首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

2.
Abstract: Polymetallic mineralization at the Nakakoshi deposits, Kamikawa town, central Hokkaido, occur as fracture-filling veins in Cretaceous slate of the Hidaka Supergroup. Ten veins have been recognized in NE-SW and E-W directions. Sericite in altered slate which is the host of the deposits, was dated at 31. 1 Ma, Oligocene in age.
No. 9 vein consists of massive chalcopyrite ore with various kinds of minerals such as pyrite, pyrrhotite, arsenopyrite, sphalerite, tetrahedrite, Ag-minerals and Cu–Zn–Fe–In–Sn–S minerals, quartz and sericite. Chalcopyrite and pyrite contain sphalerite star and sphalerite with chalcopyrite emulsions. Maximum indium contents of sphalerite and the Cu–Zn–Fe–In–Sn–S minerals are 1. 8 and 16. 3 wt%, respectively. The sulfur isotopic ratios, δ34S of ore minerals, range from –12. 9 to –9. 6%. Formation temperatures of the sulfide minerals are estimated as 300–500°C, based on the paragenesis and chemical compositions of the minerals.  相似文献   

3.
The occurrence and the chemical compositions of ore minerals (especially the silver‐bearing minerals) and fluid inclusions of the El Zancudo mine in Colombia were investigated in order to analyze the genetic processes of the ore minerals and to examine the genesis of the deposit. The El Zancudo mine is a silver–gold deposit located in the western flank of the Central Cordillera in Antioquia Department. It consists mainly of banded ore veins hosted in greenschist and lesser disseminated ore in porphyritic rocks. The ore deposit is associated with extensive hydrothermally altered zones. The ores from the banded veins contain sphalerite, pyrite, arsenopyrite, galena, Ag‐bearing sulfosalts, Pb‐Sb sulfosalts, and minor chalcopyrite, electrum, and native silver. Electrum is included within sphalerite, pyrite, and arsenopyrite, and is also partially surrounded by pyrite, arsenopyrite, sphalerite, and tetrahedrite. Native silver is present in minor amounts as small grains in contact with Ag‐rich sulfosalts. Silver‐bearing sulfosalts are argentian tetrahedrite–freibergite solid solution, andorite, miargyrite, diaphorite, and owyheeite. Pb‐Sb sulfosalts are bournonite, jamesonite, and boulangerite. Two main crystallization stages are recognized, based on textural relations and mineral assemblages. The first‐stage assemblage includes sphalerite, pyrite, arsenopyrite, galena and electrum. The second stage is divided into two sub‐stages. The first sub‐stage commenced with the deposition and growth of sphalerite, pyrite, and arsenopyrite. These minerals are characterized by compositional growth banding, and seem to have crystallized continuously until the end of the second sub‐stage. Tetrahedrite, Pb‐Cu sulfosalts, Ag‐Sb sulfosalt, and Pb‐Ag‐Sb sulfosalts crystallized from the final part of the first sub‐stage and during the whole second sub‐stage. However, one Pb‐Ag‐Sb sulfosalt, diaphorite, was formed by a retrograde reaction between galena and miargyrite. The minimum and maximum genetic temperatures estimated from the FeS content of sphalerite coexisting with pyrite and the silver content of electrum are 300°C and 420°C, respectively. These estimated genetic temperatures are similar to, but slightly higher than the homogenization temperatures (235–350°C) of primary fluid inclusions in quartz. The presence of muscovite in the altered host rocks and gangue suggest that the pH of the hydrothermal solutions was close to neutral. Most of the sulfosalts in this deposit have previously been attributed as the products of epithermal mineralization. However, El Zancudo can be classified as a xenothermal deposit, in view of the low pressure and high temperature genetic conditions identified in the present study, based on the mineralogy of sulfosalts and the homogenization temperatures of the fluid inclusions.  相似文献   

4.
Mineral assemblages and chemical compositions of ore minerals from the Boroo gold deposit in the North Khentei gold belt of Mongolia were studied to characterize the gold mineralization, and to clarify crystallization processes of the ore minerals. The gold deposit consists of low‐grade disseminated and stockwork ores in granite, metasedimentary rocks and diorite dikes. Moderate to high‐grade auriferous quartz vein ores are present in the above lithological units. The ore grades of the former range from about 1 to 3 g/t, and those of the latter from 5 to 10 g/t, or more than 10 g/t Au. The main sulfide minerals in the ores are pyrite and arsenopyrite, both of which are divisible into two different stages (pyrite‐I and pyrite‐II; arsenopyrite‐I and arsenopyrite‐II). Sphalerite, galena, chalcopyrite, and tetrahedrite are minor associated minerals, with trace amounts of bournonite, boulangerite, geerite, alloclasite, native gold, and electrum. The ore minerals in the both types of ores are variable in distribution, abundance and grain size. Four modes of gold occurrence are recognized: (i) “invisible” gold in pyrite and arsenopyrite in the disseminated and stockwork ores, and in auriferous quartz vein ores; (ii) microscopic native gold, 3 to 100 µm in diameter, that occurs as fine grains or as an interstitial phase in sulfides in the disseminated and stockwork ores, and in auriferous quartz vein ores; (iii) visible native gold, up to 1 cm in diameter, in the auriferous quartz vein ores; and (iv) electrum in the auriferous quartz vein ores. The gold mineralization of the disseminated and stockwork ores consists of four stages characterized by the mineral assemblages of: (i) pyrite‐I + arsenopyrite‐I; (ii) pyrite‐II + arsenopyrite‐II; (iii) sphalerite + galena + chalcopyrite + tetrahedrite + bournonite + boulangerite + alloclasite + native gold; and (iv) native gold. In the auriferous quartz vein ores, five mineralization stages are defined by the following mineral assemblages: (i) pyrite‐I; (ii) pyrite‐II + arsenopyrite; (iii) sphalerite + galena + chalcopyrite; (iv) Ag‐rich tetrahedrite‐tennantite + bournonite + geerite + native gold; and (v) electrum. The As–Au relations in pyrite‐II and arsenopyrite suggest that gold detected as invisible gold is mostly attributed to Au+1 in those minerals. By applying the arsenopyrite geothermometer to arsenopyrite‐II in the disseminated and stockwork ores, crystallization temperature and logfs2 are estimated to be 365 to 300 °C and –7.5 to –10.1, respectively.  相似文献   

5.
Gold deposits at El Sid are confined to hydrothermal quartz veins which contain pyrite, arsenopyrite, sphalerite and galena. These veins occur at the contact between granite and serpentinite and extend into the serpentinite through a thick zone of graphite schist. Gold occurs in the mineralized zone either as free gold in quartz gangue or dissolved in the sulfide minerals. Ore-microscopic study revealed that Au-bearing sulfides were deposited in two successive stages with early pyrite and arsenopyrite followed by sphalerite and galena. Gold was deposited during both stages, largely intergrown with sphalerite and filling microfractures in pyrite and arsenopyrite.Spectrochemical analyses of separated pyrite, arsenopyrite, sphalerite and galena showed that these sulfides have similar average Au contents. Pyrite is relatively depleted in Ag and Te. This suggests that native gold was deposited in the early stage of mineralization. Arsenopyrite and galena show relatively high concentrations of Te. They are also respectively rich in Au and Ag. Tellurides are, thus, expected to be deposited together with arsenopyrite and galena.  相似文献   

6.
The Pojeonri Cu quartz veins occur in the north-western portion of the Hwanggangri Metallogenic Province and consist of two parallel massive quartz veins that fill fractures oriented NW and NE along fault zones in Paleozoic metasedimentary and sedimentary rocks of the Ogcheon and Taebaeg belts. Based on the mineralogy and paragenesis of the veins, only one mineralization episode has been recognized. The ore minerals are mainly chalcopyrite, pyrrhotite, and pyrite with minor arsenopyrite, sphalerite, galena and oxides of those base metal minerals.  相似文献   

7.
Ore mineralization and wall rock alteration of Crater Mountain gold deposit, Papua New Guinea, were investigated using ore and host rock samples from drill holes for ore and alteration mineralogical study. The host rocks of the deposit are quartz‐feldspar porphyry, feldspar‐hornblende porphyry, andesitic volcanics and pyroclastics, and basaltic‐andesitic tuff. The main ore minerals are pyrite, sphalerite, galena, chalcopyrite and moderate amounts of tetrahedrite, tennantite, pyrrhotite, bornite and enargite. Small amounts of enargite, tetradymite, altaite, heyrovskyite, bismuthinite, bornite, idaite, cubanite, native gold, CuPbS2, an unidentified Bi‐Te‐S mineral and argentopyrite occur as inclusions mainly in pyrite veins and grains. Native gold occurs significantly in the As‐rich pyrite veins in volcanic units, and coexists with Bi‐Te‐S mineral species and rarely with chalcopyrite and cubanite relics. Four mineralization stages were recognized based on the observations of ore textures. Stage I is characterized by quartz‐sericite‐calcite alteration with trace pyrite and chalcopyrite in the monomict diatreme breccias; Stage II is defined by the crystallization of pyrite and by weak quartz‐chlorite‐sericite‐calcite alteration; Stage III is a major ore formation episode where sulfides deposited as disseminated grains and veins that host native gold, and is divided into three sub‐stages; Stage IV is characterized by predominant carbonitization. Gold mineralization occurred in the sub‐stages 2 and 3 in Stage III. The fS2 is considered to have decreased from ~10?2 to 10?14 atm with decreasing temperature of fluid.  相似文献   

8.
The Penjom gold deposit lies on the eastern side of the Raub‐Bentong Suture line within the Central Belt of Permo‐Triassic rocks, near Kuala Lipis, Pahang, Malaysia. The geology of the deposit is dominated by a sequence of fine‐ to coarse‐grained rhyolitic to rhyodacitic tuff, tuff‐breccia and a minor rhyolitic–rhyodacitic volcanic series, associated with argillaceous marine sedimentary rocks consisting of shale with subordinate shalely limestone of Padang Tungku Formation and Pahang Volcanic Series. Fine‐ to coarse‐grained tonalite and quartz porphyry intruded this unit. The main structural features of the area are north–south‐trending left‐lateral strike‐slip faults and their subsidiaries, which generally strike north–south and dip moderately to the east (350°–360°/40°–60°). Mineralization at the Penjom gold deposit is structurally controlled and also erratic laterally and vertically. The gold mineralization can be categorized as (i) gold associated with carbonate‐rich zones hosted within dilated quartz veins carrying significant amount of sulfides; (ii) gold disseminated within stockwork of quartz–carbonate veins affiliated with tonalite; and (iii) gold often associated with arsenopyrite and pyrite in quartz–carbonate veins and stringers hosted within shear zones of brittle–ductile nature in all rock types and in brittle fractured rhyodacitic volcanic rocks. Sphalerite, chalcopyrite, tetrahedrite and pyrrhotite are the minerals accompanying the early stage of gold mineralization. These minerals also suffered from local brittle deformation. However, most of the gold mineralization took place after the deposition of these sulfides. Galena appears somewhat towards the end of gold mineralization, whereas tellurium and bismuth accompanied gold contemporaneously. The gold mineralization occurred most probably due to the metamorphogenic deformational origin concentrated mostly in the shear zone. The mineralization is strongly controlled by the wall rock (e.g. graphitic shale), the sulfide minerals and fluid–rock interaction.  相似文献   

9.
The Ashanti belt of Ghana constitutes a gold province which has produced a total of about 1500 t of gold historically. Gold mineralization is found in steep, NNE-SSW to NE-SW trending shear zones predominantly transecting metasediments of the Palaeoproterozoic Birimian Supergroup (2.2–2.1 Ga), disseminated in ca. 2.1 Ga granitoids, in paleo-conglomerates of the Tarkwaian Group (< 2135 Ma), and in recent placers. The distribution of gold, its chemistry, paragenesis and mineralogical siting in the mesothermal ores of the major mines in the Ashanti belt, namely Konongo, Ashanti, Bogosu and Prestea mine, are the subject of this study. At the localities studied, gold is present in two main types of ores: 1. Quartz veins with free-milling gold. The gold is relatively silver-rich (true fineness values from 730 to 954) and is accompanied by a distinct suite of Cu, Pb, Sb sulfides. 2. Sulfide ores, consisting of arsenopyrite, pyrite and rarer pyrrhotite and marcasite, with refractory gold. The ores have apparent fineness values larger than 910. Arsenopyrite and locally (at Bogosu) pyrite were identified as the hosts of submicroscopic gold. Mean concentrations of gold in arsenopyrite in various samples from the different mines, obtained by secondary ion mass spectrometry (SIMS), range from 67 to 314 ppm Au. Gold concentration mapping in individual arsenopyrite crystals from the different deposits revealed similar patterns of gold distribution: the grains possess a gold-poor core, and elevated gold contents are present along distinct crystal growth zones towards their rims. The outermost crystal layer is usually gold-poor. The well-preserved distribution patterns also indicate that remobilization of gold from the sulfides played an insignificant role in the ores of the Ashanti belt. Multiple quartz veining and growth zoning of the sulfides are interpreted as manifestations of multiple episodes of fluid infiltration, fluid flow and mineral deposition. The bimodal occurrence of gold in spatially closely associated quartz vein and sulfide ores indicates a genetic link between these ore types. A model implying a grossly coeval formation of the ores from mesothermal fluids is proposed. Received: 28 September 1995 / Accepted: 11 June 1996  相似文献   

10.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

11.
桂西那弱银金矿床矿物组合特征及银和金的赋存状态研究   总被引:2,自引:1,他引:1  
广西天峨那弱银金矿床以银矿为主,共/伴生金及铅、锌、锑等金属,矿物组合在右江盆地内为首次发现。矿体受那弱背斜及其轴向断层控制,赋矿层位为中三叠统百逢组含钙质浊积岩系。矿石矿物以硫锑铅矿、铁闪锌矿、黄铁矿、毒砂和方铅矿为主;脉石矿物主要有石英、方解石、绢云母等。主要矿石矿物由早到晚的生成顺序为:毒砂→黄铁矿→铁闪锌矿→硫锑铅矿→方铅矿。单矿物化学分析显示硫锑铅矿含Ag最高,其次为闪锌矿;黄铁矿含Au相对较高。EPMA测试结果表明Ag于方铅矿中含量最高,其次为硫锑铅矿;主要矿石矿物中毒砂含Au相对较高,其余矿物中Au含量均偏低。因矿石中的铅矿物主要为硫锑铅矿,可以认为那弱银金矿床的Ag主要赋存于硫锑铅矿中,Au主要赋存于毒砂与黄铁矿中,二者均以显微-次显微状态赋存于载体矿物中。根据矿物组合及其相互交代、切割关系等特征,将矿床划分为2个成矿期共4个成矿阶段。其中,第一成矿期为金的成矿期,矿物组合为黄铁矿和毒砂,由于后期成矿作用的叠加,仅保留一个成矿阶段;第二成矿期为银铅锌成矿期,矿物组合为方铅矿-闪锌矿-硫锑铅矿;包含第二至第四共3个完整的成矿阶段。该矿床Ag、Au共生是不同期次成矿作用叠加的结果。  相似文献   

12.
Pyrite, chalcopyrite, and gold occur in quartz veins in granitic rocks and as scattered and disseminated impregnations in shear zones of the highly altered metavolcanics in the Hamash area, Southeastern Desert, Egypt. The minerals are associated in part with pyrrhotite, digenite, tetrahedrite, chalcocite, bornite, and covellite. Pyrite occurs in two forms: (1) idio- to hypidiomorphic coarse crystals with inclusions of preexisting sulfides, and (2) fine-crystalline aggregates. Chalcopyrite occurs in three forms: (1) idiomorphic coarse crystals, (2) fine-crystalline microinclusions, and (3) xenomorphic relicts. Three genetic phases of sulfide mineralization were identified. They are related to the successive cooling of the crystallizing solutions. Gold was hosted in the older sulfide minerals during a high-temperature disorder phase. Native gold was formed during the latest, decreasing-temperature phase through remobilization of auriferous pyrite. Microprobe analysis confirmed that gold and copper are relatively enriched in the late pyrite. Identified surface-alteration products include goethite, limonite, gold, carbonates, and sulfates of iron and copper.  相似文献   

13.
夏塞银多金属矿床中硫化物和硫盐系列矿物特征及其意义   总被引:4,自引:1,他引:3  
黄典豪  胡世华 《矿床地质》2000,19(4):363-375
夏塞矿主档是大型的热液脉型银多金属矿床,通过对大量矿石光(薄)片观察和电子探针分析表明,除主要(方铅矿、富铁闪锌矿)和次要(黄铁矿、毒砂、磁黄铁矿、黄铜矿等)硫化物外,硫盐毓硫物十分发育,主要有Cu-Sb-Ag硫盐(黝铜矿、含银黝铜矿和银黝铜矿)、Sb-Ag硫盐(深红银矿、辉锑银矿)、Pb-Sb硫盐(脆硫锑铅矿、硫锑铅矿)和Bi-Pb硫盐(斜方辉饿铅矿)。此外,尚有少(微)量黄锡矿、锡石、自然饿和银金矿等。银的硫盐硫物和硫化物(辉银矿)乃是获得银的主要工业矿物,这些硫盐毓矿物常与硫化物伴生,多沿方铅矿、富铁闪锌矿、黄铁矿等的解理、裂隙或粒间产出,这些研究结果不仅有助于了解矿化作用过程,而且为矿床评价,组分综合利用和选冶提供重要依据。  相似文献   

14.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

15.
《International Geology Review》2012,54(12):1113-1138
The Natalka lode gold deposit, also known as the Matrosov mine, is located in the Magadan region of northeastern Russia at 61° 39′ N, 147° 50′ E. The deposit was discovered in 1943 and production started in 1945. The mine has produced more than 75 metric tons of gold, with an average grade 4 g/metric ton (mt), and has reserves of about 450 mt.

The Natalka deposit occurs along the southwestern flank of the Yana-Kolyma metallogenic belt and is confined to the major, NW-trending Tenka fault. The deposit is hosted by Upper Permian carbonaceous sediments, subjected to greenschist metamorphism. The ore zones occur along a Z-shaped, strike-slip fault zone that extends for about 12 to 13 km. In plan view, the ore zones are about 5 km long and 100 to 200 m wide in the northwest portion, 350 to 400 m wide in the central portion, and 600 m wide in the southeast portion of the deposit.

The main ore minerals are arsenopyrite and pyrite, which comprise about 95% of the sulfides, along with subordinate pyrrhotite, Co-Ni sulfarsenides, sphalerite, chalcopyrite, galena, native gold, ilmenite, and rutile. Scheelite, tetrahedrite, bournonite, boulangerite, and stibnite occur locally. The major gangue mineral is quartz, with subordinate carbonates, feldspars, chlorite, sericite, kaolinite, montmorillonite, and barite. The total sulfide content of the ore zones ranges from 1 to 3%, and in places up to 5%. Native gold occurs as large individual grains ranging from 0.1 to 2.0 mm in diameter, or as fine disseminations in arsenopyrite. The average gold fineness is 750 to 790.

Fluid inclusion studies reveal homogenization temperatures of 150° to 360° C, with mainly liquid and as much as 5% vapor. Two temperature peaks of 280° to 320° C and 180° to 240° C occur in many samples. The δ34S composition of sulfides in orebodies ranges from ?6.3 to ?2.4 per mil and approximates that of sedimentary rock-hosted pyrite. The δ34S values of the ore solutions are interpreted as having been close to that of the sulfide minerals. The δ18O composition of ore quartz ranges from 13.9 to 14.1 per mil. The calculated δ18O composition for the ore fluid ranges from 7.1 to 7.3 per mil at 300° C. The δ18O values of oxygen indicate a quite homogeneous fluid of metamorphic origin.

The sulfur, arsenic, and gold in the ore deposit were mobilized during metamorphism that included transformation of pyrite to pyrrhotite. The PT conditions for this reaction are estimated at about 400°C and 2.5 kbar, approximately at the biotite isograd. Associated decarbonatization and dehydration reactions produced much of the ore fluid. The interaction of ore-fluid sulfur with Fe-bearing silicate and oxide minerals probably caused deposition of sulfide minerals and gold.  相似文献   

16.
边家大院铅锌银多金属矿床位于大兴安岭成矿带中南段,是近几年来新发现的矿石品位较高的铅锌银多金属矿床。详细的显微镜下鉴定及电子探针分析表明,矿床的金属矿物主要为方铅矿、闪锌矿、黄铁矿、黄铜矿、磁黄铁矿、毒砂、黝锡矿等,含银的矿物主要为银锑黝铜矿、黝锑银矿及深红银矿。此外,矿区还发现大量针硫锑铅矿,与其共生金属矿物主要为方铅矿、黄铜矿、黝锑银矿等。针硫锑铅矿主要呈长柱状、针状、束状和不规则粒状等,粒度变化较大,一般为5~150 μm。电子探针分析结果表明,其相应的平均化学分子式为(Pb4.77Cu0.05Fe0.04Zn0.06)4.92Sb3.91S11.00,简写为Pb5Sb4S11。针硫锑铅矿一般是成矿晚期低温作用的产物,边家大院铅锌银多金属矿床中针硫锑铅矿的形成,与成矿温度较低、硫逸度升高以及还原作用等密切相关。  相似文献   

17.
The Bepkong gold deposit is located in the Wa–Lawra belt of the Paleoproterozoic Baoulé-Mossi domain of the West African Craton, in NW Ghana. It occurs in pelitic and volcano-sedimentary rocks, metamorphosed to greenschist facies, in genetic association with zones of shear interpreted to form during the regional D3 deformational event, denominated DB1 at the deposit scale. The ore zone forms a corridor-like body composed of multiple quartz ± carbonate veins surrounded by an alteration envelope, characterized by the presence of chlorite, calcite, sericite, quartz and disseminated pyrite, arsenopyrite plus subordinate pyrrhotite and chalcopyrite. The veins contain only small proportions of pyrite, whereas most of the sulphides, particularly arsenopyrite, occur in the altered host rock, next to the veins. Pyrite is also common outside of the ore zone. Gold is found in arsenopyrite, where it occurs as invisible gold and as visible – albeit micron-size – grains in its rims, and as free gold within fractures cross-cutting this sulphide. More rarely, free gold also occurs in the veins, in fractured quartz. In the ore zone, pyrite forms euhedral crystals surrounding arsenopyrite, but does not contain gold, suggesting that it formed at a late stage, from a gold-free hydrothermal fluid.  相似文献   

18.
The vein system in the Arinem area is a gold‐silver‐base metal deposit of Late Miocene (8.8–9.4 Ma) age located in the southwestern part of Java Island, Indonesia. The mineralization in the area is represented by the Arinem vein with a total length of about 5900 m, with a vertical extent up to 575 m, with other associated veins such as Bantarhuni and Halimun. The Arinem vein is hosted by andesitic tuff, breccia, and lava of the Oligocene–Middle Miocene Jampang Formation (23–11.6 Ma) and overlain unconformably by Pliocene–Pleistocene volcanic rocks composed of andesitic‐basaltic tuff, tuff breccia and lavas. The inferred reserve is approximately 2 million tons at 5.7 g t?1 gold and 41.5 g t?1 silver at a cut‐off of 4 g t?1 Au, which equates to approximately 12.5t of Au and 91.4t of Ag. The ore mineral assemblage of the Arinem vein consists of sphalerite, galena, chalcopyrite, pyrite, marcasite, and arsenopyrite with small amounts of pyrrhotite, argentite, electrum, bornite, hessite, tetradymite, altaite, petzite, stutzite, hematite, enargite, tennantite, chalcocite, and covellite. These ore minerals occur in quartz with colloform, crustiform, comb, vuggy, massive, brecciated, bladed and calcedonic textures and sulfide veins. A pervasive quartz–illite–pyrite alteration zone encloses the quartz and sulfide veins and is associated with veinlets of quartz–calcite–pyrite. This alteration zone is enveloped by smectite–illite–kaolinite–quartz–pyrite alteration, which grades into a chlorite–smectite–kaolinite–calcite–pyrite zone. Early stage mineralization (stage I) of vuggy–massive–banded crystalline quartz‐sulfide was followed by middle stage (stage II) of banded–brecciated–massive sulfide‐quartz and then by last stage (stage III) of massive‐crystalline barren quartz. The temperature of the mineralization, estimated from fluid inclusion microthermometry in quartz ranges from 157 to 325°C, whereas the temperatures indicated by fluid inclusions from sphalerite and calcite range from 153 to 218 and 140 to 217°C, respectively. The mineralizing fluid is dilute, with a salinity <4.3 wt% NaCl equiv. The ore‐mineral assemblage and paragenesis of the Arinem vein is characteristically of a low sulfidation epithermal system with indication of high sulfidation overprinted at stage II. Boiling is probably the main control for the gold solubility and precipitation of gold occurred during cooling in stage I mineralization.  相似文献   

19.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   

20.
Orogenic, lode gold mineralisation in the South Eastern Desert of Egypt is related to quartz veins spatially and temporally associated with conjugate NW- and NE-trending brittle–ductile shear zones. These structures are assumed to be linked to a regional transpression deformation which occurred late in the tectonic evolution of the area. In the Betam deposit, gold is confined to quartz(±carbonate) veins cutting through tectonised metagabbro and metasedimentary rocks in the vicinity of small granite intrusions. The ore bodies contain ubiquitous pyrite and arsenopyrite, in addition to minor disseminated chalcopyrite, pyrrhotite, galena, tetrahedrite and rare gold/electrum. New ore microscopy and electron microprobe studies indicate that most free-milling Au is intimately associated with the late-paragenetic galena–tetrahedrite–chalcopyrite assemblage. An early Fe–As sulphide assemblage, however, shows minor traces of refractory gold. New mineralogical and geochemical data are used to better constrain on possible element dispersions for exploration uses. This study indicates that parameters that most consistently define primary dispersion of gold in the mine area include pervasive silicification, sericite and carbonate alteration. The trace element data of gold lodes reflect a systematic dispersion of gold and certain base metals. Low-cost, extensive exploration programs may use elevated concentrations of Ag, Sb, Cu and Pb as tracers for Au ore zones in the Betam mine area and surroundings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号