首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Larval fish community structure was studied in the northeastern Aegean Sea (NEA) over an area influenced by the advection of Black Sea water (BSW). Sampling was carried out in early summer during a period of 4 years (2003–2006). Taxonomic composition and abundance presented high variability in space that remained relatively constant among years. Tow depth and indicators of trophic conditions in the upper water column (i.e., zooplankton displacement volume, fluorescence) explained significantly the structure of larval assemblages during all surveys. The northern continental shelf (Thracian and Strymonikos shelf), where a large amount of enriched, low salinity BSW is retained, was dominated by larvae of epipelagic species, mainly anchovy (Engraulis encrasicolus). Interannual changes in horizontal extension of the BSW seemed to match closely observed changes in the distribution of anchovy larvae. Mesopelagic fish larvae were particularly abundant beyond the continental shelf (over the North Aegean Trough) where a strong frontal structure is created between the low salinity waters of BSW origin and the high salinity waters of the Aegean Sea. Larvae of certain mesopelagic species (e.g., Ceratoscopelus maderensis) may occasionally be transported inshore when the prevailing current meanders towards the coast or feeds anticyclonic gyres over the continental shelf.  相似文献   

2.
The recent changes in the thermohaline circulation of the Eastern Mediteranean caused by a transition from a system with a single source of deep water in the Adriatic to one with an additional source in the Aegean are described and assessed in detail. The name Cretan Sea Overflow Water (CSOW) is proposed for the new deep water mass. CSOW is warmer (θ>13.6°C) and more saline (S>38.80) than the previously dominating Eastern Mediterranean Deep Water (EMDW), causing temperatures and salinities to rise towards the bottom. All major water masses of the Eastern Mediterranean, including the Levantine Intermediate Water (LIW), have been strongly affected by the change. The stronger inflow into the bottom layer caused by the discharge of CSOW into the Ionian and Levantine Basins induced compensatory flows further up in the water column, affecting the circulation at intermediate depth. In the northeastern Ionian Sea the saline intermediate layer consisting of Levantine Intermediate Water and Cretan Intermediate Water (CIW) is found to be less pronounced. The layer thickness has been reduced by factor of about two, concurrently with a reduction of the maximum salinity, reducing advection of saline waters into the Adriatic. As a consequence, a salinity decrease is observed in the Adriatic Deep Water. Outside the Aegean the upwelling of mid-depth waters reaches depths shallow enough so that these waters are advected into the Aegean and form a mid-depth salinity-minimum layer. Notable changes have been found in the nutrient distributions. On the basin-scale the nutrient levels in the upper water column have been elevated by the uplifting of nutrient-rich deeper waters. Nutrient-rich water is now found closer to the euphotic zone than previously, which might induce enhanced biological activity. The observed salinity redistribution, i.e. decreasing values in the upper 500–1400 m and increasing values in the bottom layer, suggests that at least part of the transition is due to an internal redistribution of salt. An initiation of the event by a local enhancement of salinity in the Aegean through a strong change in the fresh water flux is conceivable and is supported by observations.  相似文献   

3.
Suspended particulate matter (SPM) patterns in the surface waters of the NW Aegean Sea were studied by (1) determining SPM concentration by water filtration, (2) measuring light transmission, and (3) evaluating satellite images. The SPM signals of the three major rivers discharging into the study area were recorded by all three methods, thereby providing information about the sources, transport pathways, and regional dispersion patterns of the SPM. The filtration of water samples and light transmission measurements were found to be good indicators of SPM concentrations in surface waters. Most of the SPM is composed of terrigenous minerals, thus explaining the correlation between the beam attenuation coefficient and the SPM concentration. A Landsat image obtained for the study period was found to adequately reveal regions with high SPM concentrations. Low concentrations, on the other hand, remain obscured. Received: 3 August 1999 / Revision accepted: 15 March 2000  相似文献   

4.
Abstract. A number of recent studies based on hydrographic observations and modelling simulations have dealt with the major climatic shift that occurred in the deep circulation of the Eastern Mediterranean. This work presents hydrographic observations and current measurements conducted from 1997 to 1999, which reveal strong modifications in the dynamics of the upper, intermediate and deep layers, as well as an evolution of the thermohaline characteristics of the deep Aegean outflow since 1995. The reversal of the circulation in the upper layer of the north/central Ionian is worthy of note. The observations indicate a reduction of Atlantic Water in the northern Ionian with an increase on the eastern side of the basin. In the intermediate layer, the dispersal path of the Levantine Intermediate Water (LIW) is altered. Highly saline (>39.0) and well-oxygenated intermediate waters were found near the Western Cretan Arc Straits. They flow out from the Aegean, thus interrupting the traditional path of the LIW, and spread prevalently northwards into the Adriatic Sea. In the deep layer, dense waters, exiting from the Adriatic (σø−29.18 kg · m−3), flow against the western continental margin in the Ionian Sea at a depth of between 1000–1500 m. Dense waters of Aegean origin (> 29.20 kg · m−3), discharged into the central region of the Eastern Mediterranean during the early stages of the transient, propagate prevalently to the east in the Levantine basin and to the west in the northern Ionian Sea. Near-bottom current measurements conducted in the Ionian Sea reveal unforeseen aspects of deep dynamics, suggesting a new configuration of the internal thermohaline conveyor belt of the Eastern Mediterranean.  相似文献   

5.
We present a detailed account of the changing hydrography and the large-scale circulation of the deep waters of the Eastern Mediterranean (EMed) that resulted from the unique, high-volume influx of dense waters from the Aegean Sea during the 1990s, and of the changes within the Aegean that initiated the event, the so-called ‘Eastern Mediterranean Transient’ (EMT). The analysis uses repeated hydrographic and transient tracer surveys of the EMed in 1987, 1991, 1995, 1999, and 2001/2002, hydrographic time series in the southern Aegean and southern Adriatic Seas, and further scattered data. Aegean outflow averaged nearly 3 × 106 m3 s−1 between mid-1992 and late 1994, and was largest during 1993, when south and west of Crete Aegean-influenced deep waters extended upwards to 400 m depth. EMT-related Aegean outflow prior to 1992, confined to the region around Crete and to 1800 m depth-wise, amounted to about 3% of the total outflow. Outflow after 1994 up to 2001/2002, derived from the increasing inventory of the tracer CFC-12, contributed 20% to the total, of 2.8 × 1014 m3. Densities in the southern Aegean Sea deep waters rose by 0.2 kg/m3 between 1987 and 1993, and decreased more slowly thereafter. The Aegean waters delivered via the principal exit pathway in Kasos Strait, east of Crete, propagated westward along the Cretan slope, such that in 1995 the highest densities were observed in the Hellenic Trench west of Crete. Aegean-influenced waters also crossed the East Mediterranean Ridge south of Crete and from there expanded eastward into the southeastern Levantine Sea. Transfer into the Ionian mostly followed the Hellenic Trench, largely up to the trench’s northern end at about 37°N. From there the waters spread further west while mixing with the resident waters. Additional transfer occurred through the Herodotus Trough in the south. Levantine waters after 1994 consistently showed temperature–salinity (T–S) inversions in roughly 1000–1700 m depth, with amplitudes decreasing in time. The T–S distributions in the Ionian Sea were more diverse, one cause being added Aegean outflow of relatively lower density through the Antikithira Strait west of Crete. Spreading of the Aegean-influenced waters was quite swift, such that by early 1995 the entire EMed was affected. and strong mixing is indicated by near-linear T–S relationships observed in various places. Referenced to 2000 and 3000 dbar, the highest Aegean-generated densities observed during the event equaled those generated by Adriatic Sea outflow in the northern Ionian Sea prior to the EMT. A precarious balance between the two dense-water source areas is thus indicated. A feedback is proposed which helped triggering the change from a dominating Adriatic source to the Aegean source, but at the same time supported the previous long-year dominance of the Adriatic. The EMed deep waters will remain transient for decades to come.  相似文献   

6.
We compute model spectra of the beam attenuation coefficient in surface waters of the Mediterranean Sea. These spectra are used to determine the contribution of the components of seawater (suspended matter, yellow substance, pigments of phytoplankton, and pure water) to the beam attenuation coefficient in different types of seawater. For the surface waters, we establish the relationship between the light scattering coefficient and the attenuation coefficient at a wavelength of 547 nm and determine the background (limiting minimum) value of the coefficient of absorption by the yellow substance in waters of the Mediterranean Sea. It is compared with the values of the same parameter for some other basins (Black Sea, Lake Baikal, Baltic Sea, and oceanic waters).  相似文献   

7.
Benthic communities in delta fronts are subject to burial risk because of high riverine sediment discharges and to substrate instability due to deposition of fine sediments at shallow depths. This study examines the spatial distribution of macroinfauna in the subaqueous deltaic depositions of a small river in the eastern Mediterranean (the Spercheios river, Maliakos Gulf, Aegean Sea) in relation to environmental variables in the water column and sediment. Samples were taken at eight stations in January, May, August and November 2000. From late winter to spring enhanced phytoplanktonic biomass, elevated suspended load and poorly sorted sediments showed a simultaneous influence of riverine discharges and hydrodynamics on the benthic system. In contrast, from summer to autumn oligotrophy in the water column and low hydrodynamic regime were observed. Total abundance, biomass and numbers of benthic species were positively correlated with distance from the river but negatively correlated with suspended inorganic particles and sediment skewness. Species from different functional groups, ranging from surface-living opportunists to burrowers and predators, coexisted at each station. However, suspension feeders were numerically suppressed near the river mouth. Non-parametric multivariate regressions showed that the variance in the species data was explained by environmental variables to a level ranging from 53 to 69%. This indicated a strong link between the macrofauna and the delta front environment. The variables used as measures of hydrodynamics and turbidity (i.e. sediment skewness and sorting, suspended material and transparency) displayed great explanatory power. The results of the present study show that the distribution of species is related to fluctuations in hydrodynamic regime that influence substrate characteristics. The study also demonstrates that sediment discharges of small temperate rivers can determine species composition in the delta front and have a detrimental impact on the community at short distances from river outflows.  相似文献   

8.
This study reported the mass mortality events (MMEs) of Pinna nobilis based on diving surveys in Turkey. Data were collected across 12 sites in the Aegean Sea, and one site in the Sea of Marmara, within the period of June-September 2019. The results showed that a low mortality rate of 10% was found in the Sea of Marmara, and a MME was not detected for this area. In contrast, 97% mortality was recorded for the P. nobilis population distributed in the Turkish Aegean Sea. This discrepancy might be related to the seawater temperature and salinity values of these two seas. The waters of the Sea of Marmara were colder and less salty than the Aegean Sea. The findings highlighted the importance of protecting the healthy population of critically endangered fan mussels in the Sea of Marmara. It was recommended that sound management plans comprising of monitoring, enforcement and public awareness activities could be implemented in order to achieve this.  相似文献   

9.
1 IntroductionTheBeringStrait, with them aximum depth lessthan 60 m , isthe uniquepassagebetween the ArcticOcean and the North Pacific Ocean, and links twoshelfseas:theBeringSeainthesouthandtheChukchiSea in the north. The background flow field oftheBering…  相似文献   

10.
The UNEP (1977) study concerning the terrestrial discharges of phosphorus and nitrogen into the Mediterranean Sea is used in this work, along with the calculated values of the water fluxes (Bethoux, 1979, 1980). Owing to the phosphorus concentrations in the deep waters and the terrestrial discharges, the balance of this element requires low concentrations in the surface layers (< 0.1 μg P l?1) which appear to be in agreement with the measured phosphate concentrations in the Strait of Gibraltar and in the Strait of Sicily. The phosphorus cycle in the Mediterranean Sea is characterised by the transfer of the terrestrial and Atlantic influxes from the surface layer to the intermediate and deep layers.The geographic distribution of the terrestrial discharges is highly asymmetric, and the vertical movements of the water masses in certain regions induce an important hydrologic recycling of phosphorus. The potential fertility (linked to the assimilation of the available phosphorus) is estimated from the local surface phosphorus flows and from the hydrologic recycling. Its values range, in the Western basin, between 9 and 86 g C m?2y?1 in the Southern and Northern parts of this basin, respectively. In addition to biological reasons, the nitrogen budget in the Mediterranean Sea should be comparable to that of phosphorus because the geographical variations of the nitrate concentrations in the deep waters and the distribution of terrestrial discharges are similar to those of phosphorus. However, the relatively low values of terrestrial discharges of nitrogen proposed by UNEP (compensating about 28% of the outflowing nitrate fluxes in the Strait of Gibraltar) do not allow a balance of this nutrient unless we introduce a high concentration (too high in the author's opinion) in the Atlantic surface waters.  相似文献   

11.
By the method of numerical modeling, we study the influence of the velocity of constant wind on the currents and oscillations of level in the Azov Sea. A three-dimensional nonlinear numerical model is applied to determine the regions characterized by the maximum and minimum values of the velocities of surface stationary currents and the highest deviations of level in the open part of the Azov Sea. In the presented maps, we indicate the points of the water area, where the extreme values of deviations of the sea level and the highest current velocities are attained. We analyze the influence of the velocity of constant wind on the time of attainment of the extreme values of elevations and lowerings of the sea level and current velocities.  相似文献   

12.
刘浩  尹宝树 《海洋学报》2007,29(4):20-33
利用在本系列研究第一部分中所建立的耦合的生物物理模型,模拟了渤海浮游植物生物量和营养盐含量的年度循环特征.模拟结果显示:藻类的春季水华是由经过一冬积累在水体中的营养盐导致,而水华开始的时间在浅水区明显早于深水区,对此深水区水体层化结构的形成可能起着重要作用;另一方面,河载营养盐与悬起的沉积物所释放的营养盐是诱发夏季水华的共同原因.基于模型结果,我们还发现:渤海的浮游植物动力特性就整体而言依然受无机氮限制,但是在莱州湾,磷限制特性表现得非常明显,这主要是由于每年黄河都要携带大量的无机氮进入海水,从而导致莱州湾营养盐的氮磷比已远远超过16.  相似文献   

13.
《Marine Geology》1999,153(1-4):275-302
Detailed interpretation of single-channel air-gun and deep-tow boomer profiles demonstrates that the Marmara Sea, Turkey, experienced small-amplitude (∼70 m) fluctuations in sea level during the later Quaternary, limited in magnitude by the sill depth of the Strait of Dardanelles. Moderate subsidence along the southern shelf and Quaternary glacio-eustatic sea-level variations created several stacked deltaic successions, separated by major shelf-crossing unconformities, which developed during the transitions from global glacial to interglacial periods. Near the Strait of Dardanelles, a series of sand-prone deposits are identified beneath an uppermost (Holocene) transparent mud drape. The sandy deposits thicken into mounds with the morphology and cross-sectional geometries of barrier islands, sand waves, and current-generated marine bars. All cross-stratification indicates unidirectional flow towards the Dardanelles prior to the deposition of the transparent drape which began ∼7000 years BP, in strong support of the notion that the Marmara Sea flowed westwards into the Aegean Sea through the Dardanelles at times of deglaciation in northern Europe. The global sea-level curve shows that, at ∼11,000 and ∼9500 years BP, sea level rose to the sill depths of the Straits of Dardanelles and Bosphorus, respectively. The effect from ∼11,000 to ∼9500 years BP was seawater incursion into the Marmara Sea, drowning and formation of algal-serpulid bioherms atop lowstand barrier islands, and transgression of shelves and lowstand deltas. At ∼9500 years BP, glacial meltwater temporarily stored in the Black Sea lake, developed into a vigorous southward flow toward the Aegean Sea, forming west-directed sandy bedforms in the western Marmara Sea and initiating deposition of sapropel S1 in the Aegean Sea. This strong outflow persisted until ∼7000 years BP, after which a mud drape began to accumulate in the Marmara Sea and euryhaline Mediterranean mollusks successfully migrated into a progressively more saline Black Sea where sapropel deposition began. Most eastern Mediterranean sapropels from S1 to S11 appear to correlate with periods of rising sea level and breaching, or near-breaching, of the Bosphorus sill. These events are believed to coincide with times of vigorous outflow of low-salinity (?fresh) surface waters transiting the Black Sea–Marmara Sea corridor, and ultimately derived from melting of northern European ice sheets.  相似文献   

14.
南中国海海水中多环芳烃的分布特征及源分析   总被引:1,自引:0,他引:1  
利用气相色谱-质谱联用(GC-MS)技术,对2012年10月采自南中国34个站位的表层、500 m层、底层海水中的16种多环芳烃(16PAHs)进行了检测分析。结果显示:南中国海海水中16PAHs的含量相对于其他类似广阔水域较低,分布特征大致呈现500 m层表层底层。经特征PAHs组分分析判定南中国海海水中PAHs主要来源于石油及其产品。  相似文献   

15.
The Arabian Sea is characterised by strong seasonal oscillations of biological productivity generated by its monsoonal climate. The southwest monsoon causes reversal in the surface circulation of the Arabian Sea, which generates a seasonal upwelling of nutrient-rich waters along the coast of Oman. Concentrations of biogenic sulphur compounds were measured on a transect from the eutrophic waters off the coast of Oman to the oligotrophic waters of the open Arabian Sea, during the UK NERC Arabesque cruise 27 August–4 October 1994. The concentrations of dimethylsulphide (DMS), dimethylsulphoxide (DMSO) and dimethylsulphoniopropionate (DMSP) were found to be elevated in the eutrophic area due to enhanced biological production. However, this increase in DMS, DMSO and DMSP concentration was not observed until after the southwest monsoon had relaxed, and appeared to correspond to increased concentrations of hexanoyloxyfucoxanthin, an indicator of prymnesiophytes. DMSO concentrations were correlated with those of DMS and DMSP in the near surface waters of the Arabian Sea. Additionally, DMSO appeared to be ubiquitous throughout the water column, being easily detectable in deep waters, which suggests that DMSO may act as a sink for DMS in the world’s oceans.  相似文献   

16.
Q.Y. Zhang   《Ocean Engineering》2006,33(2):137-151
A comparison of two three-dimensional numerical modeling systems for tidal elevations and velocities in the coastal waters is presented. The two modeling systems are: (1) the Princeton Ocean Model (POM) and (2) the MIKE 3 flow model. The model performance results for Singapore's coastal waters show that the predicted tidal elevations from the two hydrodynamic modeling systems are almost identical and are in very good agreement with field measurement data. The simulated tidal current velocities match well with field measurement data at the selected stations, but it seems that the POM provides the slightly better simulation, compared to the MIKE 3 flow model. The depth profiles of the velocities obtained from the two modeling systems may be greatly different at some time, due to the vertical diffusion coefficient calculated from different turbulent sub-models in the two modeling systems. The POM generally predicts larger peak tidal velocities. The maximum speed differences for the model results from the two modeling systems occur in the top and differ from time to time and from location to location, reaching up to 20%.  相似文献   

17.
Ventilation of the deep basins of the North Aegean Sea takes place during relatively scarce events of massive dense water formation in that region. In the time intervals between such events, the bottom waters of each sub-basin are excluded from interaction with other water masses through advection or isopycnal mixing and the only process that changes their properties is diapycnal mixing with overlying waters. In this work we utilize a simple one-dimensional model in order to estimate the vertical eddy diffusion coefficient Kρ based on the observed rate of change of density and stratification. Vertical diffusivity is estimated for each of three sub-basins of the North Aegean, one of convex shape of the seabed and the other two of concave topography. It is noteworthy that the convex sub-basin exhibited much higher vertical diffusivity than the two concave sub-basins, a fact consistent with theoretical predictions that internal-wave-induced mixing is higher over the former shape of seabed. Furthermore, the estimates of Kρ are exploited in computing the vertical transport of dissolved oxygen through diffusion and the rate of oxygen consumption by decaying organic matter. The different levels of the estimated diffusion and oxygen consumption rates testify to the dynamical and biogeochemical characteristics of each basin.  相似文献   

18.
《Marine Chemistry》2002,79(1):1-26
This study investigates the relative importance of processes that affect trace metal (TM) cycling in the upper water column at the shelf edge of the Celtic Sea on the western European continental margin. The examined processes include external inputs (by atmosphere and river), physical factors (upwelling, winter mixing and water mass advection) and biological processes (in situ uptake, regeneration and export to deep waters). The concentrations of dissolved Cd, Cu, Ni and Pb were measured with this aim in January 1994 and June 1995 at vertical stations across slope, including stations with upwelling, and in the surface waters along the Celtic Sea shelf. Additionally, deep sea (from sediment trap data) and atmospheric fluxes were estimated. The metal profiles over the slope off the Celtic Sea are quite similar to open ocean profiles already described in the northeast Atlantic, and the concentrations in surface waters are only slightly enriched compared to the nearby open ocean (1.2–1.3× for Cd and Ni). The external sources to the system appear to be of weak influence: the fluvial input is locally strong at the coast and then “diluted” along the large continental shelf; the atmospheric deposition is not significant at the annual scale in comparison to the metal content in the upper waters of the shelf edge (at least for Cd, Ni and Cu). In the upwelling zone, a significant increase in concentrations was observed in the summer surface mixed layer (×2 for nitrate and Cd and ×1.5 for Ni) in comparison to the non-upwelling zone. In winter, concentrations of bioreactive metals increased significantly in the surface waters in comparison to the low summer levels (×5 for nitrate and Cd). Our results suggest that upwelling and winter mixing act as regenerated sources that lead to the resupply of the bioreactive elements above the permanent thermocline with a low export to deeper waters. The tracing of the Mediterranean intermediate waters (MIW) from Gibraltar to the studied area shows indeed that its elemental content at the Celtic shelf edge is mainly due to the conservative mixing of the three “end-member” component waters which are thought to make up the MIW. The remineralization of organic matter within this water mass during its transport to the north would contribute only 20% of the nutrients and Cd concentrations recorded at the Celtic Sea shelf edge. According to the correlation found with nutrients in the 10–200-m layer, dissolved Pb would also be subjected to biological uptake and regeneration within the seasonal thermocline. Particulate scavenging removal of Pb would take place below the permanent thermocline throughout the water column.  相似文献   

19.
1 IntroductionNitrogen and phosphorus together constitute thematerial basis used by phytoplankton for photosyn-thesis; however, if the ratio of nitrogen atomic massto phosphorus atomic mass in an aquatic environmentmarkedly deviates, whether above or bell…  相似文献   

20.
Hydrooptical investigations were performed for three subsatellite test ranges located near the Rhodes Island in the Levant Sea, near Dardanelles in the north part of the Aegean Sea, and near the Crimean Peninsula in the northwest part of the Black Sea. In the course of observations, we measured the beam attenuation coefficient, the depth of visibility of the Secchi disk, and the color of water. These data are used to characterize the space and time variability of the optical properties of water in the investigated regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号