首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sediment cores from the deep Balearic basin and the Cretan Sea provide evidence for the accumulation of Cd, Pd and Zn in the top few centimeters of the abyssal Mediterranean sea-bottom. In both cores, 206Pb/207Pb profiles confirm this anthropogenic impact with less radiogenic imprints toward surface sediments. The similarity between excess 210Pb accumulated in the top core and the 210Pb flux suggests that top core metal inventories reasonably reflect long-term atmospheric deposition to the open Mediterranean. Pb inventory in the western core for the past 100 years represents 20-30% of sediment coastal inventories, suggesting that long-term atmospheric deposition determined from coastal areas has to be used cautiously for mass balance calculations in the open Mediterranean. In the deeper section of both cores, Al normalized trace metal profiles suggest diagenetic remobilization of Fe, Mn, Cu and, to a lesser extent, Pb that likely corresponds to sapropel event S1.  相似文献   

2.
The eruption of Toba (75,000 years BP), Sumatra, is the largest magnitude eruption documented from the Quaternary. The eruption produced the largest-known caldera the dimensions of which are 100 × 30 km and which is surrounded by rhyolitic ignimbrite covering an area of over 20,000 km2. The associated deep-sea tephra layer is found in piston cores in the north-eastern Indian Ocean covering a minimum area of 5 × 106 km2. We have investigated the thickness, grain size and texture of the Toba deep-sea tephra layer in order to demonstrate the use of deep-sea tephra layers as a volcanological tool. The exceptional magnitude and intensity of the Toba eruption is demonstrated by comparison of these data with the deep-sea tephra layers associated with the eruptions of the Campanian ignimbrite, Italy and of Santorini, Greece in Minoan time. The volume of ignimbrite and distal tephra fall deposit produced in the Toba eruption are comparable, a total of at least 1000 km3 of dense rhyolitic magma. In contrast the volume of dense magma produced by the Campanian and Santorini eruptions are approximately 70 and 13 km3 respectively. Thickness versus distance data on the three deep-sea tephra layers show that eruptions of smaller magnitude than Santorini are unlikely to be preserved as distinct tephra layers in most deep-sea cores. In proximal cores all three tephra layers show two distinct units: a lower coarse-grained unit and an upper fine-grained unit. We interpret the lower unit as a plinian deposit and the upper unit as a co-ignimbrite ash-fall deposit, indicating two major eruptive phases. The Toba tephra layer is coarser both in maximum and median grain size than the Campanian and Santorini layers at a given distance from source. These data are interpreted to indicate a very high cruption column, estimated to be at least 45 km. We have applied a method for estimating the duration of the Toba eruption from the style of graded-bedding in deep-sea tephra layers. Studies of two cores yield estimates of 9 and 14 days. The eruption column height and duration estimates both indicate an average volume discharge rate of approximately 106 m3/sec. The Toba eruption therefore was not only of exceptional magnitude, but also of exceptional intensity.  相似文献   

3.
A new oxygen isotope record is reported from a stalagmite collected in the Argentarola Cave located on the Tyrrhenian coast of Italy. As shown from observations and numerical modeling of δ18O in modern precipitation, the recorded δ18O variability for this zone is dominated by the amount of precipitation (so-called ‘amount effect’). The δ18O profile measured in the stalagmite is characterized by a prominent negative excursion (ca. 2-3‰) between 180 and 170 kyr BP. This paleoclimatic feature is interpreted as being due to a relatively wet period which occurred during the penultimate glacial period, more precisely, during Marine Isotope Stage 6.5. This pluvial phase is shown to correspond chronologically to the deposition of the sapropel event 6 (S6). Although this particular sapropel event occurred during a cold phase, the δ18O excursion is similar to those corresponding to other sapropels (S4, S3 and S2). The evidence for humid conditions during S6 in the western Mediterranean basin agrees with previous studies based on deep-sea sediment cores. Taken collectively, the data suggest that during sapropel events dilution of ocean surface waters was not restricted to the output of the river Nile but was rather widespread over the entire Mediterranean Sea due to increased rainfall.  相似文献   

4.
Volcanic glass compositions and tephra layer age are critical for anchoring their sources and correlating among different sites; however, such work may be imprecise when the tephra has varied compositions. The ash from Changbaishan Millennium eruption (940s AD), a widely distributed tephra layer, has been detected in the far-east areas of Russia, the Korean Peninsula, Japan, and in Greenland ice cores. There are some debates on the presence of this tephra from sedimentary archives to the west of Changbaishan volcano, such as lake and peat sediments in the Longgang volcanic field. In this paper, major element compositions for clinopyroxene and Fe-Ti oxides were performed on proximal tephra from Changbaishan and the Millennium eruption ash record in Lake Sihailongwan. Clinopyroxene and Fe-Ti oxides microlites from Sihailongwan show augite- ferroaugite and titanmagnetite compositions, similar to those from dark pumice in Changbaishan proximal tephra, but different from the light grey pumice, which has ferrohedenbergite and ilmenite microlite compositions. This result implies that the tephra recorded in Sihailongwan was mainly from the trachytic eruptive phase of the Millennium eruption, and the rhyolitic eruptive phase made a relatively small contribution to this area. Analyzing clinopyroxene and Fe-Ti oxides microlites is a new method for correlating tephra layers from Changbaishan Millennium eruption.  相似文献   

5.
Deep-sea sediments in the Panama Basin-Carnegie Ridge area contain biogenic material, detrital carbonate, mineral clay and volcanic ash layers. Ash layer “L” of Bowles et al. (1973) is correlated mineralogically and by the physical property of glass shards through sixteen cores. Isopachs and grain-size analyses of the ash layer indicate that it originated in Colombia or Ecuador, and was carried by easterly winds. The distribution of the ash and of mica percentage in the ash form a W-shaped pattern opening towards the west. This suggests that two branches of the Cromwell current, one moving along the equator and one along 3°S, had a significant influence on the distribution of the ash.CaCO3 content has been measured down thirteen cores and oxygen isotope content of benthonic Foraminifera obtained in two. Two cores penetrate theStylatractus universus extinction datum. Ash “L” fell 230,000 years ago during the cold substage 7b of isotope stage 7. Deposition rates vary between 2.5 and 6 cm/1000 yr and show no relationship with bottom topography or proximity to land.  相似文献   

6.
Geochemical evidence shows that the silicic component of the widespread Ash Zone 1 in the North Atlantic is derived from a major ignimbrite-forming eruption which occurred at the Katla caldera in southern Iceland during the transition from glacial to interglacial conditions in Younger Dryas time. Both trace and major element evidence of the rhyolitic products excludes the Öræfajökull volcano as a source. The high-Ti basaltic component in the marine ash zone can also be attributed to contemporaneous eruption in the Katla volcanic complex. Dispersal of tephra from this event is primarily attributed to the generation of co-ignimbrite ash columns in the atmosphere, with ash fallout on both sea ice and on the ocean floor north and east of Iceland. Owing to the changing ocean circulation characteristics of the glacial regime, including suppression of the Irminger Current and a stronger North Atlantic Current, tephra was rafted on sea ice south into the central North Atlantic and deposited as dispersed Ash Zone 1. Sediments south of Iceland also show evidence of the formation of ash turbidites, generated either by the entrance of pyroclastic flows into the sea, or during discharge of jökulhlaups or glacier bursts from this subglacial eruption.  相似文献   

7.
During the summer of 1990, 12 gravity cores were collected in Lake Coeur d'Alene, Idaho at various depths and in a variety of depositional environments. All core subsamples were analysed to determine the bulk sediment chemistry; selected subsamples were analysed for trace element partitioning and 137Cs activity. The purpose of these analyses was to determine the trace element concentrations and distributions in the sediment column and to try to establish a trace element geochemical history of the lake in relation to mining and mining-related discharge operations in the area. Substantial portions of the near-surface sediments in Lake Coeur d'Alene are markedly enriched in Ag, As, Cd, Hg, Pb, Sb and Zn, and slightly enriched in Cu, Fe and Mn. Variations in the thickness of the trace element-rich sediments, which range from more than 119 cm to as little as 17 cm, indicate that the source of much of this material is the Coeur d'Alene River. An estimated 75 million tonnes of trace element-rich sediments have been deposited on or in the lake bed. Estimated trace element masses in excess of those considered representative of background conditions range from a high of 468 000 tonnes of Pb to a low of 260 tonnes of Hg. The similarity between the trace element-rich surface and subsurface sediments with respect to their location, their bulk chemistry, their interelement relations and their trace element partitioning indicate that the sources and/or concentrating mechanisms causing the trace element enrichment in the lake sediments have probably been the same through-out their depositional history. Based on a Mt St Helens'ash layer from the 1980 eruption, ages estimated from 137Cs activity and the presence of 80 discernible and presumably annual layers in a core collected near the Coeur d'Alene River delta indicate that deposition rates for the trace element-rich sediments have ranges from 2.1 to 1.3 cm/year. These data also indicate that the deposition of trace element-rich sediments began, at least in the Coeur d'Alene River delta, some time between 1895 and 1910, dates consistent with the onset of mining and ore processing activities that began in the area in the 1880s.  相似文献   

8.
Summary In 1976 and 1977, seismic profiles were carried out in Guadeloupe. Two profiles were established in the area of La Soufriére volcano and one profile through the northern part of Guadeloupe and southern part of Grande Terre. The two first profiles were occupied from 1 to 30 km and the third profile between 5 and 50 km.The interpretation shows that the superficial structures are characterized by a three-layers model: the compressional velocity is about 2.7 to 3.0 km/s down to a depth from 1 to 3 km. Below this, the velocity is between 4.0 and 4.5 km/s in a layer whose thickness varies from 1 to 2.5 km. Under this layer we find a 6.0–6.1 km/s layer which is one of the two known crustal layer under Lesser Antilles. The boundary between the old and new are which form the Lesser Antilles arc, is marked by a thicker layer of sediments on the eastern flank of recent volcanic chain.
  相似文献   

9.
The late-seventeenth century BC Minoan eruption of Santorini discharged 30–60 km3 of magma, and caldera collapse deepened and widened the existing 22 ka caldera. A study of juvenile, cognate, and accidental components in the eruption products provides new constraints on vent development during the five eruptive phases, and on the processes that initiated the eruption. The eruption began with subplinian (phase 0) and plinian (phase 1) phases from a vent on a NE–SW fault line that bisects the volcanic field. During phase 1, the magma fragmentation level dropped from the surface to the level of subvolcanic basement and magmatic intrusions. The fragmentation level shallowed again, and the vent migrated northwards (during phase 2) into the flooded 22 ka caldera. The eruption then became strongly phreatomagmatic and discharged low-temperature ignimbrite containing abundant fragments of post-22 ka, pre-Minoan intracaldera lavas (phase 3). Phase 4 discharged hot, fluidized pyroclastic flows from subaerial vents and constructed three main ignimbrite fans (northwestern, eastern, and southern) around the volcano. The first phase-4 flows were discharged from a vent, or vents, in the northern half of the volcanic field, and laid down lithic-block-rich ignimbrite and lag breccias across much of the NW fan. About a tenth of the lithic debris in these flows was subvolcanic basement. New subaerial vents then opened up, probably across much of the volcanic field, and finer-grained ignimbrite was discharged to form the E and S fans. If major caldera collapse took place during the eruption, it probably occurred during phase 4. Three juvenile components were discharged during the eruption—a volumetrically dominant rhyodacitic pumice and two andesitic components: microphenocryst-rich andesitic pumices and quenched andesitic enclaves. The microphenocryst-rich pumices form a textural, mineralogical, chemical, and thermal continuum with co-erupted hornblende diorite nodules, and together they are interpreted as the contents of a small, variably crystallized intrusion that was fragmented and discharged during the eruption, mostly during phases 0 and 1. The microphenocryst-rich pumices, hornblende diorite, andesitic enclaves, and fragments of pre-Minoan intracaldera andesitic lava together form a chemically distinct suite of Ba-rich, Zr-poor andesites that is unique in the products of Santorini since 530 ka. Once the Minoan magma reservoir was primed for eruption by recharge-generated pressurization, the rhyodacite moved upwards by exploiting the plane of weakness offered by the pre-existing andesite–diorite intrusion, dragging some of the crystal-rich contents of the intrusion with it.  相似文献   

10.
Two sediment cores (pilot gravity and piston) were obtained from the bottom of the Izu-Ogasawara Trench at 9750 m and analyzed for various elements and radioisotopes. The results showed a history of complex and frequent turbidite deposition: In the gravity core, eight layers rich in manganese were observed, of which five are enriched in Cu and Co as well. The other three are also enriched in Mo but no other heavy metals, suggesting the presence of at least two mechanisms of formation. Trapping of iron manganese micronodules can account for the enrichment of Mn, Cu and Co. The other three layers rich in Mn and Mo appear to be formed by a post-depositional diagenetic process of Mn mobilization and redeposition in the sediment column. A strong correlation between 226Ra and Cu in the gravity core suggests that the 226Ra was also carried into the bottom of the trench in turbidites in association with Mn micronodules. Little excess of 210Pb over 226Ra was found at the top but the excess was significant at mid-depths from 30 to 70 cm, indicating that those sediments were deposited within the last 200 y.

In the piston core there is a sharp discontinuity of chemical and radiochemical composition around a depth of 250 cm. Below that depth the sediments appear to be dominated by materials derived from terrestrial sources, as compared with those in the upper layer which are of contemporary marine origin. 226Ra is deficient relative to 230Th throughout the sediment column down to 6 m. This finding is consistent with the finding that the average rate of sediment accumulation is 1–2 orders of magnitude faster than that in the western North Pacific abyssal plain, suggesting the convergence of materials into the bottom of the trench.  相似文献   


11.
The presence of Heinrich layer 3 (HL-3) in the northwest Labrador Sea has been debated in the literature. Calypso giant piston core MD99-2233, five new standard piston cores, and re-interpretation of 34 cores from previous cruises confirm the presence of HL-3 in the Labrador Sea. It is identified by high total carbonate concentration (up to 45%), an increase in coarse fraction content, and lighter δ18O values in polar species planktonic foraminifer Neogloboquadrina pachyderma (left-coiling) as low as 3.1‰. The age of HL-3 of ∼27 ka was bracketed in the various cores by about 50 14C-accelerator mass spectrometer dates. Where it is present in ice-proximal regions, it consists of nepheloid-flow deposits at the base and mud turbidites at the top. The thickness of HL-3 varies between 4.8 m (proximal to Hudson Strait) and 0.9 m (distal), decreasing rapidly seaward. On the upper continental slope, HL-3 was too deeply buried to be sampled. Elsewhere, HL-3 is absent in some cores, probably due to slumping or erosion associated with sandy turbidity currents or debris flows.  相似文献   

12.
Seven piston cores, 7–16 m long, taken between the Kuril Islands and Emperor Seamounts, have been dated using radiolarian and diatom extinction levels and correlated using volcanic ash layers. The average rate of deposition in the cores decreases from 6 cm/1000 years near the Kuril Trench to about 3.5 cm/1000 years near the seamounts. Dispersed volcanic ash is the main constituent of the cores and it comprises up to 80% of the sediments. The percentage of the ash in the sediments decreases eastward from the Kuril Islands as the rates of deposition decrease.The total thickness of the sediments in the same latitudinal belt also decreases eastward. The thickness of the sediment inferred from seismic data near the Kuril trench is about 600 m and rates of deposition are approximately 6 cm/1000 years in the Pleistocene cores. Sediment thickness near the seamounts is about 300 m, and rates of deposition are approximately 3 cm/1000 years in the Pleistocene cores. Extrapolated rates of deposition in these cores suggest that the age of the base of the sediment to the east of the Kurils is only about 10 m.y.The anomalously young age for the base of the sediments obtained by extrapolation of an assumed constant rate of deposition can be explained by Deep Sea Drilling Project data from the northwest Pacific. The sediment thickness at DSDP site 192 east of Kamchatka includes sediments from all the Cenozoic epochs except the Paleocene. Rates of deposition of sediment younger than Middle Miocene are an order of magnitude higher than those prior to this time. At DSDP sites east of Japan, either Late Miocene sediments lie directly on the basement, or sediments older than Late Miocene are very thin. Post-Middle Miocene sediments are composed primarily of glass shards. Thus, about 90% of the total thickness of sediments in the northwest Pacific is composed of sediments younger than Middle Miocene with volcanic ash as the main constituent. The volcanic ash results from the present phase of explosive volcanic activity which began in the Late Miocene in the northwest Pacific volcanic arcs.  相似文献   

13.
The formation of shallow, caldera-sized reservoirs of crystal-poor silicic magma requires the generation of large volumes of silicic melt, followed by the segregation of that melt and its accumulation in the upper crust. The 21.8?±?0.4-ka Cape Riva eruption of Santorini discharged >10 km3 of crystal-poor dacitic magma, along with <<1 km3 of hybrid andesite, and collapsed a pre-existing lava shield. We have carried out a field, petrological, chemical, and high-resolution 40Ar/39Ar chronological study of a sequence of lavas discharged prior to the Cape Riva eruption to constrain the crustal residence time of the Cape Riva magma reservoir. The lavas were erupted between 39 and 25 ka, forming a ~2-km3 complex of dacitic flows, coulées and domes up to 200 m thick (Therasia dome complex). The Therasia dacites show little chemical variation with time, suggesting derivation from one or more thermally buffered reservoirs. Minor pyroclastic layers occur intercalated within the lava succession, particularly near the top. A prominent pumice fall deposit correlates with the 26-ka Y-4 ash layer found in deep-sea sediments SE of Santorini. One of the last Therasia lavas to be discharged was a hybrid andesite formed by the mixing of dacite and basalt. The Cape Riva eruption occurred no more than 2,800?±?1,400 years after the final Therasia activity. The Cape Riva dacite is similar in major element composition to the Therasia dacites, but is poorer in K and most incompatible trace elements (e.g. Rb, Zr and LREE). The same chemical differences are observed between the Cape Riva and Therasia hybrid andesites, and between the calculated basaltic mixing end-members of each series. The Therasia and Cape Riva dacites are distinct silicic magma batches and are not related by shallow processes of crystal fractionation or assimilation. The Therasia lavas were therefore not simply precursory leaks from the growing Cape Riva magma reservoir. The change 21.8 ky ago from a magma series richer in incompatible elements to one poorer in those elements is one step in the well documented decrease with time of incompatibles in Santorini magmas over the last 530 ky. The two dacitic magma batches are interpreted to have been emplaced sequentially into the upper crust beneath the summit of the volcano, the first (Therasia) then being partially, or wholly, flushed out by the arrival of the second (Cape Riva). This constrains the upper-crustal residence time of the Cape Riva reservoir to less than 2,800?±?1,400 years, and the associated time-averaged magma accumulation rate to >0.004 km3 year-1. Rapid ascent and accumulation of the Cape Riva dacite may have been caused by an increased flux of mantle-derived basalt into the crust, explaining the occurrence of hybrid andesites (formed by the mixing of olivine basalt and dacite in approximately equal proportions) in the Cape Riva and late Therasia products. Pressurisation of the upper crustal plumbing system by sustained, high-flux injection of dacite and basalt may have triggered the transition from prolonged, largely effusive activity to explosive eruption and caldera collapse.  相似文献   

14.
Holocene flood events in the Yangtze River are associated with variations in East Asian Summer Monsoon (EASM) precipitation, and so Yangtze delta sediments may preserve information about the frequency and magnitude of EASM precipitation. These flood/drought cycles of the EASM directly affect the living standards of East Asian population. However, despite its importance, little chronological control is available for the Yangtze Delta sediments; because biogenic carbonate only occurs sporadically, it has proved the difficulty to discuss sedimentation mechanisms and rates in any detail.In 2013 two sediment cores (YD13-G3 and H1) were taken from the Yangtze subaqueous delta to investigate precipitation history. In this study, we investigate the potential of quartz OSL dating of the fine silt fraction (fine-grained quartz; 4–11 μm) from these cores to estimate the depositional age of the sediments. We test whether: (1) Yangtze subaqueous delta sediments contain quartz with suitable characteristics for dating, and (2) quartz grains are well-bleached during/before the transportation process, by examining a modern analogue of suspended particulate matter, and by cross-checking with the doses derived from infrared stimulated luminescence (IRSL) signals (both IR50 and pIRIR160) from feldspar in polymineral fine grains. We find that both the quartz and feldspar luminescence characteristics are satisfactory (quartz dose recovery ratio 1.067 ± 0.004; n = 250, pIRIR160 dose recovery ratio 1.01 ± 0.02; n = 151). Modern suspended particulate matter has measured quartz equivalent doses between 0.1 and 0.2 Gy, suggesting that this material was sufficiently bleached during/before transportation to allow dating of Holocene sediments (mean dose rates of ∼3 Gy ka−1). OSL ages of 44 samples from the 2 cores show apparently rapid accumulation at ∼6 ka between 9.65 and 5.50 m in core H1 and ∼2 ka throughout core G3 and between 5.0 and 0.0 m in core H1. The pIRIR160 signals suggest less light exposure of the core top sediments and of those from the transition layer between ∼6 ka to ∼2 ka, although there is no evidence for incomplete bleaching of quartz. The question remains as to whether significant deposition took place only at these two times, or whether the record has been disturbed by erosion/reworking.  相似文献   

15.
Il-Soo  Kim  Myong-Ho  Park  Byong-Jae  Ryu Kang-Min  Yu 《Island Arc》2006,15(1):178-186
Abstract   Data on the late Quaternary tephra layers, tephrostratigraphy, geochemistry and environment were determined in two sediment cores from the southwestern part of Ulleung Basin (East Sea/Sea of Japan), representing marine-oxygen isotope stages 1–3. The cores consist mainly of muddy sediments that are partly interbedded with silty sands, lapilli tephra and ash layers. The lapilli tephra layers (Ulleung-Oki tephra, 9.3 ka) originating from Ulleung Island consist mainly of massive-type glass shards, whereas the ash layers (Aira-Tanzawa ash, 22.0–24.7 ka) derived from southern Kyushu Island are mainly composed of typical plane-type and bubble-wall glasses that are higher in SiO2 and lower in Na2O + K2O than the lapilli tephra layers. Except for the tephra layers, fine-grained sediments throughout the core sections are mostly of marine origin based on geochemical data (C/N ratios, hydrogen index, S2 peak) and Tmax. In particular, organic carbon contents increased during Termination I, probably as a result of an influx of the deglacial Tsushima Current through the Korea Strait.  相似文献   

16.
The strongly peralkaline Green Tuff, Pantelleria, is an example of a thin, densely welded air-fall tuff which mantles an area of at least 85 km2. Offshore the tuff is correlated with the Y-6 ash layer in the central Mediterranean Sea, and the total volume of the eruption is estimated at 7 km3 D.R.E. New petrological data suggests that the tuff was erupted from a zoned magma chamber containing a cooler, more fractionated upper zone relative to be bulk of the magma. Analysis of the distribution of accessory lithic fragments in terms of existing models of eruption dynamics indicates emplacement by a plinian-type eruption. It is shown that, due to the low viscosity of pantelleritic ejecta, dense welding can occur at moderate tephra accumulation rates and a rate of the order of 1 cm/minute is suggested for the Green Tuff; this yields an estimate for the eruption duration of rather less than one day. It is predicted that welded tuff should be formed during large plinian eruptions of pantelleritic magma, and therefore that welded airfall tuffs should be common in areas of peralkaline volcanism.  相似文献   

17.
18.
The radiocarbon age profile of a sediment core from the eastern equatorial Atlantic shows a marked decrease in both clay and carbonate accumulation rates at the end of the last glacial period, with overall rates of 3.2 and 8.1 cm/kyr for the Holocene and late glacial respectively. The transition from glacial to postglacial conditions recorded in the sediments at 39 cm is above the visual Fe(II)/Fe(III) redox boundary at 48 cm which has been used in the past to identify the glacial section, and even further above the increase in preserved organic carbon content at 55 cm. It is concluded from the present organic carbon profile, and recent observations in this area and elsewhere, that organic diagenesis in these sediments is not steady state. Instead it is suggested that the uppermost glacial sediments lost carbon through oxic remineralisation at the change to postglacial conditions, and that this process is now continued with nitrate as the electron acceptor. These observations suggest that the double MnOx solid phase peak which occurs in these and similar sediments is a direct consequence of an adjustment of the oxic layer depth following the decrease in carbon flux at the onset of the Holocene.  相似文献   

19.
The Aegean volcanic arc formed in response to northeasterly subduction of the Mediterranean sea floor beneath the Aegean Sea. The active arc lies over 250 km from the Hellenic Trench in a region which has suffered considerable extension and subsidence since the mid-Tertiary. Suites of samples from the different volcanic centres making up the arc have been studied geochemically in order to assess lateral variations and to constrain the contribution of crustal contamination and sediment subduction in their petrogenesis.Lavas from all the major volcanic centres exhibit typical calc-alkaline major-element characteristics, and show enrichment in light REE and LIL elements but low contents of HFS elements. The enrichment in light REE is greater in the eastern (Nisyros, Kos) and western (Milos, Poros, Methana, Aegina) sectors of the arc (Cen/Ybn=4) than in the central Santorini sector (Cen/Ybn=2). All lavas have significant negative Eu anomalies and many have slight negative Ce anomalies. Less coherence is observed in the abundances and ratios of the other LIL elements, compared with the REE, along the island chain.Whereas the effects of crystal fractionation are evident in the trace-element patterns of lavas from individual islands, and are particularly well marked for Santorini, it is clear that there are consistent differences in trace-element abundances and ratios in the lavas of the various islands which reflect compositional differences in the mantle source and/or in melting conditions. Lavas from the eastern and western sectors have much higher levels of Ba and Sr but relatively lower Th, K and Rb than those from Santorini. Although some geochemical features could be explained through involvement of a component of subducted sediment in the source regions of the volcanoes, other element abundances and ratios indicate that this component must be very small. Detailed consideration of the inter-island geochemical variations suggests a complex make-up of the underlying lithosphere, resulting from a long history of subduction. In the region of Santorini, where crustal stretching is greatest, the underlying asthenosphere may be involved in magma production.  相似文献   

20.
Perceptions of hazard and risk on Santorini   总被引:1,自引:0,他引:1  
Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no “emergency plan” for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号