首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distance between the main land and island is so long that it is very difficult to precisely connect the height datum across the sea with the traditional method like the trigonometric leveling,or it is very expensive and takes long time to implement the height transfer with the geopotential technique.We combine the data of GPS surveying,astro-geodesy and EGM2008 to precisely connect the orthometric height across the sea with the improved astronomical leveling method in the paper.The Qiongzhou Strait is selected as the test area for the height connection over the sea.We precisely determine the geodetic latitudes,longitudes,heights and deflections of the vertical for four points on both sides across the strait.Modeled deflections of the vertical along the height connecting routes over the sea are determined with EGM2008 model based on the geodetic positions and heights of the sea segmentation points from DNSC08MSS model.Differences of the measured and modeled deflections of the vertical are calculated at four points on both sides and linearly change along the route.So the deflections of the vertical along the route over the sea can be improved by the linear interpolation model.The results are also in accord with those of trigonometirc levelings.The practical case shows that we can precisely connect the orthometric height across the Qiongzhou Strait to satisfy the requirement of order 3 leveling network of China.The method is very efficient to precisely connect the height datum across the sea along the route up to 80 km.  相似文献   

2.
In this study, we show how the Global Navigation Satellite System (GNSS)-derived vertical velocities contribute to the correction of tide gauge (TG) measurements used for the sea level rise estimation in Greece. Twelve sites with records of local sea level heights are processed in order to estimate their trend. Certain error sources related to TGs, e.g. equipment changes, data noise, may lead to biased or erroneous estimations of the sea level height. Therefore, it would be preferred to follow a robust estimation technique in order to detect and reduce outlier effects. The geocentric sea level rise is estimated by taking into account the land vertical motion of co-located GNSS permanent stations at the Hellenic area. TGs measure the height of the water relative to a monitored geodetic benchmark on land. On the other hand, using GNSS-based methods the vertical land motion can be derived. By means of extended models fitted to the GNSS time-series position, obtained from seven years of continuous data analysis, periodic signals are well described. The synergy of the two co-located techniques results in the correction of TG relative sea level heights taking into account the GNSS vertical velocities and consequently obtaining the conversion to absolute (geocentric) sea level trend.  相似文献   

3.
The geodetic Corsica site was set up in 1998 in order to perform altimeter calibration of the TOPEX/Poseidon (T/P) mission and subsequently, Jason-1 and OSTM/Jason-2. The scope of the site was widened in 2005 in order to undertake the calibration of the Envisat mission and most recently of SARAL/AltiKa. Here we present the first results from the latter mission using both indirect and direct calibration/validation approaches. The indirect approach utilizes a coastal tide gauge and, as a consequence, the altimeter derived sea surface height (SSH) needs to be corrected for the geoid slope. The direct approach utilizes a novel GPS-based system deployed offshore under the satellite ground track that permits a direct comparison with the altimeter derived SSH. The advantages and disadvantages of both systems (GPS-based and tide gauges) and methods (direct or indirect) will be described and discussed. Our results for O/IGD-R data show a very good consistency for these three kinds of products: their derived absolute SSH biases are consistent within 17 mm and their associated standard deviation ranges from 31 to 35 mm. The AltiKa absolute SSH bias derived from GPS-zodiac measurement using the direct method is ?54 ±10 mm based on the first 13 cycles.  相似文献   

4.
The Baltic Sea Level Project is an international scientific observation program to unify the vertical datums of the countries of the Baltic Sea with GPS measurements. In total, 35 tide gauges on shores and islands of the Baltic were occupied with GPS in 1993. After computing a new gravimetric geoid over the Baltic Sea, it was possible to unify the datums as well as to calculate the orthometric heights and the sea surface topography values for the tide gauge stations. The results obtained are shown.  相似文献   

5.
通过分析比较标准前向列推、标准前向行推、跨阶次递推和Belikov列推4种缔合勒让德递推算法的精度、稳定性以及计算速度,提出了选取Belikov列推法来解算超高阶重力场模型高程异常;研究探讨了基于严密球谐级数展开、保留泰勒级数展开的零阶项和保留至泰勒级数展开一阶项计算模型高程异常的三种算法,并进行了实验计算分析。结果表明,保留至泰勒级数一阶项的模型高程异常既能保证计算速度也能达到足够的精度,可满足大区域高分辨率高程异常建模的需求。  相似文献   

6.
本文选定定义GPS测高的概念,然后介绍GPS测高技术之一的浮标GPS测高的基本原理及其应用实例,最后讨论浮标GPS测高在我国的应用前景。  相似文献   

7.
Abstract

The combined use of Global Positioning System (GPS) differential positioning as well as ERS‐1 altimeter data is considered in implementing geodetic vertical datums and their unification. The article describes concepts, techniques, practical realization, and associated questions and problems. Particular aspects in view of small sea surface perturbations in offshore areas in determining sea surface components (variable and steady state) are discussed. The combinations of tide gauge data with altimetry and (mainly) GPS positioning for geodetic purposes are discussed in detail. Special attention is devoted to the associated reference systems as well as to the combination of dynamic (level and nonlevel surfaces) with geometric quantities. The discussion is based on a specific ERS‐1 project supported by the National Science Foundation. Implications and practical impact of the project are outlined.  相似文献   

8.
Heights as the basic geographical information are very important to study marine geophysics, geodesy and oceanography. Based on the astronomical leveling principle, we put forward a new method to unify the normal height (NH) datum along one ship route across sea with the ship-borne gravimetry and global navigation satellite system (GNSS) techniques. Ship-borne gravimeter can precisely measure gravity anomalies and the GNSS technique is used to measure precise sea surface heights (SSHs) along the ship track across sea. Precisions of ship-borne gravities and SSHs are improved with the colinear adjustment. To remove the effects of sea wave and wind, the Gaussian filter is used to filter residuals both between the ship-borne and modeled gravities from EGM2008 to degree 2160, and the measured and modeled SSHs from DTM10MSS, respectively. Deflections of the vertical (DOVs) along the ship route are estimated from the measured gravities with the least squares collocation method. The astro-geodetic survey is made on continent and island to improve the accuracy of DOVs along the route. We use the new method to connect NHs on the coastal sea of Shandong Peninsula, China. The results indicate that the method is very efficient to precisely connect the NH along the ship route across sea.  相似文献   

9.
A new load surface based approach to the reliability analysis of caisson-type breakwater is proposed. Uncertainties of the horizontal and vertical wave loads acting on breakwater are considered by using the so-called load surfaces, which can be estimated as functions of wave height, water level, and so on. Then, the first-order reliability method(FORM) can be applied to determine the probability of failure under the wave action. In this way, the reliability analysis of breakwaters with uncertainties both in wave height and in water level is possible. Moreover, the uncertainty in wave breaking can be taken into account by considering a random variable for wave height ratio which relates the significant wave height to the maximum wave height. The proposed approach is applied numerically to the reliability analysis of caisson breakwater under wave attack that may undergo partial or full wave breaking.  相似文献   

10.
An improved absolute calibration technology based on indirect measurements was developed through two probative experiments, the performance of which was evaluated by applying the approach to in situ sea surface height(SSH) at the Tianheng Island(tidal gauge) and the satellite nadir(GPS buoy). Using Geoid/MSS(mean sea surface) data, which accounted for a constant offset between nadir and onshore tidal gauge water levels, and TMD(tidal model driver), which canceled out the time-varying offsets, nadir SSH(sea surface height) could be indirectly acquired at an onshore tidal gauge instead of from direct offshore observation. The approach extrapolated the onshore SSH out to the offshore nadir with an accuracy of(1.88±0.20) cm and a standard deviation of 3.3 cm, which suggested that the approach presented was feasible in absolute altimeter calibration/validation(Cal/Val), and the approach enormously facilitated the obtaining SSH from the offshore nadir.  相似文献   

11.
Efficient monitoring of large-scale current systems for climate research requires the development of new techniques to estimate ocean transports. Here, a methodology for continuous estimation of dynamic height profiles and geostrophic currents from moored temperature sensors is presented. The technique is applied to moorings deployed in the Atlantic Deep Western Boundary Current at 26.5°N, off Abaco, the Bahamas (WOCE ACM-1 array). Relative geostrophic currents are referenced using bottom pressure sensors and available shipboard direct velocity (lowered-ADCP) sections over the period of the deployment, to obtain a time series of absolute volume transport. Comparison with direct velocity measurements from a complete array of current meters shows good agreement for the mean transport and its variablity on time scales longer than 10 days, but larger variability in the current meter derived transport at time scales shorter than 10 days. A rigorous error analysis assesses the contributions of various error sources in the geostrophic as well as direct transport estimates. Low-frequency drift of the bottom pressure sensors is found to be the largest error source in the geostrophic transport estimates and recommendations for improvement of the technique and related measurement technologies are made.  相似文献   

12.
A complication of finite-volume triangular C-grid methods is the numerical emergence of horizontal divergence errors that lead to grid-scale oscillations in vertical velocity. Nonlinear feedback via advection of momentum can lead to numerical instability in velocity modes via positive feedback with spurious vertical velocities induced by horizontal divergence truncation error. Existing strategies to mitigate divergence errors such as direct divergence averaging and increased diffusion do not completely mitigate horizontal vertical velocity oscillations. We present a novel elliptic filtering approach to mitigate this spurious error and more accurately represent vertical velocities via improved calculation of horizontal divergences. These results are applied to laminar curved channel flows, demonstrating the applicability of the method to reproduce secondary flow features.  相似文献   

13.
中国南海北部不同时期的海图采用的深度基准面不一样,深度基准面的多样性使的不同时期所计算的深度基准面数值不具有统一性,无法充分利用诸多历史海图资料,有必要了解历史海图深度基准面之间的关系。针对中国南海北部,利用多年实测潮位资料进行调和分析并根据调和常数计算验潮站的深度基准面,获得中国南海北部14个验潮站的深度基准面值,探讨了不同深度基准面之间的换算关系,研究表明最低低潮面不适合日潮海区,理论最低潮面与略最低潮面之间平均间距为18cm,理论最低潮面与最低天文潮面除厦门、三亚外两者平均差距达到1.88cm,具有近似一致性。  相似文献   

14.
X波段导航雷达浪高实时测量研究   总被引:9,自引:1,他引:9  
针对舰船对浪高实时测量的需要,提出了基于X波段导航雷达浪高实时测量的方案。介绍X波段导航雷达浪高测量原理,建立基于X波段导航雷达浪高实时测量的数学模型。通过某海域实测采集的雷达图像,经过数学模型反演得出浪高实时数据,并与采用浮标传感器实时测量的浪高数据进行对比,发现X波段导航雷达与浮标传感器测得的浪高数据有近一致的线性关系,标准差也较小。从一定程度上为舰船浪高测量提供一种可行性方法。  相似文献   

15.
阐述了跨海高程传递的基本原理和方法,介绍了跨海高程传递数据采集及处理系统.跨距约10.5km的高程传递试验表明:基于三角高程的高程传递方法在跨距10km左右能够达到三等水准精度,严格的同步对向观测能够有效消除大气折光差的影响.  相似文献   

16.
Based on rigid kinematics theory and lumped mass method,a mathematical model of the two net cages of grid mooring system under waves is developed.In order to verify the numerical model,a series of physical model tests have been carried out.According to the comparisons between the simulated and the experimental results,it can be found that the simulated and the experimental results agree well in each wave condition.Then,the forces on the mooring lines and the floating collar movement are calculated under different wave conditions.Numerical results show that under the same condition,the forces on the bridle ropes are the largest,followed by forces on the main ropes and the grid ropes.The horizontal and the vertical float collar motion amplitudes increase with the increase of wave height,while the relationship of the horizontal motion amplitude and the wave period is indistinct.The vertical motion amplitude of the two cages is almost the same,while on the respect of horizontal motion amplitude,cage B(behind cage A,as shown in Fig.4) moves much farther than cage A under the same wave condition.The inclination angle of the floating system both in clockwise along y axis and the counter one enlarges a little with the increase of wave height.  相似文献   

17.
This paper presents a mathematical model which computes the hydrodynamic characteristics of a curtainwall–pile breakwater (CPB) using circular piles, by modifying the model developed for rectangular piles by Suh et al. [2006. Hydrodynamic characteristics of pile-supported vertical wall breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering 132(2), 83–96]. To examine the validity of the model, laboratory experiments have been conducted for CPB with various values of draft of curtain wall, spacing between piles, and wave height and period. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. The mathematical model based on linear wave theory tends to over-predict the reflection coefficient as the wave height increases. As the draft of the curtain wall increases and the porosity between piles decreases, the reflection and transmission coefficient increases and decreases, respectively, as expected. As the relative water depth increases, however, the effect of porosity disappears because the wave motion is minimal in the lower part of a water column for short waves.  相似文献   

18.
Experiments in reconstructing twentieth-century sea levels   总被引:3,自引:0,他引:3  
One approach to reconstructing historical sea level from the relatively sparse tide-gauge network is to employ Empirical Orthogonal Functions (EOFs) as interpolatory spatial basis functions. The EOFs are determined from independent global data, generally sea-surface heights from either satellite altimetry or a numerical ocean model. The problem is revisited here for sea level since 1900. A new approach to handling the tide-gauge datum problem by direct solution offers possible advantages over the method of integrating sea-level differences, with the potential of eventually adjusting datums into the global terrestrial reference frame. The resulting time series of global mean sea levels appears fairly insensitive to the adopted set of EOFs. In contrast, charts of regional sea level anomalies and trends are very sensitive to the adopted set of EOFs, especially for the sparser network of gauges in the early 20th century. The reconstructions appear especially suspect before 1950 in the tropical Pacific. While this limits some applications of the sea-level reconstructions, the sensitivity does appear adequately captured by formal uncertainties. All our solutions show regional trends over the past five decades to be fairly uniform throughout the global ocean, in contrast to trends observed over the shorter altimeter era. Consistent with several previous estimates, the global sea-level rise since 1900 is 1.70 ± 0.26 mm yr−1. The global trend since 1995 exceeds 3 mm yr−1 which is consistent with altimeter measurements, but this large trend was possibly also reached between 1935 and 1950.  相似文献   

19.
The ability of a sailing yacht to re-right due to the effect of a breaking wave is investigated experimentally. Free and constrained physical models with varying mast height and centre of gravity were tested. To investigate the influence of retained mast height on sway force and roll moment, models were constrained by attachment to a force balance for sway motion tests in calm water and stationary tests in regular and breaking waves. Free model testing, with varying mast height and centre of gravity position, were carried out in breaking waves. For these tests, model motions in six degrees of freedom were measured using photogrammetry. The constrained tests showed that while the mast height had little effect on forces when stationary in waves it had a large effect when in sway motion. As models experience large sway motions when subject to a breaking wave the mast remnant plays a critical role in re-righting dynamics. This work demonstrates that re-righting probability is more dependent on mast height retention and wave characteristics than vertical centre of gravity. This conclusion has direct implications on re-righting safety assessment as the dominant design feature in most safety standards is the vertical centre of gravity.  相似文献   

20.
This paper provides a practical stochastic method by which the maximum equilibrium scour depth around a vertical pile exposed to long-crested (2D) and short-crested (3D) nonlinear random waves plus a current can be derived. The approach is based on assuming the waves to be a stationary narrow-band random process, adopting the Forristall (2000) wave crest height distribution representing both 2D and 3D nonlinear random waves, and using the empirical formulas for the scour depth by Sumer and Fredsøe (2002). Comparisons are made between the present approach and the Sumer and Fredsøe (2001) data for 2D random waves plus current. An example calculation is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号