岸防护、围海造田、港口建设等海洋工程项目中应用前景广阔。此外目前国内LiDAR技术主要用于陆地,应用于浅海水深测绘还很少,本研究对机载LiDAR进行水深测量的研究进行了补充。  相似文献   

18.
基于SPOT-6遥感影像的近海水深反演   总被引:1,自引:0,他引:1       下载免费PDF全文
水深反演对于浅海地形调查、海岸带保护和开发具有重要的意义。本文选取南海东锣岛海域为研究区,采用SPOT-6 6 m高分辨率数据,基于SPOT-6多光谱数据和水深实测值分别建立蓝-绿、蓝-红等6个波段比值模型。结果显示,绿-红波段的比值模型精度最高,R2值达到0.706 4,这对于反演热带海洋地区水深具有一定借鉴意义。基于该模型的反演结果对不同水深范围内的平均相对误差进行比较,结果表明:0~5 m水深范围反演误差较高,主要由于该范围水体情况较复杂,5~10 m 水深范围内平均相对误差最小为13.62%,而随着水深的增加,反演的误差增大,分析误差的主要来源是海水中的悬浮颗粒物、黄色物质、叶绿素质量浓度等方面的影响。  相似文献   

19.
根据调查设备搭载器的不同,将海底管道在位状态调查方法归为船载、自治水下机器人搭载(AUV 搭载)和无人遥控潜水器搭载(ROV搭载)三类;在浅水段采用船载调查,在深水段采用AUV搭载调查,在此基础上进行重点关注区域筛选,开展ROV调查,最后进行整体评价和分析对比,这种(船载/AUV)+ROV组合模式很好地实现了多种调查方法的优势互补。实际上,采用AUV搭载进行海底管道在位状态调查在国内业界尚属首次。调查所取得的管道位置、埋深、周边障碍物的分布以及管道人工处理情况等成果,为后期开展管道维护工作提供了重要的基础数据。此次成功实践可为以后从浅水到深水的管道在位状态调查提供经验和借鉴。  相似文献   

20.
为适应海道测量数据应用领域不断扩大和用户要求不断提高的需求,国际海道测量组织和世界海道测量技术发达国家相继发布了各自的新版海道测量规范和标准.将我国海道测量规范与国际海道测量标准在测量的分类与质量基准、水深测量技术要求以及其他测量标准等方面进行比较详细的分析比较,指出了我国海道测量规范的不足和需要改进的问题,旨在推进我...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号