首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enrichment of gold in arsenian pyrite is usually associated closely with the enrichment of arsenic in the mineral, generally known as As1−-pyrite [Fe(As, S)2]. Direct analyses of the valence state of Au in pyrite are, however, difficult due to generally low (∼ppm level) Au concentrations. By means of X-ray photoelectron spectroscopy (XPS), this study obtained reliable valence states of As in pyrite from the Yang-shan gold deposit, a giant “Carlin-type” Au deposit in the western Qinling orogen, central China. The arsenian pyrite specimens were sputtered with Ar+ beam in the vacuum chamber of an XPS to obtain pristine surfaces and to avoid As oxidation during sample preparation. Analyses before and after sputtering show that the As3+ peak are only present on surface that was once exposed to the air. In contrast, the peak of As−1 was essentially unchanged during continuous sputtering. The results indicated that As is the predominant state on the pristine surface of arsenian pyrite; the peak of As3+ previously reported for Au-bearing arsenian pyrite was probably due to oxidation when exposed to air during sample preparation. It is unlikely that the coupled substitution of (Au+ + As3+) for 2Fe2+ takes place in the pyrite lattice. The so-called As3+-pyrite proposed by previous studies may occur in some special (oxidizing) geologic settings, but it is not observed in the Yang-shan gold deposit, and is unlikely to be important in typical orogenic or Carlin-type gold deposits, in which arsenian pyrite is a dominant Au carrier. Combining previous studies on Carlin-type Au deposits with our XPS experimental results, we suggest that the most likely state of Au in the Yang-shan Au deposit is lattice-bounded Au with or without nanoparticles (Au0).  相似文献   

2.
Several occurrences of gold-bearing quartz veins are situated along the east–northeast-trending Barramiya–Um Salatit ophiolitic belt in the central Eastern Desert of Egypt. In the Barramiya mine, gold mineralization within carbonaceous, listvenized serpentinite and adjacent to post-tectonic granite stocks points toward a significant role of listvenitization in the ore genesis. The mineralization is related to quartz and quartz–carbonate lodes in silicified/carbonatized wallrocks. Ore minerals, disseminated in the quartz veins and adjacent wallrocks are mainly arsenopyrite, pyrite and trace amounts of chalcopyrite, sphalerite, tetrahedrite, pyrrhotite, galena, gersdorffite and gold. Partial to complete replacement of arsenopyrite by pyrite and/or marcasite is common. Other secondary phases include covellite and goethite. Native gold and gold–silver alloy occur as tiny grains along micro-fractures in the quartz veins. However, the bulk mineralization can be attributed to auriferous arsenopyrite and arsenic-bearing pyrite (with hundreds of ppms of refractory Au), as evident by electron microprobe and LA-ICP-MS analyses.The mineralized quartz veins are characterized by abundant carbonic (CO2 ± CH4 ± H2O) and aqueous-carbonic (H2O–NaCl–CO2 ± CH4) inclusions along intragranular trails, whereas aqueous inclusions (H2O–NaCl ± CO2) are common in secondary sites. Based on the fluid inclusions data combined with thermometry of the auriferous arsenopyrite, the pressure–temperature conditions of the Barramiya gold mineralization range from 1.3 to 2.4 kbar at 325–370 °C, consistent with mesothermal conditions. Based on the measured δ34S values of pyrite and arsenopyrite intimately associated with gold, the calculated δ34SΣs values suggest that circulating magmatic, dilute aqueous-carbonic fluids leached gold and isotopically light sulfur from the ophiolitic sequence. As the ore fluids infiltrated into the sheared listvenite rocks, a sharp decrease in the fluid fO2 via interaction with the carbonaceous wallrocks triggered gold deposition in structurally favorable sites.  相似文献   

3.
Mine tailings at the former Delnite gold mine in northern Ontario were characterized to assess the impact of a biosolids cover on the stability of As species and evaluate options for long-term management of the tailings. Arsenic concentrations in the tailings range from 0.15 to 0.36 wt% distributed among goethite, pyrite and arsenopyrite. Pyrite and arsenopyrite occur as small and liberated particles that are enveloped by goethite in the uncovered tailings and the deeper portions of the biosolids-covered tailings. Sulfide particles in the shallower portions of the biosolids-covered tailings are free of goethite rims. Arsenic occurs predominantly as As5+ with minor amount of As1− in the uncovered tailings. Coinciding with the disappearence of goethite rims on sulfide particles, the biosolids-covered tailings have As3+ species gradually increasing in proportion towards the cover. Leaching tests indicated that the As concentrations in the leachate gradually increase from less than 0.085 to 13 mg/L and Fe from 28 to 179 mg/L towards the biosolids cover. These are in sheer contrast to the leachate concentrations of less than 0.085 mg/L As and 24–64 mg/L Fe obtained from the uncovered tailings confirming the role of biosolids-influenced reduction and mobilization of As in the form of As3+ species. The evidence suggests that reductive dissolution of goethite influenced by the biosolids-cover caused the mobilization of As as As3+ species.  相似文献   

4.
Dependences of magnetic susceptibility (MS) on the temperature of natural iron sulfide samples (pyrite, marcasite, greigite, chalcopyrite, arsenopyrite, pyrrhotite) from the deposits of northeastern Russia were studied. The thermal MS curves for pyrite and marcasite are the same: On heating, MS increases at 420–450 °C, and unstable magnetite (maghemite) and monoclinic pyrrhotite with a well-defined Hopkinson peak are produced. In oxygen-free media with carbon or nitrogen, magnetite formation is weak, whereas pyrrhotite generation is more significant. The heating curves for chalcopyrite are similar to those for pyrite. They show an increase in MS at the same temperatures (420–450 °C). However, stable magnetite is produced, whereas monoclinic pyrrhotite is absent. In contrast to that in pyrite, marcasite, and chalcopyrite, magnetite formation in arsenopyrite begins at > 500 °C. Arsenopyrite cooling is accompanied by the formation of magnetite (S-rich arsenopyrite) or maghemite (As-rich arsenopyrite) with a dramatic increase in MS. Arsenopyrite with an increased S content is characterized by insignificant pyrrhotite formation. Greigite is marked by a decrease in MS on the heating curves at 360–420 °C with the formation of unstable cation-deficient magnetite.Monoclinic pyrrhotite is characterized by a decrease in MS at ~ 320 °C, and hexagonal pyrrhotite, by a transition to a ferrimagnetic state at 210–260 °C. The addition of organic matter to monoclinic pyrrhotite stimulates the formation of hexagonal pyrrhotite, which transforms back into monoclinic pyrrhotite on repeated heating. The oxidation products of sulfides (greigite, chalcopyrite) show an increase in MS at 240–250 °C owing to lepidocrocite.  相似文献   

5.
(Ni-Sb)-bearing Cu-arsenides are rare minerals within the Mlakva and Kram mining sectors (Boranja ore field) one of the less-known Serbian Cu deposits. (Ni-Sb)-bearing Cu-arsenides were collected from the Mlakva skarn-replacement Cu(Ag,Bi)-FeS polymetallic deposit. The identified phases include β-domeykite, Ni-bearing koutekite and (Ni-Sb)-bearing α-domeykite. (Ni-Sb)-bearing Cu-arsenides are associated with nickeline, arsenical breithauptite, chalcocite, native Ag, native Pb and litharge. Pyrrhotite, pyrite, chalcopyrite, cubanite, bismuthinite, molybdenite, sphalerite, galena, Pb(Cu)-Bi sulfosalts and native Bi, as well as minor magnetite, scheelite and powellite are associated with the sulfide paragenesis. The electron microprobe analyses of the (Ni-Sb)-bearing Cu-arsenides yielded the following average formulae: (Cu2.73,Ni0.17,Fe0.03,Ag0.01) 2.94(As0.98,Sb0.05,S0.02) 1.06–β-domeykite (simplified formula (Cu2.7,Ni0.2) 2.9As1.1); (Cu3.40,Ni1.40,Fe0.11) 4.91(As1.94,Sb0.13,S0.02) 2.08–Ni-bearing koutekite (simplified formula (Cu3.4Ni1.5) 4.9As2.1); and Cu1.97(Ni0.98,Fe0.03) 1.01(As0.81,Sb0.22) 1.03–(Ni–Sb)-bearing α-domeykite (simplified formula Cu2NiAs). The Rietveld refinement yielded the following unit-cell parameters for β-domeykite and Ni–bearing koutekite: a = 7.1331(4); c = 7.3042(5) Å; V = 321.86(2) Å3, and a = 5.922(4); b = 11.447(9); c = 5.480(4) Å; V = 371.48(5) Å3, respectively. Ore geology, paragenetic assemblages and genesis of the Mlakva deposit are discussed in detail and the Cu-As-Ni-Sb-Pb mineralization has been compared with similar well-known global deposits.  相似文献   

6.
The Fairview and Sheba mines are two of the major gold mines in the Paleoarchean Barberton Greenstone Belt of Southern Africa. At these mines, gold is associated with quartz–carbonate ± rutile veins and occurs both as “invisible” gold finely dispersed in sulfides (primarily pyrite and arsenopyrite), and as visible electrum grains hosted in pyrite. Up to approximately 1000 ppm Au are contained in pyrite, and up to approximately 1700 ppm in arsenopyrite. Mapping of trace element distribution in sulfide minerals using electron microprobe and proton probe techniques revealed multiple events of ore formation and Au mineralisation. At Fairview mine, three stages of pyrite formation were identified, the last of which is associated with arsenopyrite, electrum and other sulfide minerals (sphalerite, chalcopyrite, galena, gersdorffite, and Sb-sulfides). At Sheba mine, pyrite was deposited in two stages, and electrum is associated with the second stage. At both mines, the last stage of sulfide formation is the main stage of Au deposition, and is associated with mobilisation of Au, As, Sb, Cu, Zn, and Ni. The host rock composition seems to have affected the composition of pyrite, since higher Ni and Co concentrations (up to 1.4 and 1.6 wt.%, respectively) have been measured in meta-(ultra)mafic host rocks in comparison with chert and metagreywacke. Arsenopyrite is chemically zoned, and has Sb- and S-rich cores and As- and Ni-rich rims. This zoning indicates variations in fluid compositions (decreasing Sb and increasing Ni), and crystallisation conditions (increasing As content for increasing temperature). Geothermometric estimates based on the As content of arsenopyrite (As ≤ 32 at.%) indicate temperatures up to ~ 420 °C for the crystal rims. Petrographic and cathodoluminescence observations of quartz associated with gold mineralisation show only local brittle deformation, and no plastic deformation. This supports the notion that the ore-transporting veins were emplaced late in the deformation history. Variations of cathodoluminescence of quartz are correlated with changing Al contents (Al ≤ 0.16 wt.%), and can be related to fluctuations in the pH of the mineralising fluids.  相似文献   

7.
The Milin Kamak gold-silver deposit is located in Western Srednogorie zone, 50 km west of Sofia, Bulgaria. This zone belongs to the Late Cretaceous Apuseni-Banat-Timok-Srednogorie magmatic and metallogenic belt. The deposit is hosted by altered trachybasalt to andesitic trachybasalt volcanic and volcanoclastic rocks with Upper Cretaceous age, which are considered to be products of the Breznik paleovolcano. Milin Kamak is the first gold-silver intermediate sulfidation type epithermal deposit recognized in Srednogorie zone in Bulgaria. It consists of eight ore zones with lengths ranging from 400 to 1000 m, widths from several cm to 3–4 m, rarely to 10–15 m, an average of 80–90 m depth (a maximum of 200 m) and dip steeply to the south. The average content of gold is 5.04 g/t and silver – 13.01 g/t. The styles of alteration are propylitic, sericite, argillic, and advanced argillic. Ore mineralization consists of three stages. Quartz-pyrite stage I is dominated by quartz, euhedral to subhedral pyrite, trace pyrrhotite and hematite in the upper levels of the deposit. Quartz-polymetallic stage II is represented by major anhedral pyrite, galena, Fe-poor sphalerite; minor chalcopyrite, tennantite, bournonite, tellurides and electrum; and trace pyrrhotite, arsenopyrite, marcasite. Gangue minerals are quartz and carbonates. The carbonate-gold stage III is defined by deposition of carbonate minerals and barite with native gold and stibnite.Fluid inclusions in quartz are liquid H2O-rich with homogenization temperature (Th) ranging from 238 to 345 °C as the majority of the measurements are in the range 238–273 °C. Ice-melting temperatures (Tm) range from −2.2 to −4.1 °C, salinity – from 3.7 to 6.6 wt.% NaCl equiv. These measurements imply an epithermal environment and low- to moderate salinity of the ore-forming fluids.δ34S values of pyrite range from −0.49 to +2.44‰. The average calculated δ34S values are 1.35‰. The total range of δ34S values for pyrite are close to zero suggesting a magmatic source for the sulfur.  相似文献   

8.
The Kahang porphyry Cu deposit, located northeast of Isfahan city in central of Iran, is associated with a composite Miocene stock and ranges in composition from diorite through granodiorite to quartz-monzonite. Field observations and petrographic studies show that the emplacement of the Kahang stock occurred in several pulses, each associated with its related hydrothermal activity. Early hydrothermal alteration started with a potassic style in the central part of the system and produced a secondary biotite–K-feldspar–magnetite assemblage accompanied by chalcopyrite and pyrite mineralization. Propylitic alteration that took place at the same time as the potassic alteration occurred in the peripheral portions of the stock. Subsequent phyllic alteration overprinted earlier potassic and propylitic alterations. Biotite grains from the potassic and phyllic zones show distinct chemical compositions. The FeO, TiO2, MnO, K2O, and Na2O concentrations in biotite from the phyllic alteration zone are lower than those from the potassic alteration zone. The F and Cl contents of biotite from the potassic alteration zone display relatively high positive correlation with the XMg. The fluorine intercept values [IV(F)] from the potassic and phyllic alteration zones are strongly correlated with the fluorine/chlorine intercept values [IV(F/Cl)]. Biotite geothermometry for the potassic and phyllic alteration zones, based on the biotite geothermometer of Beane (1974), yields a temperature range of 422° to 437 °C (mean = 430 °C) and 329° to 336 °C (mean = 333 °C), respectively. The position of data in log (XF/XOH) ratio vs. XMg and XFe diagram suggests that biotite formed under dissimilar composition and temperature conditions in the potassic and phyllic alteration zones. Calculated log fugacity ratios of (fH2O/fHF), (fH2O/fHCl), and (fHF/fHCl) show that hydrothermal fluids associated with the potassic alteration were distinctively different from those fluids associated with the phyllic alteration zone at Kahang porphyry Cu deposit. The results of this research indicate that the chemistry of biotite is related to the chemical composition of the magma and the prevailing physical conditions during crystallization.  相似文献   

9.
《Chemical Geology》2006,225(3-4):256-265
SeO42− ions can substitute for sulphate in the gypsum structure. In this work crystals of different Ca(SO4,SeO4)·2H2O solid solutions were precipitated by mixing a CaCl2 solution with solutions containing different ratios of Na2SO4 and Na2SeO4. The compositions of the precipitates were analysed by EDS and the cell parameters were determined by X-ray powder diffraction. Moreover, a comparative study on dehydration behaviour of selenate rich and sulfate rich Ca(SO4,SeO4)·2H2O solid solutions was carried out by thermogravimetry.The experimental results show that the Ca(SO4,SeO4)·2H2O solid solution presents a symmetric miscibility gap for compositions ranging from XCaSO4·2H2O = 0.23 to XCaSO4·2H2O = 0.77. By considering a regular solution model a Guggenheim parameter a0 = 2.238 was calculated. The solid phase activity coefficients obtained with this parameter were used to calculate a Lippmann diagram for the system Ca(SO4,SeO4)·2H2O–H2O.  相似文献   

10.
The cocrystallization coefficient of Mn and Fe (DMn/Fe) in magnetite crystals is determined in hydrothermal-growth experiments with internal sampling at 450 and 500 °C and 100 MPa (1 kbar). It is weakly dependent on temperature in the studied PT-region and is constant over a wide range of Mn/Fe values. This permits using the magnetite composition as an indicator of Mn/Fe in the fluid under equilibrium: (Mn/Fe)aq  100 (Mn/Fe)mt. Since Mn is often a macrocomponent of the fluid and a microcomponent of magnetite, local analysis of fluid inclusions for Mn might help to determine Fe even in iron minerals. This will permit evaluation of the contents of other ore metals if the DMe/Fe values are known. For fine crystals (< 0.1–0.2 mm) with low contents of Mn (< 0.01–0.02%), it is necessary to take into account the fractionation of Mn into the surficial nonautonomous phase, in which its content can reach several percent. Comparison of these data with earlier data on the distribution of Mn in the system magnetite–pyrite–pyrrhotite–greenockite–hydrothermal solution shows that DMn/Fe remains constant in the presence of sulfur and sulfides. Precipitation of magnetite, in which Mn is a compatible admixture, cannot affect radically Mn/Fe in the solution because of the low DMn/Fe value. This effect is still more unlikely for pyrrhotite and pyrite, in which Mn is an incompatible admixture. The most probable mechanism of Mn fractionation into the solid phase is crystallization of FeOOH at lower temperatures. This is indirectly supported by the strong fractionation of Mn into the nonautonomous oxyhydroxide phase on the surface of magnetite crystals. The necessity of a more rigorous validation of “the new Fe/Mn geothermometer for hydrothermal systems” is substantiated.  相似文献   

11.
We present an approach for determining source terms for modeling trace element release from minerals, using arsenic (As) as an example. The source term function uses laboratory-measured mineral dissolution rates to predict the time rate of change of As concentrations (mol/L s) released to water by the dissolving mineral. Application of this function to As-bearing minerals (realgar, orpiment, arsenopyrite, scorodite, pyrite, and jarosite) in air saturated water at 25 °C shows that mineralogy, grain size and pH are important factors affecting the As source term while DO concentration and temperature are relatively unimportant for conditions found in typical aquifers. The derived function shows that the source term decreases as a function of (1  t/tL)2, where tL is the grain lifetime, due to the shrinkage of the mineral grains as they dissolve. For some models, either a constant or an instantaneous term might be used, provided that certain time constraints are met. The methods outlined in this paper are intended to help bridge the gap between laboratory measurements and field-based models. Although this paper uses As as an example, the methods are general and can be used to predict source terms for other mineral-derived trace elements to groundwater.  相似文献   

12.
《Chemical Geology》2007,236(3-4):217-227
The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfide experiments yield pyrite with trace amounts of mackinawite. With increasing initially added As(V) concentrations the transformation of FeS to mackinawite and pyrite is retarded. At S:As = 1:1 and 2:1, elemental sulfur and green rust are the end products. As(V) oxidizes S(-II) in FeS and (or) in solution to S(0), and Fe(II) in the solid phase to Fe(III). Increasing initially added As(III) concentrations inhibit the transformation of FeS to mackinawite and pyrite and no oxidation products of FeS or sulfide, other than pyrite, were observed. At low arsenic concentrations, sorption onto the FeS surface may be the reaction controlling the uptake of arsenic into the solid phase. Inhibition of iron(II) sulfide transformations due to arsenic sorption suggests that the sorption sites are crucial not only as sorption sites, but also in iron(II) sulfide transformation mechanisms.  相似文献   

13.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

14.
The world-class > 4 Moz Wona-Kona gold deposit is hosted within the Paleoproterozoic Birimian Houndé greenstone belt which is the most important gold mineralized belt in the western part of Burkina Faso, with a cumulative reserve of ~ 11 Moz. The mineralization consists of a pervasive silicification with disseminated pyrite–arsenopyrite crosscut by quartz–carbonate veinlets (1 to 10 cm wide) forming a vertical, thick (up to 40 m) and laterally extensive (5 km) northeast trending orebody hosted within a large (200 m wide) shear zone of regional extent. Gold occurs in association with 3 generations of pyrite and 2 generations of arsenopyrite. Free gold, interpreted as the last mineralizing event, occurs as late fracture filling in the pervasive silicification zone.  相似文献   

15.
《Applied Geochemistry》2006,21(7):1216-1225
The aim of the study was to determine whether the application of bulk industrial chemicals (potassium permanganate and water-soluble phosphate fertilizer) to partly oxidized, polyminerallic mine wastes can inhibit sulfide oxidation, and metal and metalloid mobility. The acid producing waste rocks were metal (Pb, Zn, Cu) and metalloid (As, Sb) rich and consisted of major quartz, dickite, illite, and sulfide minerals (e.g., galena, chalcopyrite, tetrahedrite, sphalerite, pyrite, arsenopyrite), as well as minor to trace amounts of pre- and post-mining oxidation products (e.g., hydrated Fe, Cu, Pb, and alkali mineral salts). SEM-EDS observations of treated waste material showed that metal, metal–alkali, and alkali phosphate coatings developed on all sulfides. The abundance of phosphate phases was dependant on the fertilizer type and the availability of metal and alkali cations in solution. In turn, the release of cations was dependent on the amount of sulfide oxidation induced by KMnO4 during the experiment and the dissolution of soluble sulfates. Mn, Ca, Fe, and Pb phosphates remained stable during H2O2 leaching, preventing acid generation and metal release. In contrast, the lack of complete phosphate coating on arsenopyrite allowed oxidation and leaching of As to proceed. The mobilized As did not form phosphate phases and consequently, As displayed the greatest release from the coated waste. Thus, the application of KMnO4 and the water-soluble phosphate fertilizer Trifos (Ca(H2PO4)2) to partly oxidized, polyminerallic mine wastes suppresses sulfide oxidation and is most effective in inhibiting Cu, Pb, and Zn (Sb) release. However, the technique appears ineffective in suppressing oxidation of arsenopyrite and preventing As leaching.  相似文献   

16.
Orogenic gold mineralization in the Amalia greenstone belt is hosted by oxide facies banded iron-formation (BIF). Hydrothermal alteration of the BIF layers is characterized by chloritization, carbonatization, hematization and pyritization, and quartz-carbonate veins that cut across the layers. The alteration mineral assemblages consist of ankerite-ferroan dolomite minerals, siderite, chlorite, hematite, pyrite and subordinate amounts of arsenopyrite and chalcopyrite. Information on the physico-chemical properties of the ore-forming fluids and ambient conditions that promoted gold mineralization at Amalia were deduced from sulfur, oxygen and carbon isotopic ratios, and fluid inclusions from quartz-carbonate samples associated with the gold mineralization.Microthermometric and laser Raman analyses indicated that the ore-forming fluid was composed of low salinity H2O-CO2 composition (~3 wt% NaCl equiv.). The combination of microthermometric data and arsenopyrite-pyrite geothermometry suggest that quartz-carbonate vein formation, gold mineralization and associated alteration of the proximal BIF wall rock occurred at temperature-pressure conditions of 300 ± 30 °C and ∼2 kbar. Thermodynamic calculations at 300 °C suggest an increase in fO2 (10−32–10−30 bars) and corresponding decrease in total sulfur concentration (0.002–0.001 m) that overlapped the pyrite-hematite-magnetite boundary during gold mineralization. Although hematite in the alteration assemblage indicate oxidizing conditions at the deposit site, the calculated low fO2 values are consistent with previously determined high Fe/Fe + Mg ratios (>0.7) in associated chlorite, absence of sulfates and restricted positive δ34S values in associated pyrite. Based on the fluid composition, metal association and physico-chemical conditions reported in the current study, it is confirmed that gold in the Amalia fluid was transported as reduced bisulfide complexes (e.g., Au(HS)2). At Amalia, gold deposition was most likely a combined effect of increase in fO2 corresponding to the magnetite-hematite buffer, and reduction in total sulfur contents due to sulfide precipitation during progressive fluid-rock interaction.The epigenetic features coupled with the isotopic compositions of the ore-forming fluid (δ34SΣS = +1.8 to +2.3‰, δ18OH2O = +6.6 to +7.9‰, and δ13CΣC = −6.0 to −7.7‰ at 300–330 °C) are consistent with an externally deep-sourced fluid of igneous signature or/and prograde metamorphism of mantle-derived rocks.  相似文献   

17.
18.
The Jinding Zn–Pb deposit located in the Mesozoic-Cenozoic Lanping Basin of southwest China has ore reserves of ∼ 220 Mt with an average grade of 6.1% Zn and 1.3% Pb. The mineralization is hosted by sandstone in the Early Cretaceous Jingxing Formation and limestone breccia in the Paleocene Yunlong Formation. Mineralization in both types of host rocks is characterized by a paragenetic sequence beginning with marcasite–sphalerite (Stage 1) followed by pyrite–marcasite–sphalerite–galena (Stage 2), and then galena–sphalerite–pyrite–sulfate–carbonate (Stage 3). Pyrite from these stages have different δ33S compositions with pyrite from Stage 1 averaging − 9.6‰, Stage 2 averaging − 8.9‰, and Stage 3 averaging + 0.3‰. Sphalerite hosted by the sandstone has similar δ66Zn values ranging from 0.10 to 0.30‰ in all stages of the mineralization, but sphalerite samples from the limestone breccia-hosted ore show variable δ66Zn values between − 0.03 and 0.20‰. Our data on sphalerite precipitated during the earlier stages of mineralization has a constant δ66Zn value and cogenetic pyrite displays a very light sulfur isotope signature, which we believe to reflect a sulfur source that formed during bacterial sulfate reduction (BSR). The Stage 3 sphalerite and pyrite precipitated from a late influx of metal-rich basinal brine, which had a relatively constant variable δ66Zn isotopic composition due to open system isotope fractionation, and a near zero δ33S composition due to the influence of abiotic thermochemical sulfate reduction from observed sulfates in the host rock.  相似文献   

19.
Arsenic (As) concentrations as high as 179 μg/L have been observed in shallow groundwater in the Alberta’s Southern Oil Sand Regions. The geology of this area of Alberta includes a thick cover (up to 200 m) of unconsolidated glacial deposits, with a number of regional interglacial sand and gravel aquifers, underlain by marine shale. Arsenic concentrations observed in 216 unconsolidated sediment samples ranged from 1 and 17 ppm. A survey of over 800 water wells sampled for As in the area found that 50% of the wells contained As concentrations exceeding drinking water guidelines of 10 μg/L. Higher As concentrations in groundwater were associated with reducing conditions. Measurements of As speciation from 175 groundwater samples indicate that As(III) was the dominant species in 74% of the wells. Speciation model calculations showed that the majority of groundwater samples were undersaturated with respect to ferrihydrite, suggesting that reductive dissolution of Fe-oxyhydroxides may be the source of some As in groundwater. Detailed mineralogical characterization of sediment samples collected from two formations revealed the presence of fresh framboidal pyrite in the deeper unoxidized sediments. Electron microprobe analysis employing wavelength dispersive spectrometry indicated that the framboidal pyrite had variable As content with an average As concentration of 530 ppm, reaching up to 1840 ppm. In contrast, the oxidized sediments did not contain framboidal pyrite, but exhibited spheroidal Fe-oxyhydroxide grains with elevated As concentrations. The habit and composition suggest that these Fe-oxyhydroxide grains in the oxidized sediment were an alteration product of former framboidal pyrite grains. X-ray absorption near edge spectroscopy (XANES) indicated that the oxidized sediments are dominated by As(V) species having spectral features similar to those of goethite or ferrihydrite with adsorbed As, suggesting that Fe-oxyhydroxides are the dominant As carriers. XANES spectra collected on unoxidized sediment samples, in contrast, indicated the presence of a reduced As species (As(−I)) characteristic of arsenopyrite and arsenian pyrite. The results of the mineralogical analyses indicate that the oxidation of framboidal pyrite during weathering may be the source of As released to shallow aquifers in this region.  相似文献   

20.
《Chemical Geology》2006,225(3-4):222-229
First principles phase diagram calculations were performed for the system NaCl–KCl. Plane-wave pseudopotential calculations of formation energies were used as a basis for fitting cluster expansion Hamiltonians, both with and without an approximation for the excess vibrational entropy (SVIB). Including SVIB dramatically improves the agreement between calculated and experimental phase diagrams: experimentally, the consolute point is {XC = 0.348, TC = 765 K}Exp; without SVIB, it is {XC = 0.46, TC  1630 K}Calc; with SVIB, it is {XC = 0.43, TC  930 K}Calc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号