首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary  It is expected that a change in climatic conditions due to global warming will directly impact agricultural production. Most climate change studies have been applied at very large scales, in which regions were represented by only one or two weather stations, which were mainly located at airports of major cities. The objective of this study was to determine the potential impact of climate change at a local level, taking into account weather data recorded at remote locations. Daily weather data for a 30-year period were obtained for more than 500 sites, representing the southeastern region of the USA. Climate change scenarios, using transient and equilibrium global circulation models (GCM), were defined, created and applied to the daily historical weather data. The modified temperature, precipitation and solar radiation databases corresponding to each of the climate change scenarios were used to run the CERES v.3.5 simulation model for maize and winter wheat and the CROPGRO v.3.5 model for soybean and peanut. The GCM scenarios projected a shorter duration of the crop-growing season. Under the current level of CO2, the GCM scenarios projected a decrease of crop yields in the 2020s. When the direct effects of CO2 were assumed in the study, the scenarios resulted in an increase in soybean and peanut yield. Under equilibrium , the GCM climate change scenarios projected a decrease of maize and winter wheat yield. The indirect effects of climate change also tended to decrease soybean and peanut yield. However, when the direct effects of CO2 were included, most of the scenarios resulted in an increase in legume yields. Possible changes in sowing data, hybrids and cultivar selection, and fertilization were considered as adaptation options to mitigate the potential negative impact of potential warming. Received July 20, 1999/Revised April 18, 2000  相似文献   

2.
Global vegetation change predicted by the modified Budyko model   总被引:1,自引:0,他引:1  
A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO2 doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). Global vegetation maps after climate change are compared to the current climate vegetation map using the kappa statistic for judging agreement, as well as by calculating area statistics. All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Specifically, all Boreal vegetation classes are predicted to shrink. The interrelated classes of Tundra, Taiga, and Temperate Forest are predicted to replace much of their poleward (mostly northern) neighbors. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favoring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50–100 y needed for CO2 doubling, it is nevertheless not clear if projected global warming will result in drastic or benign vegetation change.  相似文献   

3.
The paper deals with a selection of the climatological baseline, GCM validity and construction of the climate change scenarios for an impact assessment in the Czech territory. The period of 1961–1990 has been selected as the climatological baseline. The corresponding database includes more than 50 monthly mean temperature and precipitation series, and 16 time series of daily meteorological data that contain also the solar radiation data. The 1× CO2 outputs produced by four GCMs, provided by the CSMT (GISS, GFD30, GFD01, and CCCM), were compared with observed temperature and precipitation conditions in western and central Europe with a particular attention devoted to the Czech territory. The GCM ability to simulate annual cycles of temperature, precipitation and radiation was thoroughly examined. The GISS and CCCM were selected as a basis for constructing climate change scenarios as they simulated reasonably the observed patterns. According to the GISS variant, 2× CO2 climate assumes a higher winter and lower summer warming, and an increase in annual precipitation amounts. A dangerous combination of the summer temperature increase and declining precipitation amounts is a specific feature of the CCCM scenario. An incremental scenario for temperature and precipitation is based on the combination of prescribed changes in both annual means and annual courses.  相似文献   

4.
This study uses recent GCM forecasts, improved plant science and water supply data and refined economic modeling capabilities to reassess the economic consequences of long-term climate change on U.S. agriculture. Changes in crop yields, crop water demand and irrigation water arising from climate change result in changes in economic welfare. Economic consequences of the three GCM scenarios are mixed; GISS and GFDL-QFlux result in aggregate economic gains, UKMO implies losses. As in previous studies, the yield enhancing effects of atmospheric CO2 are an important determinant of potential economic consequences. Inclusion of changes in world food production and associated export changes generally have a positive affect on U.S. agriculture. As with previous studies, the magnitude of economic effects estimated here are a small percentage of U.S. agricultural value.  相似文献   

5.
This paper describes the regional climate change scenarios that are recommended for use in the U.S. Country Studies Program (CSP) and evaluates how well four general circulation models (GCMs) simulate current climate over Europe. Under the umbrella of the CSP, 50 countries with varying skills and experience in developing climate change scenarios are assessing vulnerability and adaptation. We considered the use of general circulation models, analogue warm periods, and incremental scenarios as the basis for creating climate change scenarios. We recommended that participants in the CSP use a combination of GCM based scenarios and incremental scenarios. The GCMs, in spite of their many deficiencies, are the best source of information about regional climate change. Incremental scenarios help identify sensitivities to changes in a particular meteorological variable and ensure that a wide range of regional climate change scenarios are considered. We recommend using the period 1951–1980 as baseline climate because it was a relatively stable climate period globally. Average monthly changes from the GCMs and the incremental changes in climate variables are combined with the historical record to produce scenarios. The scenarios do not consider changes in interannual, daily, or subgrid scale variability. Countries participating in the Country Studies Program were encouraged to compare the GCMs' estimates of current climate with actual long-term climate means. In this paper, we compare output of four GCMs (CCCM, GFDL, UKMO, and GISS) with observed climate over Europe by performing a spatial correlation analysis for temperature and precipitation, by statistically comparing spatial patterns averaged climate estimates from the GCMs with observed climate, and by examining how well the models estimate seasonal patterns of temperature and precipitation. In Europe, the GISS and CCCM models best simulate current temperature, whereas the GISS and UK89 models, and the CCCM model, best simulate precipitation in defined northern and southern regions, respectively.  相似文献   

6.
The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen deposition were evaluated as drivers of NPP. Across all three scenarios, rangeland NPP increased by 0.26 % year?1 (7 kg C ha?1 year?1) but increases were not apparent until after 2030 and significant regional variation in NPP was revealed. The Desert Southwest and Southwest assessment regions exhibited declines in NPP of about 7 % by 2100, while the Northern and Southern Great Plains, Interior West and Eastern Prairies all experienced increases over 25 %. Grasslands dominated by warm season (C4 photosynthetic pathway) species showed the greatest response to temperature while cool season (C3 photosynthetic pathway) dominated regions responded most strongly to CO2 enrichment. Modeled NPP responses compared favorably with experimental results from CO2 manipulation experiments and to NPP estimates from the Moderate Resolution Imaging Spectroradiometer (MODIS). Collectively, these results indicate significant and asymmetric changes in NPP for U.S. rangelands may be expected.  相似文献   

7.
The FORSKA2 patch model was used to simulate responses of forest biomass and species composition to four GCM projections of climate change at 11 locations along a transect oriented northeast-southwest across the boreal zone of central Canada. In agreement with earlier results, FORSKA2 produced estimates of present-day biomass accumulation and functional types very consistent with local inventory data. Simulated responses to the four GCM scenarios of climate change produced different results. The GFDL scenario consistently reduced total biomass accumulation compared to present-day conditions, whereas the other three GCMs produced overall increases. In the north, where ecosystem productivity is thought to be limited by low temperature, changes in steady-state biomass accumulation and species composition were relatively minor. In the south, where productivity is probably limited by summer water deficits, the GCM scenarios resulted in larger absolute changes, with generally large increases under GISS, and OSU and generally smaller increases under UKMO. Pronounced changes in species composition were not evident in most simulations, with the exception that warmer winter temperatures evidently allowed invasion by species currently excluded through intolerance to winter minima.  相似文献   

8.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

9.
A deterministic, one-dimensional model is presented to simulate daily water temperature profiles and associated ice and snow covers for dimictic and polymictic lakes of the temperate zone. The lake parameters required as model input are surface area (As), maximum depth (HMAX), and Secchi depth (zs), the latter, used as a measure of light attenuation and trophic state. The model is driven by daily weather data and operates year-round over multiple years. The model has been tested with extensive data (over 5,000 temperature points). Standard error between simulated and measured water temperatures is 1.4°C in the open water season and 0.5°C in the ice cover season. The model is applied to simulate the sensitivity of Minnesota lake water temperature characteristics to climate change. The projected climate changes due to a doubling of atmospheric CO2 are obtained from the output of the Canadian Climate Center General Circulation Model (CCC GCM) and the Goddard Institute of Space Studies General Circulation Model (GISS GCM). Simulated lake temperature characteristics have been plotted in a coordinate system with a lake geometry ratio (A s 0.25 /HMAX) on one axis and Secchi depth on the other. The lake geometry ratio expresses a lake's susceptibility to stratification. By interpolation, the sensitivity of lake temperature characteristics to changes of water depth and Secchi depth under the projected climate scenarios can therefore be obtained. Selected lake temperature characteristics simulated with past climate conditions (1961–1979) and with a projected 2 × CO2 climate scenario as input are presented herein in graphical form. The simulation results show that under the 2 × CO2 climate scenario ice formation is delayed and ice cover period is shortened. These changes cause water temperature modifications throughout the year.  相似文献   

10.
This study investigated the spatial–temporal patterns and trends of potential evapotranspiration (ET0) and aridity index (AI) over Southwest China during 1960–2013 based on daily temperature, precipitation, wind speed, sunshine duration, total solar radiation, and relative humidity data from 108 meteorological stations. The Penman–Monteith model, Mann–Kendall (M–K) test, moving t test, and Morlet wavelet method were used. The results indicated that ET0 and AI across the region displayed decreasing trends, but the former was significant. After 2000, regionally average trends in ET0 and AI increased rapidly, indicating that droughts increased over Southwest China in recent years. Spatially, the changes of ET0 and AI were dissimilar and not clustered, either. Temporally, both ET0 and AI displayed obvious abrupt change points over different timescales and that of AI was during the winter monsoon period. Significant periodic variations with periods of 27, 13, and 5 years were found in ET0, but only of 13 and 5 years existed in AI. Correlation analysis revealed that the sunshine duration and wind speed were the dominant factors affecting ET0 and that AI showed strong negative correlation with precipitation. The findings of this study enhance the understanding of the relationship between climate change and drought in Southwest China, while the mechanism controlling the variation in drought requires further study.  相似文献   

11.
The effect of projected global climate change due to a doubling of atmospheric CO2 on water temperatures in five streams in Minnesota was estimated using a deterministic heat transport model. The model calculates heat exchange between the atmosphere and the water and is driven by climate parameters and stream hydrologic parameters. The model is most sensitive to air temperature and solar radiation. The model was calibrated against detailed measurements to account for seasonally variable shading and wind sheltering. Using climate projections from the GISS, GFDL and OSU GCMs as input; stream temperature simulations predict a warming of freely flowing river reaches by 2.4 °C to 4.7 °C when atmospheric CO2 doubles. In small shaded streams water temperatures are predicted to rise by an additional 6 °C in summer if trees along stream banks should be lost due to climate change or other human activities (e.g. logging). These projected water temperature changes have significant consequences for survival and growth of fishes. Simulation with the complete heat budget equations were also used to examine simplified water temperature/air temperature correlations.  相似文献   

12.
The aim of this paper is to report on the development of regional climate change scenarios for Kazakhstan as the result of increasing of CO2 concentration in the global atmosphere. These scenarios are used in the assessment of climate change impacts on the agricultural, forest and water resources of Kazakhstan. Climate change scenarios for Kazakhstan to assess both long-term (2× CO2 in 2075) and short-term (2000, 2010 and 2030) impacts were prepared. The climate conditions under increasing CO2 concentration were estimated from three General Circulation Models (GCM) outputs: the model of the Canadian Climate Center Model (CCCM), the model of the Geophysical Fluid Dynamics Laboratory (GFDL) and the 1% transient version of the GFDL model (GFDL-T). The near-term climate scenarios were obtained using the probabilistic forecast model (PFM) to the year 2010 and the results of GFDL-T for years 2000 and 2030. A baseline scenario representing the current climate conditions based on observations from 1951 to 1980 was developed. The assessment of climate change in Kazakhstan based on the analysis of 100-years observations is given too. As a result of comparisons of the current climate (based on observed climate) the 1× CO2 output from GCMs showed that the GFDL model best matches the observed climate. The GFDL model suggests that the minimum increase in temperature is expected in winter, when most of the territory is expected to have temperatures 2.3–4.5 °C higher. The maximum (4.3 to 8.2 °C) is expected to be in spring. CCCM scenario estimates an extreme worming above 11 °C in spring months. GFDL-T outputs provide an intermediate scenario.  相似文献   

13.
Northeast China is the main crop production region in China, and future climate change will directly impact crop potential yields, so exploring crop potential yields under future climate scenarios in Northeast China is extremely critical for ensuring future food security. Here, this study projected the climate changes using 12 general circulation models (GCMs) under two moderate Representative Concentration Pathway (RCP) scenarios (RCP 4.5 and 6.0) from 2015 to 2050. Then, based on the Global Agro-ecological Zones (GAEZ) model, we explored the effect of climate change on the potential yields of maize and paddy rice in Northeast China during 2015–2050. The annual relative humidity increased almost throughout the Northeast China under two RCPs. The annual precipitation increased more than 400 mm in some west, east, and south areas under RCP 4.5, but decreased slightly in some areas under RCP 6.0. The annual wind speed increased over 2 m/s in the west region. The annual net solar radiation changes varied significantly with latitude, but the changes of annual maximum temperature and minimum temperature were closely related to the terrain. Under RCP 4.5, the average maize potential yield increased by 34.31% under the influence of climate changes from 2015 to 2050. The average rice potential yield increased by 16.82% from 2015 to 2050. Under RCP 6.0, the average maize and rice potential yields increased by 25.65% and 6.34% respectively. The changes of maize potential yields were positively correlated with the changes of precipitation, wind speed, and net solar radiation (the correlation coefficients were > 0.2), and negatively correlated with the changes of relative humidity, minimum and maximum temperature under two RCPs. The changes of rice potential yields were positively correlated with the changes of precipitation (correlation coefficient = 0.15) under RCP 4.5. Under RCP 6.0, it had a slight positive correlation with net solar radiation, relative humidity, and wind speed.  相似文献   

14.
Summary Soybean evapotranspiration (ET) measured by the Bowen ratio energy balance method is used as the basis for the comparison of a commonly used semi-empirical (combination equation) and a pure statistical approach. Surface conductance within the combination equation was fitted to measured conductance by the Bowen ratio energy balance method. A multiple linear regression to vapor pressure deficit, solar radiation and wind speed was found. The same parameters were used to predict soybean evapotranspiration through a direct multiple linear regression. Despite a statistically rather poor forecast of surface conductance during 1987 (64% of variance explained) both evapotranspiration estimates agreed well with measured evapotranspiration (r 2 = 0.94). However, for a second year (1991) both, the combination equation and the pure statistical approach based on 1987 statistical relationships yielded only 70% of actual evapotranspiration. ActualET was 70% and 80% of potentialET in 1987 and 1991, respectively. These similar relationships to potentialET and the statistically weak prediction of surface conductance indicate poor physiological control of soybeanET or inadequate parametrization.NoteOn leave from the Department of Agricultural Engineering, Agricultural Faculty of Ankara University, Turkey.With 5 Figures  相似文献   

15.
The potential direct effects of possible global warming on summer season dairy production and reproduction were evaluated for the United States and Europe. Algorithms used for milk production and conception rate were previously developed and validated. Three widely known global circulation models (GISS, GFDL, and UKMO) were used to represent possible scenarios of future climate. Milk production and conception rate declines were highest under the UKMO model scenario and lowest under the GISS model scenario. Predicted declines for the GCM scenarios are generally higher than either 1 year in 10 probability-based declines or declines based on the abnormally hot summer of 1980 in the United States. The greatest declines (about 10% for the GISS and GFDL scenarios, and about 20% for the UKMO scenario) in the United States are predicted to occur in the Southeast and the Southwest. Substantial declines (up to 35%) in conception rates were also predicted in many locations, particularly the eastern and southern United States. These areas correspond to areas of high dairy cattle concentration. They already have relatively large summer season milk production declines resulting from normally hot conditions. Thus, the actual impacts of increased production declines may be greater in other areas, which are not accustomed to large summer season declines and therefore may require more extensive mitigation measures.Published as Paper No. 9698 Journal Series, Nebraska Agricultural Research Division. The work reported here was conducted under Nebraska Agricultural Research Division Project 27–007.  相似文献   

16.
We analyze the control runs and 2 × CO2 projections (5-yearlengths) of the CSIRO Mk 2 GCM and the RegCM2 regional climate model, which was nested in the CSIRO GCM, over the Southeastern U.S.; and we present the development of climate scenarios for use in an integrated assessment of agriculture. The RegCM exhibits smaller biases in both maximum and minimum temperature compared to the CSIRO. Domain average precipitation biases are generally negative and relatively small in winter, spring, and fall, but both models produce large positive biases in summer, that of the RegCM being the larger. Spatial pattern correlations of the model control runs and observations show that the RegCM reproduces better than the CSIRO the spatial patterns of precipitation, minimum and maximum temperature in all seasons. Under climate change conditions, the most salient feature from the point of view of scenarios for agriculture is the large decreases in summer precipitation, about 20% in the CSIRO and 30% in the RegCM. Increases in springprecipitation are found in both models, about 35% in the CSIRO and 25% in theRegCM. Precipitation decreases of about 20% dominate in winter in the CSIRO,while a more complex pattern of increases and decreases is exhibited by the regional model. Temperature increases by 3 to 5 °C in the CSIRO, the higher values dominating in winter and spring. In the RegCM, temperature increases are much more spatially and temporally variable, ranging from 1 to 7 °C acrossall months and grids. In summer large increases (up to 7 °C) in maximum temperature are found in the northeastern part of the domain where maximum drying occurs.  相似文献   

17.
 A comprehensive dataset of direct observations is used to assess the representation of surface and atmospheric radiation budgets in general circulation models (GCMs). Based on combined measurements of surface and collocated top-of-the-atmosphere fluxes at more than 700 sites, a lack of absorption of solar radiation within the atmosphere is identified in the ECHAM3 GCM, indicating that the shortwave atmospheric absorption calculated in the current generation of GCMs, typically between 60 and 70 Wm-2, is too low by 10–20 Wm-2. The surface and atmospheric radiation budgets of a new version of the Max-Planck Institute GCM, the ECHAM4, differ considerably from other GCMs in both short- and longwave ranges. The amount of solar radiation absorbed in the atmosphere (90 Wm-2) is substantially larger than typically found in current GCMs, resulting in a lower absorption at the surface (147 Wm-2). It is shown that this revised disposition of solar energy within the climate system generally reduces the biases compared to the observational estimates of surface and atmospheric absorption. The enhanced shortwave absorption in the ECHAM4 atmosphere is due to an increase in both simulated clear-sky and cloud absorption compared to ECHAM3. The increased absorption in the cloud-free atmosphere is related to an enhanced absorption of water vapor, and is supported in stand-alone comparisons of the radiation scheme with synchronous observations. The increased cloud absorption, on the other hand, is shown to be predominantly spurious due to the coarse spectral resolution of the ECHAM4 radiation code, thus providing no physical explanation for the “anomalous cloud absorption” phenomenon. Quantitatively, however, an additional increase of atmospheric absorption due to clouds as in ECHAM4 is, at least at low latitudes, not in conflict with the observational estimates, though this does not rule out the possibility that other effects, such as highly absorbing aerosols, could equally contribute to close the gap between models and observations. At higher latitudes, however, the increased cloud absorption is not supported by the observational dataset. Overall, this study points out that not only the clouds, but also the cloud-free atmosphere might be responsible for the discrepancies between observational and simulated estimates of shortwave atmospheric absorption. The smaller absorption of solar radiation at the surface in ECHAM4 is compensated by an increased downward longwave flux (344 Wm-2), which is larger than in other GCMs. The enhanced downward longwave flux is supported by surface measurements and by a stand-alone validation of the radiation scheme for clear-sky conditions. The enhanced flux also ensures that a sufficient amount of energy is available at the surface to maintain a realistic intensity of the global hydrological cycle. In contrast, a one-handed revision of only the shortwave radiation budget to account for the increased shortwave absorption in GCM atmospheres may induce a global hydrological cycle that is too weak. Received: 26 February 1998 / Accepted: 18 May 1998  相似文献   

18.
In recent years the problem of climate and its variations under the influence of natural processes and factors of anthropogenetic origin has come to the forefront of scientific and practical problems on a world-wide scale. Climate change vulnerability assessments of agronomic systems in Bulgaria have been initiated. In this paper preliminary results of this study are presented. Different climate change scenarios were defined. Global circulation model (GCM) scenarios and incremental scenarios for Bulgaria were created and applied. The influence of climate change on potential crop growing season above a base of 5° and 10 °C in Bulgaria was investigated. Increases in temperature can be expected to lengthen the potential growing season, resulting in a shift of thermal limits of agriculture in Bulgaria. The Decision Support System for Agrotechnology Transfer (DSSAT) Version 2.1 was used to assess the influence of climate change on grain yield of maize and winter wheat. Maize and winter wheat yields decreased with increasing temperatures and decreasing precipitation.  相似文献   

19.
Changes of the summer evapotranspiration regime under increased levels of atmospheric greenhouse gases are discussed for three Alpine river basins on the basis of a new set of simulations carried out with a high-resolution hydrological model. The climate change signal was inferred from the output of two simulations with a state-of-the-art global climate model (GCM), a reference run valid for 1961–1990 and a time-slice simulation valid for 2071–2100 under forcing from the A2 IPCC emission scenario. In this particular GCM experiment and with respect to the Alpine region summer temperature was found to increase by 3 to 4 C, whereas precipitation was found to decrease by 10 to 20%. Global radiation and water vapor pressure deficit were found to increase by about 5% and 2 hPa, respectively. On this background, an overall increase of potential evapotranspiration of about 20% relative to the baseline was predicted by the hydrological model, with important variations between but also within individual basins. The results of the hydrological simulations also revealed a reduction in the evapotranspiration efficiency that depends on altitude. Accordingly, actual evapotranspiration was found to increase at high altitudes and to the south of the Alps, but to decrease in low elevation areas of the northern forelands and in the inner-Alpine domain. Such a differentiation does not appear in the GCM scenario, which predicts an overall increase in evapotranspiration over the Alps. This underlines the importance of detailed simulations for the quantitative assessment of the regional impact of climate change on the hydrological cycle.  相似文献   

20.
Meteorological stations, which measure all the required meteorological parameters to estimate reference evapotranspiration (ETo) using the Food and Agriculture Organization Penman?CMonteith (FAO56-PM) method, are limited in Korea. In this study, alternative methods were applied to estimate these parameters, and the applicability of these methods for ETo estimation was evaluated by comparison with a complete meteorological dataset collected in 2008 in Korea. Despite differences between the estimation and observation of radiation and wind speed, the comparison of ETo showed small differences [i.e., mean bias error (MBE) varying ?0.22 to 0.25?mm?day?1 and root-mean-square-error (RMSE) varying 0.06?C0.50?mm?day?1]. The estimated vapor pressure differed considerably from the observed, resulting in a larger discrepancy in ETo (i.e., MBE of ?0.50?mm?day?1 and RMSE of 0.60?C0.73?mm?day?1). Estimated ETo showed different sensitivity to variations of the meteorological parameters??in order of vapor pressure?>?wind speed?>?radiation. It is clear that the FAO56-PM method is applicable for reasonable ETo estimation at a daily time scale especially in data-limited regions in Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号