首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Late Panafrican evolution of the Hoggar shield is characterized by emplacement of magmatic intrusions and by occurrence of major shear zones separating different terranes. In Telloukh granite is close to the In Guezzam faults (western border of the Tin Serririne basin). Analysis of its visible and magnetic fabrics suggests an emplacement mode and deformation that are not related to the In Guezzam faults, but most likely to a N–S compression, an event not yet identified. Dioritic dykes crosscutting the granite have a very different magnetic fabric, which is related on the contrary to dextral strike-slip movements along the In Guezzam faults. In both cases, no visible fabric can be correlated with the magnetic fabric, which has been likely acquired during late magmatic stages. This magnetic fabric was not significantly affected by the tectonic events that took place after entire crystallization of the magma. The In Guezzam faults and the major 7°30 and 4°50 shear zones are close to intrusions such as In Telloukh dykes and the Alous En Tides and Tesnou plutons where quite similar magnetic fabrics are observed, all related with dextral strike-slip movements along these structures.  相似文献   

2.
http://www.sciencedirect.com/science/article/pii/S1674987112000618   总被引:1,自引:0,他引:1  
The Moyar Shear Zone(MSZ) of the South Indian granulite terrain hosts a prominent syenite pluton (~560 Ma) and associated NW-SE to NE-SW trending mafic dyke swarm(~65 Ma and 95 Ma). Preliminary magnetic fabric studies in the mafic dykes,using Anisotropy of Magnetic Susceptibly(AMS) studies at low-field,indicate successive emplacement and variable magma flow direction.Magnetic lineation and foliation in these dykes are identical to the mesoscopic fabrics in MSZ mylonites,indicating shear zone guided emplacement.Spatial distribution of magnetic lineation in the dykes suggests a common conduit from which the source magma has been migrated.The magnetic foliation trajectories have a sigmoidal shape to the north of the pluton and curve into the MSZ suggesting dextral sense of shear.Identical fabric conditions for magnetic fabrics in the syenite pluton and measured field fabrics in mylonite indicate syntectonic emplacement along the Proterozoic crustal scale dextral shear zone with repeated reactivation history.  相似文献   

3.
Investigations on a set of experimental models of highly viscous intrusions were carried out in order to study the internal strain pattern during vertical ascent and emplacement of granite intrusions. The strain pattern was determined by means of anisotropy of magnetic susceptibility (AMS) resulting from the orientation of magnetite particles in a liquid plaster medium. The modelled intrusions show distinct fabrics reflecting the flow of a rheologically complex, non-Newtonian material. During the vertical growth of the intrusion, constrictional vertical fabrics are transposed into flattening fabrics, and along with the development of low-intensity fabric domains are passively transported upwards. Vertical growth takes place along subvertical thrust shear zones that satisfactorily explain the discordant magmatic fabrics in granites along intrusion sides. The resulting complex fabric patterns suggest that the vertical movement of material in ascending intrusions is accommodated by various flow mechanisms operating simultaneously.  相似文献   

4.
The Kapitan-Dimitrievo pluton was emplaced within the 15 km wide Maritsa shear zone during the Late Cretaceous. It has well-known U–Pb zircon age (78.54 ± 0.13 Ma) and appears as a late-syntectonic intrusion that marked the last ductile deformation in the Maritsa shear zone. Magnetite is believed to be the main carrier of the magnetic fabric in this pluton, and crystallized mainly late, after the main rock-forming minerals. Two fabrics are recorded, a visible syn-magmatic fabric (due to magma flow) and magnetic late-magmatic fabric (related to regional stresses). Although different, both are mainly related to the shearing along this shear zone. These results constrain in age the dextral strike-slip controlled emplacement and evolution of the Late Cretaceous plutons from Central Bulgaria.  相似文献   

5.
ABSTRACT In Central Asia, thrusts and shear zones resulting from Palaeozoic accretional events were reworked by E–W-trending ductile strike-slip faults during late Palaeozoic–early Mesozoic time. In the Tianshan range, microstructures and quartz C-axis fabrics show a main dextral shearing associated with sinistral localized shear zones. The relationship between these conjugate structures indicates a NNW–SSE-trending bulk shortening. In the Chinese Altay mountains, the existence of δ-type microstructures in an important sinistral mylonitic zone infers high rates of deformation. This shear zone is bordered by a late dextral ductile fault synchronous with a granite emplacement. Field evidence and datings from the literature provide chronological constraints. In the late Carboniferous, the sinistral mylonitic deformation took place in the Erqishi–Irtysh shear zone in the northeastern part of Xinjiang and in Kazakhstan. During the Early Permian, a regional dextral event occurred in the Tianshan range and under the whole of northern Xinjiang.  相似文献   

6.
蒋浩  刘俊来  张雎易  郑媛媛 《岩石学报》2016,32(9):2707-2722
花岗岩(脉)在中下地壳韧性剪切带中普遍发育,如何正确鉴别剪切带中剪切前、剪切期及剪切后花岗岩(脉)以及正确理解剪切过程中构造变形与岩浆作用之间的关系一直是一个重要课题。本文以辽南金州拆离断层带为研究对象,选取中部地壳伸展作用过程中具有不同变形表现的花岗岩(脉)开展宏观-微观构造观察、石英EBSD组构分析及锆石LA-ICP-MS年代学测试等工作,从而进一步丰富构造-岩浆关系判别准则。剪切前花岗岩(脉)多变形强烈且具有后期固态变形叠加在早期高温岩浆组构之上的特点,而剪切期的花岗岩由于侵位的时间不同,岩石的变形程度也会不同。剪切晚期侵入的岩脉遭受了较弱的晶内塑性变形,而剪切早期的岩脉可以显示岩浆流动或结晶后高温至中温固态变形。从组构特点上看,剪切前和剪切期花岗质岩石石英c轴组构大多表现为中高温组构叠加有低温组构的特点。剪切后的花岗质岩石仅发生微弱的晶内变形或未变形而显示低温或无规律的组构特征。对五个典型的样品进行年代学测试,其结果符合相应的期次划分类型。应用宏观构造、显微构造与组构分析,结合年代学测试综合分析,对于辽南变质核杂岩构造-岩浆活动性进行了精细划分,包括134~130Ma初始伸展阶段,130~115Ma峰期伸展与强烈岩浆活动阶段,以及115Ma前后伸展作用结束。  相似文献   

7.
A new aeromagnetic map together with new geological and geochronological data has led to a reinterpretation of the geological history of the Arabian Shield.
The magnetic anomalies outline an orogenic complex containing a network of mostly left-lateral strike-slip faults, including the Nabitah Belt and several peripheral mountain ranges. Oblique accretion resulted in obliteration of early volcanic-arc magnetic fabrics, which were almost completely replaced by a NW–SE magnetic fabric in the northern Shield; the southern Shield, however, reveals extensive E–W anomalies related to post-accretion magmatic intrusions. This complex web of orogenic zones is intimately associated with synchronous molasse basins that formed 680–610 Ma.
The distribution and chronology of orogenic zones, related to the closing of East and West Gondwana, brings into question several earlier assumptions, such as high continental growth rates, palaeogeodynamic reconstructions, the definitions of the Nabitah and Najd faults, and the significance of molasse basins.  相似文献   

8.
《Geodinamica Acta》2013,26(3-4):165-184
Models consisting of a thick overburden resting on a buoyant layer were sheared and centrifruged in order to study the relationship between strike-slip shear zones and intrusions of buoyant material. Three experiments were carried out: In model 1, where the overburden consisted of a viscous material, no diapirs formed even after shearing for 40 mm (? = -1.07) and 27 min centrifuging. In models 2 and 3, where the overburden was semi-brittle, prescribed cuts at two different orientations (model 2: parallel to s1; model 3: perpendicular to s1) were initiated in the overburden in order to see whether such cuts acted as pathways for intrusion. In model 2 the prescribed cuts were used by the buoyant material as pathways when the cuts opened during shearing. Continued shearing widened the cuts and allowed the buoyant material to extrude on the surface of the model forming a coalesced elliptical sheet. In model 3. the cuts were closed during shearing and prevented the intrusion of the buoyant material. During further shearing, the cuts rotated and activated as strike-slip faults bounding pull-apart basins. Such pull-apart basins were not deep enough to tap the buoyant material. Nevertheless, the results of the experiments suggest that magma ascends in shear zones not as diapirs, but rises along preexisting pathways as dykes. Model results were used to evaluate emplacement of the Fürstenstein Intrusive Complex (FIC) in the Bavarian Forest, whose magnetic and structural inventory have been investigated in detail. The pluton consists of 5 magma batches, each with distinct magnetic fabrics. which are interpreted as the result of magma intrusion along opening and rotating tension gashes within the BPSZ stress field. Shear failure of the crust in the FIC area due to thermomechanical weakening provided the space for the emplacement of the last and biggest granite magma batch. Overall, the emplacement history of the FIC fits perfectly with the observations made during experiment 2 and indicates that magma ascent in shear zones is bound to tension gashes.  相似文献   

9.
Within the southern part of the Sierra Pampeanas (the Sierra de San Luis, Argentina), a series of extensive intrusive bodies are regarded to post-date the Famatinian cycle but were emplaced during the Achalian, a period of heterogeneous deformation along crustal scale fault zones. The largest of those is the Las Chacras-Potrerillos batholith that is situated at the northern end of the transpressive, sinistral Guzmán shear zone. This composite pluton exhibits three sub-domains that comprise two granitoid sub-units each: The southern Potrerillos stock (muscovite-bearing red granite and biotite-bearing red granite) and the central (biotite porphyritic granite and giant porphyritic granite) and northern domain (equigranular granite and porphyritic granite) of the Las Chacras stock. The crystallisation ages of the biotite porphyritic granite is around 381 Ma (U/Pb on zircons and Pb/Pb on sphene), while the host rock was already cooled below 350 °C at 420 Ma. Thermal modelling approaches favour a pulsed intrusion with a duration of 1.5 Ma. The emplacement was followed by rapid cooling below the muscovite cooling temperature. Biotite cooling ages in different sub-units reflect either a long-lasting cooling history of approximately 30 Ma (which is supported by the modelling) or a reheating effect at around 350 Ma. Devonian-age determinations on the fault rocks and granitoids point to a syn-tectonic emplacement of the batholith. The pluton is interpreted to be positioned at the crossover of sinistral shear zones. The origin of this NNE directed extensional setting in a transpressive regime seems to be related to the transfer of displacement along a secondary set of NNW-trending sinistral faults. The final emplacement is due to a subsequent ballooning of the batholith following the direction of space creation. This model is based on the relative timing of the emplacement sequence and macroscopically visible planar fabrics in the field as well as magnetic fabric data. Our results indicate that the emplacement is syn-kinematic with respect to the Achalian deformation event.  相似文献   

10.
Continuous magmatic activity occurred in the western Chinese Tianshan, Central Asia, from the Carboniferous to the Permian, i.e. before and after the Late Carboniferous amalgamation of Junggar and the Yili Blocks. Zircon U–Pb LA-ICPMS and Ar–Ar data reveal a coincidence in time between regional wrench faulting and granitoid emplacement. Permian post-collisional granitoids crop out within or at the margins of large-scale dextral strike-slip shear zones, some of them show synkinematic fabrics. The whole rock geochemical features of the Early-Middle Permian granitoids indicate an evolution from high-K calc-alkaline towards alkaline series. In other places of the North Tianshan, alkaline magmatism occurred together with deep marine sedimentation within elongated troughs controlled by wrench faults. Therefore, in contrast with previous interpretations that forwarded continental rift or mantle plume hypotheses, the coexistence of diverse magmatic sources during the same tectonic episode suggests that post-collisional lithosphere-scale transcurrent shearing tightly controlled the magmatic activity during the transition from convergent margin to intraplate anorogenic processes.  相似文献   

11.
The Aar Massif forms part of the polycyclic basement of the External Crystalline Massifs in central Switzerland. Strong heterogeneous Alpine deformation produced a network of broad, anastomosing shear zones, with deformation strongly localized in mylonitic domains. This study investigates the combined effects of high‐strain deformation and synkinematic metamorphism on magnetic fabric evolution in Tertiary shear zones of the Aar granite and Grimsel granodiorite. In transects across several mesoscale shear zones with large strain gradients, magnetic fabric orientations are in excellent agreement with principal strain orientations determined from outcrop fabrics and strain markers. However, the magnitude and shape of the magnetic anisotropy do not change systematically with increasing finite strain, likely as a result of recrystallization and metamorphism. The overall pattern of steeply dipping fabrics is consistent with the main shortening stage of regional Alpine kinematics, while some mylonite structures reflect a local component of dextral shearing.  相似文献   

12.
The southern Andes plate boundary zone records a protracted history of bulk transpressional deformation during the Cenozoic, which has been causally related to either oblique subduction or ridge collision. However, few structural and chronological studies of regional deformation are available to support one hypothesis or the other. We address along- and across-strike variations in the nature and timing of plate boundary deformation to better understand the Cenozoic tectonics of the southern Andes.Two east–west structural transects were mapped at Puyuhuapi and Aysén, immediately north of the Nazca–South America–Antarctica triple junction. At Puyuhuapi (44°S), north–south striking, high-angle contractional and strike-slip ductile shear zones developed from plutons coexist with moderately dipping dextral-oblique shear zones in the wallrocks. In Aysén (45–46°), top to the southwest, oblique thrusting predominates to the west of the Cenozoic magmatic arc, whereas dextral strike-slip shear zones develop within it.New 40Ar–39Ar data from mylonites and undeformed rocks from the two transects suggest that dextral strike-slip, oblique-slip and contractional deformation occurred at nearly the same time but within different structural domains along and across the orogen. Similar ages were obtained on both high strain pelitic schists with dextral strike-slip kinematics (4.4±0.3 Ma, laser on muscovite–biotite aggregates, Aysén transect, 45°S) and on mylonitic plutonic rocks with contractional deformation (3.8±0.2 to 4.2±0.2 Ma, fine-grained, recrystallized biotite, Puyuhuapi transect). Oblique-slip, dextral reverse kinematics of uncertain age is documented at the Canal Costa shear zone (45°S) and at the Queulat shear zone at 44°S. Published dates for the undeformed protholiths suggest both shear zones are likely Late Miocene or Pliocene, coeval with contractional and strike-slip shear zones farther north. Coeval strike-slip, oblique-slip and contractional deformation on ductile shear zones of the southern Andes suggest different degrees of along- and across-strike deformation partitioning of bulk transpressional deformation.The long-term dextral transpressional regime appears to be driven by oblique subduction. The short-term deformation is in turn controlled by ridge collision from 6 Ma to present day. This is indicated by most deformation ages and by a southward increase in the contractional component of deformation. Oblique-slip to contractional shear zones at both western and eastern margins of the Miocene belt of the Patagonian batholith define a large-scale pop-up structure by which deeper levels of the crust have been differentially exhumed since the Pliocene at a rate in excess of 1.7 mm/year.  相似文献   

13.
The Kochkar gold district in the East Uralian Zone of the southern Urals is located in late-Paleozoic granite gneisses of the Plast massif. Gold mineralization is associated with tabular quartz lodes that are preferentially developed along the margins of easterly trending mafic dykes. Fabric development indicates that dykes had a profound influence on the development of shear zones in granitoids. ENE- and SE-trending dykes have been reactivated as dextral and sinistral oblique strike-slip shear zones, respectively, forming a set of approximately conjugate shear zones related to the Permian, regional-scale E-W directed shortening. Dyke-shear zone relationships in the Plast massif are the result of strain refraction due to the presence of biotite-rich, incompetent dykes in more competent granite-gneisses. Deformation and the formation of associated gold-quartz lodes occurred close to peak-metamorphic, upper-greenschist to lower-amphibolite facies conditions. Strain refraction has resulted in partitioning of the bulk strain into a component of non-coaxial mainly ductile shear in mafic dykes, and a component of layer-normal pure shear in surrounding granitoids where deformation was brittle-ductile. Brittle fracturing in granitoids has resulted in the formation of fracture permeabilities adjacent to sheared dykes, that together with the layer-normal dilational component, promoted the access of mineralizing fluids. Both ore-controlling dykes and gold-quartz lodes were subsequently overprinted by lower greenschist-facies, mainly brittle fault zones and associated hydrothermal alteration that post-date gold mineralization. Received: 15 October 1998 / Accepted: 18 August 1999  相似文献   

14.
The Norumbega fault system in the Northern Appalachians in eastern Maine experienced complex post-Acadian ductile and brittle deformation from middle through late Paleozoic times. Well-preserved epizonal ductile shear zones in Fredericton belt metasedimentary rocks and granitic batholiths that intrude them provide valuable information on the nature, geometry, and evolution of orogen-parallel strike-slip Norumbega faulting. Metasedimentary rocks were ductilely sheared into phyllonite schistose mylonite, whereas granite into mylonite within the ductile shear zones. Ductile shearing took place at conditions of the lower greenschist facies with peak temperatures on the order of 300–350° based on comparison of plastic quartz and brittle feldspar microstructures, confirming a shallow crustal environment during faulting.Ductile shear strain was partitioned into two major shear zones in easternmost Maine—the Waite and Kellyland zones—but these zones converge toward the southwest. Megascopic, mesoscopic, and microscopic kinematic indicators confirm that fault motion in both zones was dominantly dextral strike-slip. Detailed mapping, especially in the plutonic rocks, reveals a complex ductile deformation history in the area where the Waite and Kellyland zones converge. Shear strain is broadly distributed in the rocks between Kellyland and Waite zones, and increases toward their junction. Multiple dextral high-strain zones oblique to both zones resemble megascopic synthetic c′ shear bands. Together with the Kellyland and Waite master shear zones, these define a megascopic S–C′ structure system produced in a regional-scale dextral strike-slip shear duplex that developed in the transition zone between the deeper (south-central Maine) and shallower (eastern Maine) segments of the Norumbega fault system.Granite plutons caught within the strike-slip shear duplex were intensely sheared and progressively smeared into long and narrow slivers identified by this study. The western lobe of the Deblois pluton and the Lucerne pluton have been recognized as the sources, respectively of the Third Lake Ridge and Morrison Ridge granite slivers. Restoration of both granite slivers to their presumed original positions yields approximately 25 km of dextral strike-slip displacement along only the Kellyland and synthetic ductile shear zones.  相似文献   

15.
16.
柴达木盆地东缘早古生代弯山构造   总被引:1,自引:1,他引:0  
位于中国中央造山带内部的柴达木盆地周缘出露有代表原特提斯洋盆的蛇绿岩带、指示大洋俯冲与大陆深俯冲的高压-超高压变质带以及不同性质的早古生代花岗岩带。根据这些构造单元的空间展布形态及其综合地质年龄分布,表现为一条环绕柴达木盆地东缘的连续而弯曲的加里东期造山带。造山带内发育一系列右行走滑断裂和韧性剪切带,与古地磁资料所揭示的柴达木地块在早古生代的相对逆时针旋转息息相关。本文提出,柴达木盆地周缘造山带为一弯山构造。它是在原特提斯洋向南斜向俯冲闭合过程中,诱发的大型走滑断裂和柴达木地块逆时针旋转牵引造山带发生弯曲所致。  相似文献   

17.
The Wyangala Batholith, in the Lachlan Fold Belt of New South Wales, is pre‐tectonic with respect to the deformation that caused the foliation in the granite, and was emplaced during a major thermal event, perhaps associated with dextral shearing, during the Late Silurian to Early Devonian Bowning Orogeny. This followed the first episode of folding in the enclosing Ordovician country rocks. Intrusion was facilitated by upward displacement of fault blocks, with local stoping. Weak magmatic flow fabrics are present. After crystallization of the granite, a swarm of mafic dykes intruded both the granite and country rock, possibly being derived from the same tectonic regime responsible for emplacement of the Wyangala Batholith. A contact aureole surrounding the granite contains cordierite‐biotite and cordierite‐andalusite assemblages. Slaty cleavage produced in the first deformation was largely obliterated by recrystallization in the contact aureole.

Postdating granite emplacement and basic dyke intrusion, a second regional deformation was accompanied by regional metamorphism ranging from lower greenschist to albite‐epidote‐amphibolite facies, and produced tectonic foliations, termed S and C, in the granite, and a foliation, S2, in the country rocks. Contact metamorphic rocks underwent retrogressive regional metamorphism at this time. S formed under east‐west shortening and vertical extension, concurrently with S2. C surfaces probably formed concurrently with S and indicate reverse fault motion on west‐dipping ductile shear surfaces. The second deformation may be related to Devonian or Early Carboniferous movement on the Copperhannia Thrust east of the Wyangala Batholith.  相似文献   

18.
In the Archaean Pilbara Craton of Western Australia, three zones of heterogeneous centimetre- to metre-scale sheeted granites are interpreted to represent high-level, syn-magmatic shear zones. Evidence for the syn-magmatic nature of the shear zones include imbricated and asymmetrically rotated metre-scale orthogneiss xenoliths that are enveloped by leucogranite sheets that show no significant internal strain. At another locality, granite sheets have a strong shape-preferred alignment of K-feldspar, suggesting magmatic flow, while the asymmetric recrystallisation of the grain boundaries indicates that non-coaxial deformation continued acting upon the sheets under sub-solidus conditions. Elsewhere, randomly oriented centimetre-wide leucogranite dykes are realigned at a shear zone boundary to form semi-continuous, layer-parallel sheets within a magma-dominated, dextral shear zone.

It is proposed that the granite sheets formed by the incremental injection of magmas into active shear zones. Magma was sheared during laminar flow to produce the sheets that are aligned sub-parallel to the shear zone boundary. Individual sheets are fed by individual dykes, with up to 1000s of discrete injections in an individual shear zone. The sheets often lack microstructural evidence for magmatic flow, either because the crystal content of the magma was too low to record internal strain, or because of later recrystallisation.  相似文献   


19.
Field data on Cenozoic faults and the McMurdo dyke arrays in the Reeves Glacier–Mawson Glacier area, Victoria Land, Antarctica, allow us to support noncoaxial transtensional tectonics along the N–S-trending western shoulder of the Ross Sea. Dyke injection within a crustal-scale right-lateral strike-slip shear zone is testified by magma filled, tension gash-like arrangements within some master fault zones, and by the left-stepping arrangements of dykes in the intrafault zones. The noncoaxiality of deformation is shown by the re-activation of many dyke walls as right-lateral strike-slip faults. This suggests an increase in the strike-slip component over time along the western shoulder of the Ross Sea. Our data support the relevance of transtensional to strike-slip tectonics for triggering melting and controlling the geometry and modes of magma emplacement.  相似文献   

20.
The Huamenlou pluton,is an elongated granite intrusion with high aspect ratio,emplaced within the southern margin of the North Qinling(central China).Here we investigate this pluton through multiple techniques including the fabric study,microstructural observation and zircon geochronology.Our zircon U-Pb data confirm that the granite crystallized at ca.462 Ma which is consistent with the ages of other linear plutons in North Qinling.Microstructural observations of the Huamenlou granites illustrate that the pluton has undergone superimposed deformation during its emplacement,from magmatic to hightemperature solid state conditions.The internal fabric obtained by anisotropy of magnetic susceptibility(AMS)and shape preferred orientation(SPO)show similar results.The fabrics are relatively concordant and generally vary from NE-SW to NEE-SWW which are roughly oblique to the trend of the pluton elongation and the regional structures.Meanwhile,scalar parameters reflect two completely different strain regimes for the pluton and its host rocks,i.e.,the fabrics within host rocks are mainly oblate while the central part of the intrusion displays mainly prolate fabrics.It is inferred that the structural pattern recorded in this pluton was caused by local dextral transtension in consequence of oblique convergence between the South and North China Blocks.We propose that the local transtension in convergence setting probably evolved from vertical extrusion tectonics that provided room for the magma emplacement and imparted prolate fabrics in the Huamenlou pluton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号