首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
垂直桩柱上总波浪力的试验研究   总被引:1,自引:0,他引:1  
本文基于Morison公式和线性波理论,根据试验室里规则波和强制波作用下小直径圆形桩柱上总波浪力的试验资料分析,讨论了规则波3相似文献   

2.
魏凯  姜沫臣  洪杰 《海洋工程》2021,39(5):111-118
当波浪由外海向跨海桥梁所在的近岸海域传播时,随着水深急剧变浅,波浪会发生破碎。强非线性的破碎波会给桥墩结构带来极大冲击作用。基于计算流体力学(CFD)数值软件Flow-3D建立三维数值水槽,造波边界设为斯托克斯五阶波。通过在数值水槽中建立逐渐浅化的三维地形,采用k-ω湍流模型求解雷诺平均N-S(RANS)方程,模拟破碎波冲击桥墩。与前人水槽试验及数值模拟结果进行比对,验证数值水槽的有效性。采用验证过的数值水槽,研究了不同入射波高和周期下的破碎波浪特性,计算了不同长宽比圆端形桥墩在不同入射波高的破碎波作用下受力和流场变化,讨论了最大压强作用点、准静态力和冲击力随桥墩长宽比的变化规律。研究表明:与前人试验和数值模拟相比,所建立的数值水槽具有较高精度;圆端形桥墩破波力随桥墩长宽比增大,先增大后趋于稳定,破波力峰值随着入射波高的增大而增大,同时,圆端形桥墩破波力峰值主要由冲击力控制。进行跨海桥梁圆端形桥墩设计时,应重点关注桥墩长宽比和破碎波冲击力的影响。  相似文献   

3.
任佐皋 《海洋学报》1983,5(3):376-390
当波与流同向共存时,作用在孤立桩柱上的力将显著增加.例如,作用在某石油码头桩柱上的波-流力.将比无流时的波力增加2-3倍,可见,在海洋工程荷载计算中,必须正确考虑流的影响.  相似文献   

4.
以波群因子GF为参数,在试验室内模拟出具有同一的H_3、T_p、M_o,但不同的GF的波列,测量单桩、双桩及四根桩上的波浪力。对比发现,不同的GF,其平均波力,三分之一波力基本上没有什么不同;十分之一大波力,GF大时稍有增大;当GF大时最大波力有较大值,需给以足够重视。  相似文献   

5.
对三维波浪在岛礁地形上的传播特性进行了物理模型试验研究。为了探究三维波浪在岛礁地形上传播的破碎指标,将岛礁地形简化为1∶5的向海坡与水平礁坪相连的物理模型。对于不同波况下的规则波、不规则波、多向波在该地形上的破碎特性进行了研究。结果表明,在该地形条件下,较大入射波高的波浪均在礁坪上发生破碎,并且随着入射波高的增大,破碎位置向来浪方向移动,破碎指标与入射波陡H_0/L_0相关,斜向波浪传播受入射角度的影响。同时,文中也给出了在该地形下波浪的破碎指标,并将三维结果与二维结果进行了对比。  相似文献   

6.
本文介绍大直径圆柱墩不规则波波浪力的确定方法,本法基于波浪绕射理论及随机海浪的极值分布理论而建立,经过不规则波波力试验,证实它是合理并可靠的。文中讨论了波力谱的表达式,波力及波力矩的统计分布特征及波力谱(或波力矩谱)与波浪谱峰频值ω_0的关系。  相似文献   

7.
波浪破碎是海洋中最常见的现象之一,其能够对海洋中的结构物产生巨大的波浪力作用。本文在大比尺波浪水槽通过聚焦波的方法生成了极端波浪和不同破碎阶段的破碎波浪,并对其冲击桩柱过程中的点压力进行了测量,进而采用连续小波变换的方法,对桩柱上点压力的分布及大小进行了细致分析。结果表明,多次重复试验下,相比非破碎极端波浪,破碎极端波浪产生的点压力离散性更强;波浪破碎程度越大,测点位置越靠近波峰,则点压力离散程度越大;破碎波的最大点压力出现在1.2倍的最大波面附近,且其大小可达3倍的最大静水压力;基于点压力小波谱,不同破碎阶段破碎波产生冲击作用不同,对于波浪作用桩柱前波浪已经发生破碎的情况,其冲击区域更大,点压力分布更复杂;而对于桩面破碎的情况,其造成的波浪总力更大。  相似文献   

8.
了解波浪破碎速度场的分布特性对于波浪破碎物理机制的研究极为重要,同时,对比研究不同类型破碎产生的气液混合区的演化特征有利于波浪白冠覆盖率模型的完善。在实验室水槽,生成了深水临界波、单次崩破波和单次卷破波,采用图像测速技术获取了波浪破碎图像、波面下水体和气液混合区速度场。结果表明,崩破波的水平向速度u和垂直向速度v在波峰前和波峰后的分布极为不对称,其水平向最大速度umax并不位于峰顶,而是在主导波峰前0.7ηm ax处;卷破波的umax出现在波峰峰顶前端极小的区域内,且该区域与周围区域的速度梯度极大。崩破波和卷破波生成的气液混合区发展特征也存在差异:崩破波的umax值大、影响区域长、混合区厚度较小、各区域影响时间短;而卷破波的各项特征参数与崩破波形成对比。  相似文献   

9.
小尺度群桩应用广泛,一直是学者研究的重点,小尺度有别于大尺度桩柱,由于桩柱周围存在漩涡的脱落,使得受力特性复杂。以往的研究过程中,波浪主要采用单向不规则波浪,并且试验模型多以两桩或三桩组成的群桩结构为主,桩数相对较少。多向不规则波与群桩结构的作用特点有别于单向不规则波且研究较少。通过物理模型试验,针对多向不规则波对于9桩桩排群桩结构的作用进行了研究。首先综合考虑KC1/3数和相对桩径的影响,提出以参数KCLD 1/3数来衡量群桩的效应,并分析了正向力与横向力随着参数KCLD 1/3数和相对桩距的变化关系,研究了群桩中不同桩位桩柱波浪力的变化规律和方向分布宽度对于群桩波浪力的影响。研究结果表明,群桩中各桩的正向力随着方向分布标准差的增大而减小,而横向力在相对桩距较大时随着方向分布标准差的增大而增大,同时群桩中不同位置桩上的波浪力具有较大的差异。  相似文献   

10.
王超  刘德辅 《海洋学报》1991,13(6):874-881
近年来,国内外在海洋及海岸工程可靠度研究方面取得了很大进展,我国交通部主持进行的“统一设计标准”研究,也取得了不少成就.作为可靠度分析的一个重要组成部分--外荷的不确定性分析,已愈渐引起科技界及工程界的重视.由于波浪为海洋工程的主要外荷之一,因此,其不确定性更具有重要意义.目前国外不少学者对此进行了研究,并认为在对桩柱结构产生水动力荷载的九种影响因素中(即波高、波周期、海流、桩柱直径、海洋生物生长率、桩柱糙率以及波力计算中的两个参数Cd、Cm等),设计波高的不确定性约占上述九种因素所造成的总不确定性的55%-67%.因此,可以看出,对设计波浪预报的不确定性分析在海洋工程可靠度研究中是至关重要的.  相似文献   

11.
The wave forces and moments on and the water surface fluctuations around a vertical circular cylinder encircled by a perforated square caisson were experimentally investigated. The porosity of the outer square caisson was varied from 4.24 to 14.58%. The in-line wave forces on the inner vertical cylinder are influenced by changing the porosity of the outer caisson, whereas the variations in the water surface fluctuations are less influenced in this porosity range. The in-line moment on the vertical cylinder is relatively less sensitive when the porosity is increased from 4.24 to 8.75%, but varies substantially when it is increased from 8.75 to 14.58%. The force and moment ratio (i.e. the ratio of the force or moment on the vertical cylinder, when it is encircled by the perforated caisson to the force or moment on the cylinder without any protection around it) reduces with increased wave height, H, and wave length, L, whereas the wave height ratio (ratio of the wave height at a point in the vicinity of the structure to the incident wave height) is less sensitive for the varying H and L. A new non-dimensional parameter, p1.5 (D/L)/(H/d), is introduced to predict the in-line force and moment on the inner vertical cylinder, where d is local water depth, D is the diameter of the inner cylinder and p is the porosity of the outer caisson in percentage. Simple predictive equations for forces, moments and water surface fluctuations are provided.  相似文献   

12.
The substructures of offshore wind turbines are subjected to extreme breaking irregular wave forces. The present study is focused on investigating breaking irregular wave forces on a monopile using a computational fluid dynamics (CFD) based numerical model. The breaking irregular wave forces on a monopile mounted on a slope are investigated with a numerical wave tank. The experimental and numerical irregular free surface elevations are compared in the frequency-domain for the different locations in the vicinity of the cylinder. A numerical analysis is performed for different wave steepness cases to understand the influence of wave steepness on the breaking irregular wave loads. The wave height transformation and energy level evolution during the wave shoaling and wave breaking processes is investigated. The higher-frequency components generated during the wave breaking process are observed to play a significant role in initiating the secondary force peaks. The free surface elevation skewness and spectral bandwidth during the wave transformation process are analysed and an investigation is performed to establish a correlation of these parameters with the breaking irregular wave forces. The role of the horizontal wave-induced water particle velocity at the free surface and free surface pressure in determining the breaking wave loads is highlighted. The higher-frequency components in the velocity and pressure spectrum are observed to be significant in influencing the secondary peaks in the breaking wave force spectrum.  相似文献   

13.
波群对垂直桩柱的作用力   总被引:1,自引:0,他引:1  
在波浪槽中进行了具有不同群因子和连长的随机波群对三种直径的桩柱作用力的实验研究,指出波浪峰力的比值不随波群的连长变化,而随波群因子的增加而增大。由于桩柱是一非线性系统,作用力的群团子大于波浪的群因子,其连长小于波浪的连长。波浪峰力的比值不仅随KC数的增加而增大,还随波群因子GF的增加而增大。  相似文献   

14.
This paper deals with the random forces produced by high ocean waves on submerged horizontal circular cylinders. Arena [Arena F, Interaction between long-crested random waves and a submerged horizontal cylinder. Phys Fluids 2006;18(7):1–9 (paper 076602)] obtained the analytical solution of the random wave field for two dimensional waves by extending the classical Ogilvie solution [Ogilvie TF, First- and second-order forces on a cylinder submerged under a free surface. J Fluid Mech 1963;16:451–472; Arena F, Note on a paper by Ogilvie: The interaction between waves and a submerged horizontal cylinder. J Fluid Mech 1999;394:355–356] to the case of random waves. In this paper, the wave force acting on the cylinder is investigated and the Froude Krylov force [Sarpkaya T, Isaacson M, Mechanics of wave forces on offshore structures, Van Nostrand Reinhold Co.; 1981], on the ideal water cylinder, is calculated from the random incident wave field. Both forces represent a Gaussian random process of time. The diffraction coefficient of the wave force is obtained as quotient between the standard deviations of the force on the solid cylinder and of the Froude Krylov force. It is found that the diffraction coefficient of the horizontal force Cdo is equal to the Cdv of the vertical force. Finally, it is shown that, since a very large wave force occurs on the cylinder, it may be calculated, in time domain, starting from the Froude Krylov force. It is then shown that this result is due to the fact that the frequency spectrum of the force acting on the cylinder is nearly identical to that of the Froude–Krylov force.  相似文献   

15.
The third order triple-frequency wave load on fixed axisymmetric bodies by monochromatic waves is considered within the frame of potential theory. Waves are assumed to be weak non-linearity and a perturbation method is used to expand velocity potentials and wave loadings into series according to a wave steepness of kA. Integral equation method is used to compute velocity potentials up to second order in wave steepness. The third order triple-frequency wave loads are computed by an indirect method and an efficient method is applied to form the third order forcing term on the free surface quickly. The method can be used to compute third order triple-frequency surge force, heave force and pitch moment on any revolution bodies with vertical axes. The comparison with Malenica and Molin's results is made on surge force on a uniform cylinder, and comparison with experimental results is made on third order surge force, heave force and pitch moment on a truncated cylinder. More numerical computations are carried out for third order forces and moments on a uniform cylinder, truncated cylinders and a hemisphere.  相似文献   

16.
In the present study, wave interaction with a fixed, partially immersed breakwater of box type with a plate attached (impermeable-permeable) at the front part of the structure is investigated numerically and experimentally. The large scale laboratory experiments on the interaction of regular waves with the special breakwater were conducted in the wave flume of Laboratori d’Enginyeria Marνtima (LIM) at Universitat Politecnica de Catalunya (UPC) in Barcelona. Experimental results are compared with numerical results obtained with the use of the Cornell breaking Wave and Structures (COBRAS) wave model. The effects of an impermeable as well as a permeable plate attached to the bottom of the breakwater on its hydrodynamic characteristics (wave transmission, reflection, dissipation, velocity and turbulence kinetic energy) are investigated. Computed velocities and turbulence kinetic energy in the vicinity of the structure indicate the effects of the breakwater with the attached (impermeable/permeable) plate on the flow pattern and the turbulence structure. The attached impermeable plate at the front part of the breakwater enhances significantly the efficiency of the structure in attenuating the incident waves. The permeable plate reduces the efficiency of the structure since wave energy is transmitted through the porous body of the plate. Based on the hydrodynamic characteristics it is inferred that the breakwater with an impermeable plate attached to its bottom is more efficient. The comparison of horizontal and vertical forces acting on the breakwater for all cases examined reveals that plate porosity influences slightly vertical force and severely horizontal force acting on the structure, reducing maximum values in both cases.  相似文献   

17.
Yeli Yuan  C.C. Tung   《Ocean Engineering》1984,11(6):593-607
This paper discusses the use of Hermite polynomial in the derivation of statistical properties of waves, wave field kinematics and dynamics and wave forces under various conditions. Specifically, covariance functions and approximate spectra are obtained for (1) wave force on vertical cylinder according to Morison's formula, (2) horizontal fluid particle velocity considering the effects of free surface fluctuations, and (3) elevation of breaking waves.  相似文献   

18.
Wave dissipation by vegetation with layer schematization in SWAN   总被引:1,自引:0,他引:1  
The energy of waves propagating through vegetation is dissipated due to the work done by the waves on the vegetation. Dalrymple et al. (1984) estimated wave dissipation by integrating the force on a cylinder over its vertical extent. This was extended by Mendez and Losada (2004) to include varying depths and the effects of wave damping due to vegetation and wave breaking for narrow-banded random waves. This paper describes the wave dissipation over a vegetation field by the implementation of the Mendez and Losada formulation in a full spectrum model SWAN, with an extension to include a vertical layer schematization for the vegetation. The present model is validated with the original equation and results from Mendez and Losada (2004). The sensitivity of the model to the shape of the frequency spectrum, directional spreading and layer schematization are investigated. The model is then applied to field measurements by using a vegetation factor. This model has the ability to calculate two-dimensional wave dissipation over a vegetation field including some important aspects such as breaking and diffraction as used in SWAN model.  相似文献   

19.
Based on the 1st order cnoidal wave theory, the nonlinear wave diffraction around a circular cylinder in shallow water is studied in this paper. The equation of the wave surface around the cylinder is formulated and by using this formula the wave surface elevation on the cylinder surface can be obtained. In this paper, the formula for calculating the cnoidal wave force on a circular cylinder is also derived. For the wave conditions which are often encountered in practical engineering designs, the ratios of the nonlinear wave forces to the linear wave forces are calculated, and the results are plotted in this paper for design purposes. In order to verify the theoretical results, model tests are conducted. After comparing the test results with the theoretical ones, it is concluded that, in shallow water, for the case of T g / d~(1/2) > 8-10 and H / d > 0.3, the cnoidal wave theory should be used to calculate the wave action on a cylindrical pier.  相似文献   

20.
Estimation of the wave height transformation of shoaling and breaking is essential for the nearshore hydrodynamics and the design of coastal structures. Many empirical formulas have been well recognized to the wave height transformation, but most of them were only applicable for gentle slopes. This paper reports the experimental results of wave shoaling and breaking over the steep slopes to examine the applicability of the previous empirical formulas. Two steep bottom slopes of 1/3 and 1/5, and one gentle slope of 1/10 were conducted in the present experiments. Experimental results show that the shoaling distance of steep slopes become short and the surface waves may be partially reflected from the steep bottom, thus the estimation of wave shoaling using the well-known previous formula did not conform completely to the experimental results. The previous empirical formulas for the wave breaking criteria were also examined, and the modified equations to the steep beaches were proposed in this work. A numerical model was finally adopted to calculate the wave height transformation in the surf zone by introducing the modified breaking index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号