首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characteristic variations in glacial and interglacial periods are shown by the CaCO3 contents, amounts and grain size of terrigenous material (>40 μm), quartz/mica ratios, and desert quartz numbers in East Atlantic sediment cores, collected during Meteor cruise 25 off Sahara and Senegal, 15–27°N. The following results were obtained. During Holocene an arid climate with eolian supply from the continent prevailed throughout the region (fine grained, slight terrigenous input; high CaCO3 values; high desert quartz numbers) except in the Senegal area. Here terrigenous muds indicate river supply and hence humid climate. During upper and lower Würn the climate was humid in the present day Sahara north of 20°N (low desert quartz numbers: input of large quantities of coarse terrigenous material; low CaCO3 values). South of 20°N the climate was arid, the Senegal river input disappeared during upper Würm, desert quartz numbers are as high as in Sahara dune samples, and wind strength was stronger than in the Holocene. Climate during middle Würm resembled Holocene climatic conditions. Climatic conditions during Eem (Riss) were probably similar to those during Holocene (Würm).  相似文献   

2.
New pole positions for Triassic and Cretaceous times have been obtained from volcanic and sedimentary sequences in Central Iran. These new results confirm the general trend of the Apparent Polar Wander Path (APWP) of the Central-East-Iran microplate (CEIM) from the Triassic through the Tertiary as published by Soffel and Förster (1983, 1984). Two new palaeopoles for the Triassic of the CEIM have been obtained; limestones and tuffs from the Nakhlak region yield a mean direction of 094.0°/25.0°, N=12, k=4.1,α 95=24.7°, after bedding correction, corresponding to a palaeopole position of 310.8°E; 3.9°S, and volcanic rocks from the Sirjan regions yield a mean direction of 114.5°/35.1°, N=44, k=45.9,α 95=3.2° after bedding correction and a palaeopole position of 295.8°E; 10.3°N. Combining these with the two previously published results yields a new palaeopole position of 317.5°E; 12.7°N, for the Triassic of the CEIM, thus confirming that large counterclockwise rotations of the CEIM have occurred since the Triassic time. New results have also been obtained from Cretaceous limestones from the Saghand region of the CEIM. The mean direction of 340.7°/26.3°, N=33, k=44.3,α 95=3.8°, and the corresponding palaeopole position of 283.1°E; 64.4°N, is in agreement with previously determined Cretaceous palaeopole positions of the CEIM. Furthermore, results have also been obtained from Triassic dolomite, limestone, sandstone and siltstone from the Natanz region, which is located to the west of the CEIM. A total of 161 specimens from 44 cores taken at five sites gave a mean direction of the five sites at 033.3°/25.1°, N=5, k=69.0,α 95=9.3° and a palaeopole position of 167.2°E; 53.7°N. They pass the positive fold test of McElhinny (1964) on the level of 99% confidence. This pole position is in fairly good agreement with the mean Triassic pole position of the Turan Plate (149°E; 49°N). It indicates that the area of Natanz has not undergone the large counterclockwise rotation relative to the Turan plate since the Triassic, which has been shown for the CEIM. A Triassic palaeogeographic reconstruction of Iran, Arabia (Gondwana) and the Turan Plate (Eurasia) is also presented.  相似文献   

3.
Preparation of a generalized chart of probable maximum precipitation (PMP) for the southern half of the Indian peninsula lying between lat. 8°N to 16°N has been attempted in this study. Maximum 1-day rainfall data of 70 to 80 years from 1891 for about 600 stations in the peninsular states of Tamil Nadu, Kerala, South Karnataka and southern portions of Andhra Pradesh were used. In order to get appropriate values of PMP, envelope frequency factor (K m) curve based on the actual rainfall data of the region was prepared. This study has shown that one-day PMP estimates over this region range from about 25 cm to about 85 cm. The heavy rainfall received over the coastal areas of Tamil Nadu in association with the cyclonic disturbance of November 1976 was examined and it was found that this rainfall was nowhere near the PMP estimates for this area.  相似文献   

4.
对早中新世的沟鞭藻植物地理作了初步研究 ,提出北半球在当时可划分为 3个沟鞭藻地理区 ,即热带区、亚热带—温带区和北方区。热带区以典型的热带、亚热带种 Polysphaeridiumzoharyi丰富并存在偏爱热带、亚热带的种 Tuberculodiniumdinium vancampoae为特征 ,亚热带—温带区以同时存在 Tuberculodiniumdinium vancampoae和温带种 Bitectatodinium tepikiense,但缺失 Polysphaeridium zoharyi为特征 ,而北方区则以缺失 Polysphaeridium zoharyi和 Tuberculo-diniumdinium vancampoae二者且组合较贫乏为特征 ,亚热带—温带区的北界大致位于现今 68°N一线 ,此界线可随气温升高而北推 ,例如最温暖的早中新世晚期 ( 1 7~ 1 4 .5Ma)此界线可达 70°N。该带南界大致位于现今 4 5°N处 ,随着气候的转暖可能会变得模糊不清。北方区的海水此时凉而不结冰 ,即此时北极不存在冰盖。本文研究证实了前人根据大植物化石所得出的结论。  相似文献   

5.
Study of micro-area chemical compositions indicates that phengite in albite gneiss from hole ZK2304 of the Donghai region has evident compositional zoning. SiO2 and tetrahedrally coordinated Si contents decrease, and Al2O3, AlIV and AlVI contents increase gradually from core to rim. However, K2O, MgO and FeO contents basically remain unchanged from core to rim. According to P-T estimates obtained from geothermometers and barometers, combined with previous experimental data, the core belt (micro-area I) of phengite was formed at T=637-672℃ and P=1.55-1.73 GPa, and the transitional belt (micro-area II) of the phengite were formed at r=594-654℃ and P=1.35-1.45 GPa. Towards the rim belt (micro-area III), the temperature decreased slightly, but the pressure decreased rapidly with r=542-630℃ and P=1.12-1.19 GPa. The P-T evolution path recorded by the compositional zoning of phengite is characterized by significant near-isothermal decompression, revealing that the gneiss has. undergone high-pressure-ultrahi  相似文献   

6.
To understand Holocene climate evolutions in low-latitude region of the western Pacific, paired δ18O and Mg/Ca records of planktonic foraminifer Globigerinoides ruber (250–300 μm, sensu stricto, s.s.) from a marine core ORI715-21 (121.5°E, 22.7°N, water depth 760 m) underneath the Kuroshio Current (KC) off eastern Taiwan were analyzed. Over the past 7500 years, the geochemical proxy-inferred sea surface temperature (SST) hovered around 27–28 °C and seawater δ18O (δ18OW) slowly decreased 0.2–0.4‰ for two KC sites at 22.7° and 25.3°N. Comparison with a published high-SST and high-salinity equatorial tropical Pacific record, MD98-2181 located at the Mindanao Current (MC) at 6.3°N, reveals an anomalous time interval at 3.5–1.5 kyr ago (before 1950 AD). SST gradient between the MC site and two KC site decrease from 1.5–2.0 °C to only 0–1 °C, and δ18OW from 0.1–0.3‰ to 0‰ for this 2-kyr time window. The high SST and low gradient could result from a northward shift of the North Equatorial Current, which implies a weakened KC. The long-term descending δ18OW and increasing precipitation in the entire low-latitude western Pacific and the gradually decreasing East Asian summer monsoonal rainfall during middle-to-late Holocene is likely caused by different land and ocean responses to solar insolation and/or enhanced moisture transportation from the Atlantic to Pacific associated with the southward movement of ITCZ.  相似文献   

7.
Relationship of outgoing long-wave radiation (OLR) with convective available potential energy (CAPE) and temperature at the 100-hPa pressure level is examined using daily radiosonde data for a period 1980–2006 over Delhi (28.3°N, 77.1°E) and Kolkata (22.3°N, 88.2°E), and during 1989–2005 over Cochin (10°N, 77°E) and Trivandrum (8.5°N, 77.0°E), India. Correlation coefficient (R xy) between monthly OLR and CAPE shows a significant (~???0.45) anti-correlation at Delhi and Kolkata suggesting low OLR associated with high convective activity during summer (seasonal variation). Though, no significant correlation was found between OLR and CAPE at Cochin and Trivandrum (low latitude region); analysis of OLR and temperature (at 100-hPa) association suggests that low OLR peaks appear corresponding to low temperature at Delhi (R xy~ 0.30) and Kolkata (R xy ~ 0.25) during summer. However, R xy between OLR and temperature becomes opposite as we move towards low latitudes (~8°–10°N) due to strong solar cycle influence. Large scale components mainly ENSO and quasi-biennial oscillaton (QBO) that contributed to the 100-hPa temperature variability were also analyzed, which showed that ENSO variance is larger by a factor of two in comparison to QBO over Indian region. ENSO warm conditions cause warming at 100-hPa over Delhi and Darwin. However, due to strong QBO and solar signals in the equatorial region, ENSO signal seems less effective. QBO, ENSO, and solar cycle contribution in temperature are found location-dependent (latitudinal variability) responding in consonance with shifting in convective activity regime during El Niño, seasonal variability in the tropical easterly jet, and the solar irradiance.  相似文献   

8.
The mid-late Eocene “Valley of Whales” in the Fayum province of Egypt contains hundreds of marine-mammals’ skeletons. Given its paleontological importance, we carried out a paleomagnetic study of the fossil-bearing formations. A sequence of basalts directly overlying the upper Eocene rocks in three distant clusters within a 25 km-long NW–SE graben in the southwestern part of the area was also studied. Thermal demagnetization of three-axis IRM was used to identify and eliminate sites dominated by hematite and/or goethite as potential remanence carriers. Progressive thermal demagnetization of the NRM isolated a characteristic NNE–SSW dual-polarity direction with a shallow inclination that passes both tilt and reversal tests. The mean tilt-corrected direction of the sedimentary formations is D/I = 16°/30° (k = 50, α95 = 3°) yielding a paleomagnetic pole at 70°N/159°E. The anisotropy of magnetic susceptibility (AMS) indicated that the observed inclinations were free from inclination shallowing, as did the nearly identical characteristic remanence of the overlying basalt flows (with a tilt-corrected reversed-polarity direction of D/I = 198°/−28° (k = 38, α95 = 7°) and a pole at 68°N/158°E). The new paleopoles place the Fayum province at a lower paleolatitude (15–17°N) than today (29.5°N), and point to the possible prevalence of tropical climate in northeast Africa during mid-late Eocene times. This tropical position is nearly identical to the paleolatitudes extrapolated from the mean of 36 coeval poles rotated from the other major cratons and from Africa itself. The declinations show a minor easterly deviation from those predicted by extrapolation from other continents. This is interpreted as due to a small clockwise rotation internal to NE Africa, possibly related to Red Sea/Gulf of Suez rifting after the late Eocene. The alternative explanation that the geomagnetic field had a non-zonal non-dipole field contribution is not favored.  相似文献   

9.
The Jurassic paleogeographic position of the Pontides is not well studied because of insufficient paleomagnetic data. For this reason, a paleomagnetic study was carried out in order to constrain the paleolatitudinal drift of the Turkish blocks during the Jurassic period. A total of 32 sites were sampled from volcanic and volcanoclastic rocks of the Lower/Middle Jurassic Kelkit formation (Eastern Pontides), Mudurnu formation (Sakarya continent) and Upper Jurassic–Lower Cretaceous Ferhatkaya formation exposed around Amasya region (Eastern Pontides). Rock magnetic experiments demonstrate that the main ferromagnetic mineral is pseudo-single-domain titanomagnetite in these rocks. Paleomagnetic analysis revealed two main components of the natural remanent magnetization during stepwise thermal and alternating field demagnetization. The first component is a low-coercivity (unblocking temperature) component with a direction sometimes similar to that of the earth’s present field or a viscous component. The second component, which is interpreted as the characteristic remanent magnetization (ChRM) direction, has low to high coercivity properties between 20 and 100 mT or unblocking temperatures between 300 and 580°C. A positive fold test at the 95% level of confidence proved that the ChRM of the sites is primary. Paleomagnetic directions calculated for the Kelkit formation in the Eastern Pontides have a mean direction of D = 334.8°, I = 49.7°, α 95 = 7.1° after tilt-correction. A mean direction of D = 332.2°, I = 48.5°, α 95 = 14.6° was obtained from the volcanoclastic rocks of the Mudurnu formation, and D = 324.3°, I = 43.3°, α 95 = 9.5° was calculated for the Upper Jurassic–Lower Cretaceous limestones/Ferhatkaya formation of the Amasya region. The Jurassic rocks in the Eastern Pontides and Mudurnu region are considered to represent products of the rifted Neo-Tethys ocean, while the Upper Jurassic–Lower Cretaceous sediments in Amasya are related to basin-filling materials. The data suggest that the Kelkit formation was formed at 30.5°N paleolatitude and the equivalent Mudurnu formation at 29.5°N paleolatitude. The paleolatitude of the Eastern Pontides indicates that this rifting block was separated from Eurasia by a marginal basin instead of being a part of Eurasia. The lower paleolatitude of the Amasya region at 24.8°N in the Upper Jurassic to Lower Cretaceous clearly indicates southward drift of the Turkish blocks during the Jurassic to Lower Cretaceous period together with the motion of Eurasia.  相似文献   

10.
The distributions of cosmogenic nuclide10Be in the upper and lower salt units from a core (36.4°N, 94.5°E) in the Chaidamu Basin, Qinghai, China have been measured by means of accelerator-mass spectrometer. The comparison of these10Be results measured on salt and detritus fractions shows that the geochemical behaviour of10Be is detritus-phile. In this area10Be influx is different in the past tens of thousands of years, which is suggested to be related to climatic fluctuations during late Pleistocene. It seems that10Be influx is higher in the humid climate environnent than in the dry climate environment. The230Th-age estimates of two salt units have been determined. The corrected ages of the lower unit show a climate shift from humid to dry at about 50 Ka ago in this area.  相似文献   

11.
一个降水再循环模型的建立及分析   总被引:3,自引:1,他引:3       下载免费PDF全文
伊兰  陶诗兰 《水科学进展》1997,8(3):205-211
陆-气相互作用是当今水文科学界和大气科学界共同瞩目的一个前沿课题。为寻求陆-气相互作用的某些信号,在长江流域的主体区域上建立了一个降水再循环模型,并分析了这一区域降水的不同水汽来源。依据再循环降水率这个反映陆面过程对当地气候影响的定量指标,得出了一些很有实际意义的结论。  相似文献   

12.
The influences of temperature and environmental hypoxia on the growth rates of two California anadromous fishes, white sturgeon (Acipenser transmontanus) and striped bass (Morone saxatilis) were examined. Fish (0.5–0.6 g initial weight) were fedad libitum rations ofArtemia in flow-through aquaria regulated for temperature (15, 20, and 25°C) and oxygen tension (130 and 90 torr Po 2). Growth of sturgeon was significantly greater at 20 °C compared with 15 °C, but there was no difference between 20 and 25 °C. Striped bass growth increased with each 5° increment of temeprature elevation to 3.2% body weight per d at 25 °C, the fastest growth rate measured. The temperature of maximum growth reflected the temperature of the native estuarine rearing area. Environmental hypoxia (90 torr Po 2) reduced growth of sturgeon within each temperature level, whereas striped bass growth was reduced by hypoxia only at the upper two temperatures. Sturgeon were much more active in the growth chambers than striped bass. Sturgeon activity increased with each 5 °C temperature increase under normoxia and hypoxia, except at 25 °C (hypoxia) where activity was insignificantly different from that at 20 °C (hypoxia).  相似文献   

13.
The Ouarsenis area is one of the most developed karstic systems of Algeria. It is a karst reservoir drinking water with a population of more than 50,000 people taking fully benefit from it. To understand the development of this karstic system, the local tectonic history of the four main mountain ranges of this culminating area (Ouarsenis) has been analyzed. Although previously identified primarily Cenozoic tectonic activities have been observed, a set of NW-SE joints intersecting the Jurassic limestone has been associated to a post-nappes tectonic events. Moreover, numerous joint sets oriented NNE/SSW have been identified almost over the entire culminating area. These joints are the direct consequence of the following stress history: (i) a NW/SE shortening responsible for a major overlap and the first fold (P1) phase, (ii) a second NNE/SSW shortening stage responsible for the second folding (P2) phase associated with 70° N sinistral strike-slip trend, (iii) a WNW/ESE extension phase resulting from the change of σ 3 stress vertical axis, and (iv) a shearing stress creating a 120° N sinistral strike-slip fault. Only the late phases are responsible of the development of joints, which have been karstified later on. Indeed, significant families of karstified joints, i.e., 20° and 70° N have been found. These joints are related to the extensional and shearing modes, respectively, and linked to a particular in situ karstogenesis. Moreover, this study suggests an ancient establishment of the karstic systems in the Ouarsenis region in at least two stages: pre-figured and activated behaviors during the Cenozoic.  相似文献   

14.
Changes in annual temperature extremes in the Carpathians since AD 1961   总被引:1,自引:1,他引:0  
The Carpathian Mountains region cover areas from seven countries of central and southeastern Europe, the mountain chain having major regional influences on the temperate climate, specific to latitudes between 43°N and 49°N. In order to identify changes in the annual temperature extremes, the Mann–Kendall nonparametric trend test has been applied to several thermal indices, recommended by the expert team on climate change detection and indices. The indices were computed from gridded daily datasets of minimum and maximum temperature at 0.1° resolution (~10 km), available online within the framework of the project CarpatClim (climate of the Carpathian region) for the period 1961–2010. The results show decreasing trends in cold-related indices, especially in the number of frost days, and increasing trends in warm-related ones. The trend patterns are consistent over the region, i.e., there are no mixed trends for a given index. Regional differences in climate extreme trends within the Carpathian region are related to altitude, rather than latitude. The number of summer days is increasing over the entire area, while the number of tropical nights presents upward trends mainly at lower elevations. The Warm Spell Duration Index presents upward trends over 60 % of the region. The (annual) East Atlantic pattern shows strong correlations with the warm-related indices. Our results are in agreement with previous temperature-related studies in the region.  相似文献   

15.
The ongoing continent?Ccontinent collision between Indian and Eurasian plates houses a seismic gap in the geologically complex and tectonically active central Himalaya. The seismic gap is characterized by unevenly distributed seismicity. The highly complex geology with equally intricate structural elements of Himalaya offers an almost insurmountable challenge to estimating seismogenic hazard using conventional methods of Physics. Here, we apply integrated unconventional hazard mapping approach of the fractal analysis for the past earthquakes and the box counting fractal dimension of structural elements in order to understand the seismogenesis of the region properly. The study area extends from latitude 28°N?C33°N and longitude 76°E?C81°E has been divided into twenty-five blocks, and the capacity fractal dimension (D 0) of each block has been calculated using the fractal box counting technique. The study of entire blocks reveal that four blocks are having very low value of D 0 (0.536, 0.550, 0.619 and 0.678). Among these four blocks two are characterized by intense clustering of earthquakes indicated by low value of correlation fractal dimension (D c ) (0.245, 0.836 and 0.946). Further, these two blocks are categorized as highly stressed zones and the remaining two are characterized by intense clustering of structural elements in the study area. Based on the above observations, integrated analysis of the D c of earthquakes and D 0 of structural elements has led to the identification of diagnostic seismic hazard pattern for the four blocks.  相似文献   

16.
Whereas geologists have known for three‐quarters of a century that there was significant crustal thickening in the central East Greenland Caledonides, the crucial role of extensional faulting during Caledonian orogenesis has only been recognized during the past decade. In this paper, new petrographic and thermobarometric observations are presented from migmatitic metasedimentary gneisses of the Forsblad Fjord region (c. 72.5°N). Samples of the Krummedal Sequence, collected from the footwall of the upper of two significant splays of the main extensional fault system in the region—the Fjord Region Detachment (FRD)—enable us to establish a relative sequence of metamorphism. Our pressure (P)–temperature (T) results imply a clockwise loop in P–T space. As recorded by mineral assemblages in the Krummedal gneisses, prograde metamorphism involved a net increase of c. 4 kbar and 250 °C, with peak conditions of c. 10.5 kbar at 785 °C. Early burial and heating was followed by near‐isothermal decompression of 4.5 kbar, a process which is attributed to roughly 18 km of tectonostratigraphic throw on the upper splay of the FRD. Combining data reported here with the published data, it is estimated that the approximate tectonostratigraphic throw along the lower splay of the FRD was c. 16 km. In situ U–Th–Pb‐monazite electron microprobe dating suggests that the earliest phase of metamorphism recorded in the Krummedal Sequence gneisses of Forsblad Fjord occurred during the Caledonian orogeny. Furthermore, the combination of our new data with existing conventional TIMS U‐Pb and 40Ar/39Ar data imply that: (1) movement along the uppermost splay of the FRD (c. 425–423 Ma) occurred at maximum time‐averaged slip‐rates equivalent to c. 9 mm of vertical displacement per year; and (2) that the final stages of metamorphism occurred prior to c. 411 Ma, although part of this denudation was likely accommodated on overlying extensional structures that may have been active more recently. There is close agreement between our data and results from the Krummedal Sequence north of the field area (72.5°?74°N), and rocks of the Smallefjord Sequence (75°?76°N) that are suggested to correlate with the Krummedal Sequence. This leads us to infer that the events recorded in the Forsblad Fjord region are of orogen‐scale significance.  相似文献   

17.
The metamorphosed mafic rocks of Archean greenstone belts host major orogenic gold deposits, and may record information about changing pressure–temperature (PT) conditions that could contribute to understanding of Archean geodynamic processes. Until recently, it was difficult to obtain good constraints on pressure and temperature from these rocks. Here we present results of PT pseudosection calculations in the NCFMASHTOS (Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O–SO2) system, using as an example typical amphibolite facies metabasaltic rocks from the Plutonic Gold Mine in the Neoarchean Plutonic Well Greenstone Belt (PWGB), Marymia Inlier, Western Australia. The pseudosections together with observed mineral compositions and mineral assemblages in the rocks are used to argue that a previously unrecognized steep pressure increase (from ~3–4 kbar at ~500 °C to ≥8 kbar at ~600 °C) accompanied metamorphism to peak temperatures. The P–T data presented here could be the result of either horizontal or vertical tectonics. Existing models for the early evolution of the PWGB involve nappe stacking supported by relatively cold strong crust, with little overall change in thickness. While the available evidence from the study area and the wider region is not yet sufficient to confirm whether the peak metamorphic conditions were attained by horizontal or vertical tectonic means, the PT data presented here can provide region‐specific constraints for computer modelling that may provide a more definite answer in the future.  相似文献   

18.
Aluminous reaction textures in orthoamphibole-bearing rocks from the Froland area, Bamble, south Norway, record the prograde pressure–temperature path of the high-grade Kongsbergian Orogeny (c. 1600–1500 Ma) and the low–mid amphibolite facies overprint during the Sveconorwegian Orogeny (c. 1100–1000 Ma). The rocks contain anthophyllite/gedrite, garnet, cordierite, biotite, quartz, andalusite, kyanite, Cr-rich staurolite, tourmaline, ilmenite, rutile and corundum in a variety of parageneses. The P–T path is deduced from petrographic observations, mineral chemistry and zoning, geothermometry and (N)FMASH equilibria. The results indicate the sequence of metamorphic stages outlined below. (a) An M1 phase characterized by the presence of strongly deformed andalusite, gedrite and tourmaline. (b) An M2 phase with the development of kyanite after andalusite and the growth of staurolite associated with strong Na–Al–Mg zoning in orthoamphibole, indicating an increase in pressure (4 8 kbar) and temperature (500° 650°C). (c) Pressure decrease at high P (6–7 kbar) and high T (600–700 °C) during M3a with the production of cordierite ° Corundum between kyanite, staurolite and orthoamphibole and cordierite growth between corundum and orthoamphibole. (d) Temperature increase to 740 ± 60 °C and 7 kbar; static growth of garnet (M3b) at the metamorphic climax (peak T). The heat supply necessary to explain the temperature increase between the M3a and M3b phases is correlated with synkinematic enderbitic–charnockitic and basic intrusions in the Arendal granulite facies terrain. (e) M3b metamorphic conditions were followed by an initial isobaric cooling path (early M4) and late-stage pressure decrease (late M4). Early M4 conditions of 6–7 kbar and 550–600 °C, assuming PH2O < Ptotal are indicated by a retrograde talc–kyanite–quartz assemblage in late quartz–cordierite veins. Late M4 conditions of 3–4 kbar and 420–530 °C are inferred from a kyanite–andalusite–chlorite–quartz assemblage in vein-cordierite. The M1–M3 stages are interpreted as being the result of the same metamorphic P–T path, which was caused by both tectonic and magmatic thickening. A prolonged crustal residence time is proposed for the Bamble sector before uplift during the later stages of M4 occurred.  相似文献   

19.
The occurrence of high-pressure (HP) blueschists within the central Qiangtang terrane of northern Tibet has a significant bearing on plate-suturing processes. In order to contribute to the ongoing debate on whether the central Qiangtang metamorphic belt represents an in situ suture within the Qiangtang terrane, we examined lawsonite- and glaucophane-bearing blueschists from the northwest Qiangtang area (84° 10′–85° 30′ E, 34°10′–34° 45′ N). All studied rocks are metapelites, metasandstones, or metabasalts, characterized by lawsonite + glaucophane + phengite, lawsonite + glaucophane + epidote + albite + quartz, or glaucophane + phengite + quartz assemblages. The meta-mafic rocks contain very high TiO2 and low Al2O3 contents. They are typified by abundant ferromagnesian trace elements, and an absence of Eu anomalies and Nb–Ta deletions; all the above features indicate that these mafic rocks represent oceanic island basalt (OIB) protoliths. Most of the metasediments contain high SiO2, moderate Al2O3 + K2O, and low TiO2 + Na2O. They display high CIA (chemical index of alteration) values (74% ± 5%) and distinctly negative Eu anomalies (Eu/Eu* = 0.64 ± 0.05). This, along with their high field strength elemental characteristics, indicates that they were deposited in a passive continental margin environment, intercalated with OIB-type basalts. We estimate the peak metamorphic conditions for these blueschists as T = 330–415°C and P = 9–11.5 kbar. This HP event occurred at ca. 242 Ma, indicated by a well-defined 40Ar/39Ar plateau age for glaucophane. Retrograde metamorphism occurred at T = 280–370°C, P = 6.5–9.5 kbar, t = ca. 207 Ma (40Ar/39Ar dating of phengite). Therefore, a cold subduction (geotherm ~8°C/km) attended the passive continental margin during the Triassic when the eastern Qiangtang collided with the western Qiangtang. The northwest Qiangtang HP metamorphic belt is an extension of the central Qiangtang metamorphic belt that defines the suture between eastern and western Qiangtang, and indicates an anticlockwise, diachronous closure of the Shuanghu Palaeo-Tethys.  相似文献   

20.
《Atmósfera》2014,27(3):227-237
The O+ ion density measured by the SROSS-C2 satellite during solar minima (year 1995, F10.7 = 77) and maxima (year 2000, F10.7 = 181) has been analyzed for studying diurnal, seasonal, latitudinal and geomagnetic variations. The study region covers an area encompassed between 5-3 5° N latitude and 65-95° E longitude over India at a ~500 km altitude (F2 region). The year 2000 shows significant enhancement in the annual average of O+ ion density and attainment of post sunset secondary enhancement compared to 1995. Attributed to photoionization, daytime shows a maximum ionization compared to nighttime. However, attainment of post sunset secondary maxima is attributed to the strong pre-reversal enhancement in the vertical E x B drift. The effect of geomagnetic activity Kp through the E x B drift dynamic movement on O+ ion density distribution studies indicates periodicities of seven and nine days in 1995 and 2000, respectively, and polynomial dependency of the O+ ion density on geomagnetic activity Kp. Further on, stratification of the O+ ion density according to latitude (5-35° N) indicates high density in mid-latitudes (12-24° N) compared to high and low latitudes, except in the winter of 1995, which shows a distinct trend (i.e., density decreases with increasing latitude).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号