首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
The data for the present study were collected at 20 sampling stations in the Kara Sea along the transect from the Ob estuary to the deep sea St. Anna Trough in September 2007. Based on the hydrophysical features, the distribution of the Chl a, and the primary production, we distinguished six habitats: the river, estuary, inner and outer shelf, continental slope, and trough. The impact of the small-size (<0.5 mm) and large-size (>0.5 mm) fractions of the zooplankton on the phytoplankton’s organic carbon in the different regions of the Kara Sea was estimated. The ingestion rate was assessed using the analysis of the gut fluorescence content and the gut evacuation rate. The zooplankton grazed 1–2% of the phytoplankton biomass in the river and estuary; 3.5% over the shelf; and 6 and 10% in the regions of the trough and slope, respectively. The grazing impact of the small-sized zooplankton increased from the river zone to the deep regions (from 1 to 90%) along with their share in the total zooplankton abundance (from 18 to 95%). From 72 to 86% of the primary production was grazed over the shelf and slope. The primary production did not cover the feeding requirements of the zooplankton in the estuarine regions and St. Anna Trough in the autumn. In the estuarine regions, the major portion of the organic matter settles on the bottom due to the strong inflow of the allochthonous matter and the relatively low zooplankton grazing.  相似文献   

2.
Sampling was conducted along the quasi meridional transect at 130° E from the Lena River estuary to northern deep-sea regions of the Laptev Sea in September 2015. The latitudinal zonality and the impact of river runoff are manifested in the temperature and salinity distribution, concentration of particulate organic matter, and the structure of plankton communities. The differences in the chl a concentration and primary production along the transect are insignificant. The feeding rate of mesozooplankton herbivores was assessed by a fluorescence technique. The total consumption of phytoplankton biomass and primary production are estimated based on the feeding rate, abundance of zooplankton species, and their diel migrations. The daily grazing impact of zooplankton on phytoplankton biomass increases from 2% on the inner shelf to 3% on the mid-shelf, 5% on the outer shelf, and 10% in the deep-sea part of the basin. The consumption of primary production also increases: 1, 4.5, 5.7, and 13.9%, respectively. In the fall, the consumption of phytoplankton does not compensate the energy demands for respiration. The latitudinal zonality of the Laptev Sea appears not only in the hydrophysical water parameters and the structure of plankton communities, but also in their functional characteristics.  相似文献   

3.
Primary production of phytoplankton and ice and under-ice flora of the Kara Sea and regions thereof has been assessed using region-specific models and MODIS-Aqua satellite data for 2002–2015. Average annual primary production of phytoplankton calculated for the growing season (April–October) amounted to 165 mg С m–2 day–1. Annual primary production of phytoplankton was 35 g C/m2. Annual primary production of phytoplankton in the entire Kara Sea was 13 × 1012 g C. Annual primary production of ice and underice flora calculated using an integrated biophysical model was 1.7 × 1012 g C, or 12% of total primary production of the Kara Sea; the ice cover dynamics and published data were taken into account for the calculations. The results have been compared to earlier primary production estimates for the Kara Sea. The extent of the increase in sea productivity during warming of the Arctic and the decrease in ice cover area are discussed.  相似文献   

4.
New maps of the mean monthly distribution of chlorophyll and the primary production in the Kara Sea were compiled using joint processing of CZCS (1978–1986), SeaWiFS (1998–2005), and MODIS (2002–2006) satellite data and field measurements. The annual primary production of phytoplankton is estimated at 22.3 × 106 t of C per year or 70 mg of C/m2 per day. The results of the calculations of the organic carbon budget in the Kara Sea are presented.  相似文献   

5.
Phytoplankton communities, production rates and chlorophyll levels, together with zooplankton communities and biomass, were studied in relation to the hydrological properties in the euphotic zone (upper 100 m) in the Cretan Sea and the Straits of the Cretan Arc. The data were collected during four seasonal cruises undertaken from March 1994 to January 1995.The area studied is characterised by low nutrient concentrations, low 14C fixation rates, and impoverished phytoplankton and zooplankton standing stocks. Seasonal fluctuations in phytoplankton densities, chlorophyll standing stock and phytoplankton production are significant; maxima occur in spring and winter and minima in summer and autumn. Zooplankton also shows a clear seasonal pattern, with highest abundances occurring in autumn–winter, and smallest populations in spring–summer. During summer and early autumn, the phytoplankton distribution is determined by the vertical structure of the water column.Concentrations of all nutrients are very low in the surface waters, but increase at the deep chlorophyll maximum (DCM) layer, which ranges in depth from about 75–100 m. Chlorophyll-a concentrations in the DCM vary from 0.22–0.49 mg m−3, whilst the surface values range from 0.03–0.06 mg m−3. Maxima of phytoplankton, in terms of cell populations, are also encountered at average depths of 50–75 m, and do not always coincide with chlorophyll maxima. Primary production peaks usually occur within the upper layers of the euphotic zone.There is a seasonal succession of phytoplankton and zooplankton species. Diatoms and ‘others’ (comprising mainly cryptophytes and rhodophytes) dominate in winter and spring and are replaced by dinoflagellates in summer and coccolithophores in autumn. Copepods always dominate the mesozooplankton assemblages, contributing approximately 70% of total mesozooplankton abundance, and chaetognaths are the second most abundant group.  相似文献   

6.
春季水库浮游生物与鲢鳙生长的关系   总被引:1,自引:0,他引:1  
通过 2 0 0 0年春季对辽宁三座大中型山谷型水库的浮游生物和鲢鳙渔获物的 4、5月二次调查发现 :( 1) . 4月 ,各水库浮游植物生物量与其鲢鳙年平均渔获量正相关 ( p<0 .10 ) ,同时发现浮游植物在各水库的空间分布与环境因子无显著关系 ,浮游植物与浮游动物之间只有在产量较低的碧流河水库有极其显著的正相关关系 ( p<0 .0 1) ;但此时三水库浮游动物生物量的空间分布都与水温或流速相关显著 ( p<0 .0 5 ) ;( 2 ) . 5月 ,这种现象消失 ,而发现浮游植物多样性指数较 4月的比值与渔获量存在极显著的负相关关系 ( p<0 .0 1) ,浮游植物量空间分布的变异性与渔获量存在极显著的负相关关系 ( p<0 .0 2 ) ,浮游动物空间分布变异性与 4月的比值与渔获量存在显著负相关关系 ( p<0 .0 7) ;而且只有在鱼产量最低的碧流河水库显示了浮游动物生物量的空间分布与环境因子 (水温 )相关 ( p<0 .10 ) ;( 3) .鲢鳙肥满度和增重率显示与上述结果相对应 ,即浮游生物空间分布越不均匀 ,浮游植物的多样性指数随着温度的升高幅度越大的水库 ,鲢鳙的生长速度越快。认为 :1.鲢鳙的摄食 ,导致浮游生物的空间分布更均匀 ,而且使浮游植物的多样性受到限制 ;2 .用浮游生物空间分布的不均匀程度以及多样性指数的变化 ,可以用来评价和指导  相似文献   

7.
1999年渤海浮游植物生物量的数值模拟   总被引:6,自引:1,他引:6  
以浮游植物量、浮游动物量、营养盐浓度 (包括无机氮和无机磷 )以及碎屑量为生态变量 ,在HAMSOM水动力学模式的基础上构建了 1个三维浮游生态动力学NPZD模型。采用此模型研究了渤海 1999年浮游植物量和初级生产力的变化情况 ,模拟结果与实测基本相符。模拟结果表明 :1999年渤海浮游植物量的变化大致呈双峰分布 ,春季水华出现在4,5月份 ,秋季水华出现在 9,10月份 ;受透明度和局地水深的影响 ,渤海湾和辽东湾北部浮游植物量的年变化呈夏季大、冬季小的单峰分布。 1999年渤海不同海区初级生产力的变化特征是 :除莱州湾一年中有春、夏 2个峰值外 ,其它 3个海区都是夏季高、冬季低的单峰分布 ;1999年整个渤海年平均的初级生产力为 2 5 7mgC/m2 /d。  相似文献   

8.
To investigate the seasonal variation and community structure of nano- and microzooplankton in Gyeonggi Bay of the Yellow Sea, the abundance and carbon biomass of nano- and microzooplankton were evaluated at 10-day intervals from January 1997 to December 1999. Four major groups of nano- and microzooplankton communities were classified: heterotrophic ciliates, heterotrophic dinoflagellates (HDF), heterotrophic nanoflagellates (HNF), and copepod nauplii. The total carbon biomass of nano- and microzooplankton ranged from 10.2 to 168.8 μg C L−1 and was highest during or after phytoplankton blooms. Nano- and microzooplankton communities were composed of heterotrophic ciliates (7.4–81.4%; average 41.7% of total biomass), HDF (0.1–70.3%; average 26.1% of total biomass), copepod nauplii (1.6–70.6%; average 20.7% of total biomass), and HNF (0.8–59.5%; average 11.5% of total biomass). The relative contribution of individual components in the nano- and microzooplankton communities appeared to differ by seasons. Ciliates accounted for the most major component of nano- and microzooplankton communities, except during summer and phytoplankton blooming seasons, whereas HDF were more dominant during the phytoplankton blooming seasons. The abundance and biomass of nano- and microzooplankton generally followed the seasonal dynamics of phytoplankton. The size and community distribution of nano- and microzooplankton was positively correlated with size-fractionated phytoplankton. The carbon requirement of microzooplankton ranged from 60 to 83% of daily primary production, and was relatively high when phytoplankton biomass was high. Therefore, our result suggests that the seasonal variation in the community and size composition of nano- and microzooplankton appears to be primarily governed by phytoplankton size and concentration as a food source, and their abundance may greatly affect trophic dynamics by controlling the seasonal abundance of phytoplankton.  相似文献   

9.
The dynamics of phytoplankton diversity constitute crucial data in environmental monitoring, food-web studies and ecosystem modeling. Proper assessment of phytoplankton community composition requires large investments in offshore sampling and taxonomic competence because these communities can change fundamentally on a weekly scale. Cheap and high-frequent offshore phytoplankton sampling can be achieved by using ships-of-opportunity, and in the present study we used the Alg@line facilities onboard a passenger ferry during its regular route between Finland and Sweden in the northern Baltic Sea. The first aim was to test if pigment analysis, as a cheaper alternative to cell counts, can be used to detect environment-correlated variation in phytoplankton communities. It has been shown that spatial variation (salinity differences) and variation throughout one annual cycle (changes in temperature and nutrients) were strongly reflected by pigment composition. The second aim was to test if pigment analyses and cell counts detect environment-correlated variation in phytoplankton communities equally well. It has been shown that spatial and seasonal variations were reflected by pigment composition while cell counts reflected seasonal variation only. This suggests that the pigment analyses detected aspects of the phytoplankton that were neglected or misinterpreted by cell counts. It is advocated that available resources of long-term studies, such as environmental monitoring, can be used more efficiently by utilizing the high ecological resolution of pigment composition in combination with high-frequent ships-of-opportunity sampling. To assess heterotrophic and/or toxic species, such programs could also include sampling for cell counts in a complementary manner, with actually performing counts only for crucial samples (e.g. between large community changes) as indicated by multivariate statistical analysis of pigment composition. Some aspects of analyzing phytoplankton data with multivariate statistics are also discussed.  相似文献   

10.
An integral concept of ecological research is the constraint of biodiversity along latitudinal and environmental gradients. The Red Sea features a natural example of a latitudinal gradient of salinity, temperature and nutrient richness. Coral reefs along the Red Sea coasts are supported with allochthonous resources such as oceanic and neritic phytoplankton and zooplankton; however, relatively little is known about how the ecohydrography correlates with plankton biodiversity and abundance. In this article we present the biodiversity of phytoplankton and zooplankton in Red Sea coral reefs. Oceanographic data (temperature, salinity), water samples for nutrient analysis, particulate organic matter, phytoplankton and zooplankton, the latter with special reference to Copepoda (Crustacea), were collected at nine coral reefs over ~1500 km distance along the Red Sea coast of Saudi Arabia. The trophic state of ambient waters [as indicated by chlorophyll a (Chl a)] changed from strong oligotrophy in the north to mesotrophy in the south and was associated with increasing biomasses of Bacillariophyceae, picoeukaryotes and Synechococcus as indicated by pigment fingerprinting (CHEMTAX) and flow cytometry. Net‐phytoplankton microscopy revealed a Trichodesmium erythraeum (Cyanobacteria) bloom north of the Farasan Islands. Several potentially harmful algae, including Dinophysis miles and Gonyaulax spinifera (Dinophyceae), were encountered in larger numbers in the vicinity of the aquaculture facilities at Al Lith. Changes in zooplankton abundance were mainly correlated to the phytoplankton biomass following the latitudinal gradient. The largest zooplankton abundance was observed at the Farasan Archipelago, despite high abundances of copepodites, veligers (Gastropoda larvae) and Chaetognatha at Al Lith. Although the community composition changed over latitude, biodiversity indices of phytoplankton and zooplankton did not exhibit a systematic pattern. As this study constitutes the first current account of the plankton biodiversity in Red Sea coral reefs at a large spatial scale, the results will be informative for ecosystem‐based management along the coastline of Saudi Arabia.  相似文献   

11.
Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.  相似文献   

12.
南黄海浮游植物季节性变化的数值模拟与影响因子分析   总被引:26,自引:1,他引:25  
用三维物理-生物耦合模式研究南黄海浮游植物(以叶绿素a为指标)的季节变化.对于物理模式采用Princeton ocean model(POM),对于生物模式考虑溶解无机营养盐(氮、磷、硅)、浮游植物、食草性浮游动物和碎屑.给定已知的初始场和外加边界强迫,模拟了观测到叶绿素a的主要时、空分布特征,如浮游植物的春、秋季水华和夏季次表层叶绿素a极大值现象等.研究表明,浮游植物春季水华最先发生于黄海中央海域,主要原因是该海域透明度较高,流速较小.春季水华开始于垂直对流减弱和层化开始形成之前(约3月底至4月上旬),显著地依赖水层的稳定性.水体层化以后(约5~9月)叶绿素a浓度高值区分布在南黄海的南部和锋区.夏季的南黄海中央海域,由于上混合层营养盐几乎耗尽,限制了浮游植物的生长,在紧贴温跃层下部的真光层,具有丰富的营养盐和合适的光照,次表层叶绿素a极大值得以形成.秋季(约9~11月份,略迟于海表面开始降温的时间,随地点不同而异)随垂直混合的增强,有利于营养盐向上输运,浮游植物出现一次较小的峰值.  相似文献   

13.
The plankton community composition comprising heterotrophic bacteria, pro-/eukaryotes, heterotrophic nanoflagellates, microzooplankton and mesozooplankton was assessed during the spring bloom and at non-bloom stations in the English Channel and Celtic Sea between 6 and 12 April 2002. Non-bloom sites were characterised by a dominance of pro-/eukaryotic phytoplankton <20 μm, higher abundance of heterotrophic nanoflagellates, microzooplankton standing stocks ranging between 60 and 380 mg C m−2, lower mesozooplankton diversity and copepod abundance of between 760 and 2600 ind m−3. Within the bloom, the phytoplankton community was typically dominated by larger cells with low abundance of pro-/eukaryotes. Heterotrophic nanoflagellate cell bio-volume decreased leading to a reduction in biomass whereas microzooplankton biomass increased (360–1500 mg C m−2) due to an increase in cell bio-volume and copepod abundance ranged between 1400 and 3800 ind m−3. Mesozooplankton diversity increased with an increase in productivity. Relationships between the plankton community and environmental data were examined using multivariate statistics and these highlighted significant differences in the abiotic variables, the pro-/eukaryotic phytoplankton communities, heterotrophic nanoflagellate, microzooplankton and total zooplankton communities between the bloom and non-bloom sites. The variables which best described variation in the microzooplankton community were temperature and silicate. The spatial variation in zooplankton diversity was best explained by temperature. This study provides an insight into the changes that occur between trophic levels within the plankton in response to the spring bloom in this area.  相似文献   

14.
Dimethylsulfide (DMS) is a volatile sulfur compound produced by the marine biota. The flux of DMS to the atmosphere may act on climate via aerosol formation. It is therefore important to improve our understanding of the processes that regulate sea surface DMS concentrations for eventual inclusion into climate models. In order to simulate the dynamics of DMS concentrations in the mixed layer, a model of DMS production was developed and calibrated against a 1 year time-series of DMS and DMSP (dissolved and particulate) data collected in the Sargasso Sea at Hydrostation ‘S’. The model reproduces the observed divergence between the seasonal cycles of particulate DMSP, the DMS precursor produced by algae, and DMS produced through the microbial loop from the cleavage of dissolved DMSP. DMSPp (particulate) reaches its maximum in the spring whereas DMSPd (dissolved) and DMS reach maximum concentrations in summer. Several parameters had to vary seasonally and with depth in order to reproduce the data, pointing out the importance of physiological and structural changes in the plankton food web. These parameters include the intracellular S(DMSp):N ratio, the C:Chl ratio and the sinking rates of phytoplankton and detritus. For the Sargasso Sea, variations in the solar zenithal angle, which co-vary with the seasonal variations in the depth of the mixed layer, proved to be a convenient signal to drive the seasonal variation in the structure and dynamics of the plankton. Variations of the temperature and photosynthetically active radiation also help to reproduce the short-term variability of the annual S cycle. Results from a sensitivity analysis show that variations in DMSPp are dependent mostly on parameters controlling phytoplankton biomass, whereas DMS is dependent mostly on variables controlling phytoplankton productivity.  相似文献   

15.
国际海洋浮游动物研究进展   总被引:7,自引:1,他引:6  
综述了国际上有关海洋浮游动物种群、群落结构、多样性及浮游动物对全球气候变化响应等方面研究进展。海洋浮游动物种类繁多, 数量丰富, 分布广泛, 是海洋生态系统中最重要的生物类群。在海洋食物网中, 浮游动物通过摄食浮游植物控制初级生产力, 同时, 又被更高营养阶层的动物(鱼、虾、鲸、海鸟等)捕食, 充当次级生产者的角色, 其群落结构、种群动态和物种多样性影响鱼类和其他海洋动物资源量, 浮游动物是海洋食物网中关键环节。海洋生态系统动力学过程的关键环节是浮游生物的生物学和生态学过程, 多项国际研究计划以生物多样性和年际变化趋势为研究重点并联系全球变化及响应, 因此, 浮游动物的研究已成为海洋生态研究的核心内容之一。国际上对浮游动物的研究主要集中在以下6个方向:(1)浮游动物生境、种群的分布和扩散动力学研究;(2)浮游动物的群落结构和多样性;(3)浮游动物的实验生态和现场受控生态研究;(4)浮游动物对全球气候变化的响应;(5)深海、南北极、低氧区等极端生境的浮游动物生态学研究;(6)浮游动物研究新技术和方法。  相似文献   

16.
用集成在移动船载温盐剖面仪(MVP)的激光型浮游生物光学计数仪(LOPC),于2012年7月底在南黄海35°N断面调查浮游动物丰度的水平和垂直分布情况,并对获得高时空分辨率的数据资料进行分析。结果表明,本次调查海域浮游动物的丰度为西高东低,浮游动物分布可能受温度、浮游植物分布、潮致涌升等因素影响,其中温度为最主要因素。该仪器可以作为中国近海浮游生物调查,特别是对浮游动物资源的走航大面调查、垂直分布及其生态学研究的一种有效的手段。  相似文献   

17.
The Continuous Plankton Recorder (CPR) survey was conceived from the outset as a programme of applied research designed to assist the fishing industry. Its survival and continuing vigour after 70 years is a testament to its utility, which has been achieved in spite of great changes in our understanding of the marine environment and in our concerns over how to manage it. The CPR has been superseded in several respects by other technologies, such as acoustics and remote sensing, but it continues to provide unrivalled seasonal and geographic information about a wide range of zooplankton and phytoplankton taxa. The value of this coverage increases with time and provides the basis for placing recent observations into the context of long-term, large-scale variability and thus suggesting what the causes are likely to be. Information from the CPR is used extensively in judging environmental impacts and producing quality status reports (QSR); it has shown the distributions of fish stocks, which had not previously been exploited; it has pointed to the extent of ungrazed phytoplankton production in the North Atlantic, which was a vital element in establishing the importance of carbon sequestration by phytoplankton.The CPR continues to be the principal source of large-scale, long-term information about the plankton ecosystem of the North Atlantic. It has recently provided extensive information about the biodiversity of the plankton and about the distribution of introduced species. It serves as a valuable example for the design of future monitoring of the marine environment and it has been essential to the design and implementation of most North Atlantic plankton research.  相似文献   

18.
Plankton ecosystems in the North Atlantic display strong regional and interannual variability in productivity and trophic structure, which cannot be captured by simple plankton models. Additional compartments subdividing functional groups can increase predictive power, but the high number of parameters tends to compromise portability and robustness of model predictions. An alternative strategy is to use property state variables, such as cell size, normally considered constant parameters in ecosystem models, to define the structure of functional groups in terms of both behaviour and response to physical forcing. This strategy may allow us to simulate realistically regional and temporal differences among plankton communities while keeping model complexity at a minimum.We fit a model of plankton and DOM dynamics globally and individually to observed climatologies at three diverse locations in the North Atlantic. Introducing additional property state variables is shown to improve the model fit both locally and globally, make the model more portable, and help identify model deficiencies. The zooplankton formulation exerts strong control on model performance. Our results suggest that the current paradigm on zooplankton allometric functional relationships might be at odds with observed plankton dynamics. Our parameter estimation resulted in more realistic estimates of parameters important for primary production than previous data assimilation studies.Property state variables generate complex emergent functional relationships, and might be used like tracers to differentiate between locally produced and advected biomass. The model results suggest that the observed temperature dependence of heterotrophic growth efficiency [Rivkin, R.B., Legendre, L., 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science 291 (5512) 2398-2400] could be an emergent relation due to intercorrelations among temperature, nutrient concentration and growth efficiency. A major advantage of using property state variables is that no additional parameters are required, such that differences in model performance can be directly related to model structure rather than parameter tuning.  相似文献   

19.
1997年6~8月于山东省海阳市黄海集团公司养虾场,用5个实验围隔研究了对虾池不同粒级浮游生物的呼吸率和初级生产率.结果表明:(1)小型、微型及超微型浮游生物的呼吸率平均分别为0.07,0.38及0.31mg/(dm3·d),占各粒级浮游生物总呼吸率的9%,50%及41%.小型、微型及超微型浮游植物的生产率平均分别为0.04,1.26及0.15mg/(dm3·d),占相应粒级浮游植物总生产率的3%,87%及10%.各粒级浮游生物呼吸率占相应粒级浮游植物生产率的比例为:小型浮游生物175%;微型浮游生物30%;超微型浮游生物207%.(2)小型浮游动物、超微型浮游动物(含细菌)的呼吸率显著高于相应粒级浮游植物呼吸率,微型浮游植物的呼吸率明显高于微型浮游动物呼吸率.不同粒级浮游植物呼吸率的大小顺序为微型、超微型、小型,不同粒级浮游动物呼吸率顺序为超微型(含细菌)、微型、小型.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号