首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于TIGGE资料的地面气温多模式超级集合预报   总被引:13,自引:3,他引:10       下载免费PDF全文
基于TIGGE资料, 采用均方根误差分别对欧洲中期天气预报中心、日本气象厅、美国国家环境预报中心和英国气象局4个中心集合预报的地面气温场集合平均结果进行检验评估, 比较各中心地面气温的预报效果。并利用超级集合、多模式集合平均和消除偏差集合平均3种方法对4个中心的地面气温预报进行集成, 同时对预报结果进行分析。结果表明: 2007年夏季日本气象厅与欧洲中期天气预报中心在北半球大部分地区预报效果最好, 各中心在不同地区预报效果不同。超级集合与消除偏差集合平均降低了预报误差, 预报效果优于最好的单个中心预报和多模式集合平均。对于较长的预报时效, 消除偏差集合平均表现出了更好的预报性能。  相似文献   

2.
Summary Objective combination schemes of predictions from different models have been applied to seasonal climate forecasts. These schemes are successful in producing a deterministic forecast superior to individual member models and better than the multi-model ensemble mean forecast. Recently, a variant of the conventional superensemble formulation was created to improve skills for seasonal climate forecasts, the Florida State University (FSU) Synthetic Superensemble. The idea of the synthetic algorithm is to generate a new data set from the predicted multimodel datasets for multiple linear regression. The synthetic data is created from the original dataset by finding a consistent spatial pattern between the observed analysis and the forecast data set. This procedure is a multiple linear regression problem in EOF space. The main contribution this paper is to discuss the feasibility of seasonal prediction based on the synthetic superensemble approach and to demonstrate that the use of this method in coupled models dataset can reduce the errors of seasonal climate forecasts over South America. In this study, a suite of FSU coupled atmospheric oceanic models was used. In evaluation the results from the FSU synthetic superensemble demonstrate greater skill for most of the variables tested here. The forecast produced by the proposed method out performs other conventional forecasts. These results suggest that the methodology and database employed are able to improve seasonal climate prediction over South America when compared to the use of single climate models or from the conventional ensemble averaging. The results show that anomalous conditions simulated over South America are reasonably realistic. The negative (positive) precipitation anomalies for the summer monsoon season of 1997/98 (2001/02) were predicted by Synthetic Superensemble formulation quite well. In summary, the forecast produced by the Synthetic Superensemble approach outperforms the other conventional forecasts.  相似文献   

3.
本文利用4个国内外先进的气候模式(国家气候中心、ECMWF、NCEP和JMA)业务预测数据,采用2种多模式集合方法(等权平均和超级集合)、3种降尺度方法(BP-CCA、EOF迭代、高相关回归集成)和3种统计方法(CCA、最优气候值、高相关回归集成)以及降尺度集成和降尺度-统计方法集成,分析了目前季节模式、多模式集合、降尺度、统计方法、降尺度-统计集合等目前常用气候预测技术对新疆夏季降水和冬季气温的业务预测能力。 研究表明,以上技术方法对新疆夏季降水和冬季气温的预测预测能力有较大差别。目前先进的气候业务模式的预测技巧普遍很低,多模式超级集合和降尺度方法的技巧常高于单个模式,并且最佳的降尺度方法通常技巧高于最佳多模式集合方法。同时,统计方法和降尺度方法的预测技巧通常较为接近,而对二者进行超级集合可以具有相对很高的预测技巧。此外,现有常用气候预测技术方法对新疆夏季降水和冬季气温的趋势有一定的预测能力,但对气候异常的空间分布基本无预测能力。建议新疆气候预测技术围绕统计和降尺度方法集合发展。  相似文献   

4.
我国短期气候预测技术进展   总被引:18,自引:6,他引:12       下载免费PDF全文
经过近60年的发展,我国短期气候预测技术和方法也有了长足进步。近年来,一些新的预报技术和机理认识不断应用于短期气候预测业务。ARGO海洋观测资料的使用大大提高了业务模式的预测技巧,新一代气候预测模式系统已经投入准业务化运行,研发了多种模式降尺度释用技术,多模式气候预测产品解释应用集成系统(MODES)和动力-统计结合的季节预测系统(FODAS)逐渐应用于业务中,大气季节内振荡(MJO)逐步在延伸期预报中得到应用。近年来,对全球海洋、北极海冰、欧亚积雪、南半球环流系统对东亚季风影响的新认识也不断引入到短期气候预测业务中。这些新技术和新认识的应用极大提高了我国短期气候预测的业务能力。  相似文献   

5.
Probabilistic seasonal predictions of rainfall that incorporate proper uncertainties are essential for climate risk management. In this study, three different multi-model ensemble (MME) approaches are used to generate probabilistic seasonal hindcasts of the Indian summer monsoon rainfall based on a set of eight global climate models for the 1982–2009 period. The three MME approaches differ in their calculation of spread of the forecast distribution, treated as a Gaussian, while all three use the simple multi-model subdivision average to define the mean of the forecast distribution. The first two approaches use the within-ensemble spread and error residuals of ensemble mean hindcasts, respectively, to compute the variance of the forecast distribution. The third approach makes use of the correlation between the ensemble mean hindcasts and the observations to define the spread using a signal-to-noise ratio. Hindcasts are verified against high-resolution gridded rainfall data from India Meteorological Department in terms of meteorological subdivision spatial averages. The use of correlation for calculating the spread provides better skill than the other two methods in terms of rank probability skill score. In order to further improve the skill, an additional method has been used to generate multi-model probabilistic predictions based on simple averaging of tercile category probabilities from individual models. It is also noted that when such a method is used, skill of probabilistic forecasts is improved as compared with using the multi-model ensemble mean to define the mean of the forecast distribution and then probabilities are estimated. However, skill of the probabilistic predictions of the Indian monsoon rainfall is too low.  相似文献   

6.
对CMIP5全球气候模式中年代际回报试验的气温资料及其简单集合平均(Multi-model ensemble mean,EMN)和贝叶斯模式平均的结果(Bayesian Model Averaging,BMA)进行经验正交函数(Empirical Orthogonal Function,EOF)分解和Morlet小波分析,检验评估各个模式及其EMN和BMA对东亚地面气温的方差、气温时空分布特征及周期变化的回报能力。结果表明,10个模式、EMN、BMA都能很好地回报出1981—2010年东亚地面气温的方差分布,其中BMA回报效果最好。EOF分析表明,BMA能较好地回报出东亚地面气温第一模态的时空分布。MIROC5能较好地回报出第二模态的趋势变化,但却不能回报出气温的年际变率。绝大多数模式和EMN、BMA虽然能回报出东亚地面气温的变化趋势,但是对气温年际变率的回报仍然是比较困难的。CMCC-CM对气温变化主模态的3~5 a的周期变化特征回报效果最好,和NCEP资料的结果最为接近。  相似文献   

7.
国家气候中心多模式解释应用集成预测   总被引:5,自引:1,他引:4       下载免费PDF全文
多模式集合和降尺度技术是提升模式预测能力的有效工具。该文对国家气候中心多模式解释应用集成预测 (MODES) 技术与业务应用现状进行了综合介绍。MODES采用欧洲中期天气预报中心、东京气候中心、美国国家环境预报中心和中国气象局国家气候中心4个气候业务季节预测模式输出场,利用EOF迭代、变形的典型相关分析、最优子集回归和高相关回归集成4种统计降尺度方法以及等权平均、经典超级集合等集成方法进行全国月及季节降水和气温预测。目前对MODES进行了夏季回报检验和约1年的实时业务应用。回报检验和业务应用表明,MODES对气温有较好的预测能力 (月预测平均PS评分为76),对降水有一定预测技巧 (月预测平均PS评分为68),具有短期气候预测业务应用价值。  相似文献   

8.
The next generation of climate-driven, disease prediction models will most likely require a mechanistically based, dynamical framework that parameterizes key processes at a variety of locations. Over the next two decades, consensus climate predictions make it possible to produce forecasts for a number of important infectious diseases that are largely independent of the uncertainty of longer-term emissions scenarios. In particular, the role of climate in the modulation of seasonal disease transmission needs to be unravelled from the complex dynamics resulting from the interaction of transmission with herd immunity and intervention measures that depend upon previous burdens of infection. Progress is also needed to solve the mismatch between climate projections and disease projections at the scale of public health interventions. In the time horizon of seasons to years, early warning systems should benefit from current developments on multi-model ensemble climate prediction systems, particularly in areas where high skill levels of climate models coincide with regions where large epidemics take place. A better understanding of the role of climate extremes on infectious diseases is urgently needed.  相似文献   

9.
Based on hindcasts obtained from the “Development of a European Multimodel Ensemble system for seasonal to inTERannual prediction” (DEMETER) project, this study proposes a statistical downscaling (SD) scheme suitable for global precipitation forecasting. The key idea of this SD scheme is to select the optimal predictors that are best forecast by coupled general circulation models (CGCMs) and that have the most stable relationships with observed precipitation. Developing the prediction model and further making predictions using these predictors can extract useful information from the CGCMs. Cross-validation and independent sample tests indicate that this SD scheme can significantly improve the prediction capability of CGCMs during the boreal summer (June–August), even over polar regions. The predicted and observed precipitations are significantly correlated, and the root-mean-square-error of the SD scheme-predicted precipitation is largely decreased compared with the raw CGCM predictions. An inter-model comparison shows that the multi-model ensemble provides the best prediction performance. This study suggests that combining a multi-model ensemble with the SD scheme can improve the prediction skill for precipitation globally, which is valuable for current operational precipitation prediction.  相似文献   

10.
中国业务动力季节预报的进展   总被引:26,自引:9,他引:26  
利用动力模式开展季节到年际的短期气候预测 ,是目前国际上气候预测的发展方向。自 1996年以来 ,经过 8a多的研制和发展 ,国家气候中心已建立起第 1代动力气候模式预测业务系统 ,其中包括 1个全球大气 海洋耦合模式 (CGCM )、1个高分辨率东亚区域气候模式 (RegCM_NCC)和 5个简化的ENSO预测模式 (SAOMS) ,可用于季节—年际时间尺度的全球气候预测 ;全球海气耦合模式与区域气候模式嵌套 ,可以提供高分辨率的东亚区域气候模式制做季节预测。CGCM对 1982~ 2 0 0 0年夏季的历史回报试验表明 ,该模式对热带太平洋海表面温度和东亚区域的季节预测具有较好的预测能力。RegCM NCC的 5a模拟基本上能再现东亚地区主要雨带的季节进展。利用嵌套的区域气候模式RegCM NCC对 1991~ 2 0 0 0年的夏季回报表明 ,在预报主要季节雨带方面有一定技巧。 2 0 0 1~ 2 0 0 3年 ,CGCM和RegCM NCC的实时季节预报与观测相比基本合理。特别是 ,模式成功地预报了 2 0 0 3年梅雨季节长江和黄河之间比常年偏多的降水。SAOMS模式系统的回报试验表明 ,该系统对热带太平洋海表面温度距平有一定的预报能力 ,模式超前 6~ 12个月的回报与观测的相关系数明显高于持续预报。 1997~ 2 0 0 3年 ,SAOMS多模式集合实时预报与观测的相关系数达到  相似文献   

11.
多模式集合优选方案在淮河流域夏季降水预测中的应用   总被引:3,自引:0,他引:3  
基于国家气候中心提供的1981—2010年4种季节气候预测模式的资料,将两种互为补充的降尺度因子挑选方案应用于淮河流域夏季降水预测,利用距平符号一致率ASCR、等级评定PG、距平相关系数ACC方法,评定了每种模式及其所采用的两种降尺度方法对淮河流域夏季降水的预测效果,并采用了一种优选方案进行多模式集合。结果表明,从4种模式的降水预测效果来看,NCEP_CFSv2和TCC_CPS1模式的评分较高,NCC_CGCM1和ECMWF_SYSTEM4模式相对较低;采用2种基于最优子集回归的降尺度方法后,NCC_CGCM1、TCC_CPS1和ECMWF_SYSTEM4模式的降尺度方法相对于模式降水预测为正订正,NCEP_CFSv2模式为负订正;将模式和降尺度预测方案进行优选,其集合平均的评分不仅高于模式降水预测的集合平均,也优于降尺度方法的集合平均,该方法发挥了不同模式的区域性优势,改进了原始集合平均的效果,为提高多模式解释应用水平提供了一种参考性方案。   相似文献   

12.
Despite decades of research, large multi-model uncertainty remains about the Earth’s equilibrium climate sensitivity to carbon dioxide forcing as inferred from state-of-the-art Earth system models (ESMs). Statistical treatments of multi-model uncertainties are often limited to simple ESM averaging approaches. Sometimes models are weighted by how well they reproduce historical climate observations. Here, we propose a novel approach to multi-model combination and uncertainty quantification. Rather than averaging a discrete set of models, our approach samples from a continuous distribution over a reduced space of simple model parameters. We fit the free parameters of a reduced-order climate model to the output of each member of the multi-model ensemble. The reduced-order parameter estimates are then combined using a hierarchical Bayesian statistical model. The result is a multi-model distribution of reduced-model parameters, including climate sensitivity. In effect, the multi-model uncertainty problem within an ensemble of ESMs is converted to a parametric uncertainty problem within a reduced model. The multi-model distribution can then be updated with observational data, combining two independent lines of evidence. We apply this approach to 24 model simulations of global surface temperature and net top-of-atmosphere radiation response to abrupt quadrupling of carbon dioxide, and four historical temperature data sets. Our reduced order model is a 2-layer energy balance model. We present probability distributions of climate sensitivity based on (1) the multi-model ensemble alone and (2) the multi-model ensemble and observations.  相似文献   

13.
Given observed initial conditions, how well do coupled atmosphere–ocean models predict precipitation climatology with 1-month lead forecast? And how do the models’ biases in climatology in turn affect prediction of seasonal anomalies? We address these questions based on analysis of 1-month lead retrospective predictions for 21 years of 1981–2001 made by 13 state-of-the-art coupled climate models and their multi-model ensemble (MME). The evaluation of the precipitation climatology is based on a newly designed metrics that consists of the annual mean, the solstitial mode and equinoctial asymmetric mode of the annual cycle, and the rainy season characteristics. We find that the 1-month lead seasonal prediction made by the 13-model ensemble has skills that are much higher than those in individual model ensemble predictions and approached to those in the ERA-40 and NCEP-2 reanalysis in terms of both the precipitation climatology and seasonal anomalies. We also demonstrate that the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation. In addition, the seasonal prediction skill for the tropical SST anomalies, which are the major predictability source of monsoon precipitation in the current coupled models, is closely link to the models’ ability in simulating the SST mean state. Correction of the inherent bias in the mean state is critical for improving the long-lead seasonal prediction. Most individual coupled models reproduce realistically the long-term annual mean precipitation and the first annual cycle (solstitial mode), but they have difficulty in capturing the second annual (equinoctial asymmetric) mode faithfully, especially over the Indian Ocean (IO) and Western North Pacific (WNP) where the seasonal cycle in SST has significant biases. The coupled models replicate the monsoon rain domains very well except in the East Asian subtropical monsoon and the tropical WNP summer monsoon regions. The models also capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian–Australian monsoon system over four major sub-domains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.  相似文献   

14.
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, wh  相似文献   

15.
An extension of a regression-based methodology for constraining climate forecasts using a multi-thousand member ensemble of perturbed climate models is presented, using the multi-model CMIP-3 ensemble to estimate the systematic model uncertainty in the prediction, with the caveat that systematic biases common to all models are not accounted for. It is shown that previous methodologies for estimating the systematic uncertainty in predictions of climate sensitivity are dependent on arbitrary choices relating to ensemble sampling strategy. Using a constrained regression approach, a multivariate predictor may be derived based upon the mean climatic state of each ensemble member, but components of this predictor are excluded if they cannot be validated within the CMIP-3 ensemble. It is found that the application of the CMIP-3 constraint serves to decrease the upper bound of likelihood for climate sensitivity when compared with previous studies, with 10th and 90th percentiles of probability at 1.5 K and 4.3 K respectively.  相似文献   

16.
We dynamically downscaled Japanese reanalysis data (JRA-25) for 60 regions of Japan using three regional climate models (RCMs): the Non-Hydrostatic Regional Climate Model (NHRCM), modified RAMS version 4.3 (NRAMS), and modified Weather Research and Forecasting model (TWRF). We validated their simulations of the precipitation climatology and interannual variations of summer and winter precipitation. We also validated precipitation for two multi-model ensemble means: the arithmetic ensemble mean (AEM) and an ensemble mean weighted according to model reliability. In the 60 regions NRAMS simulated both the winter and summer climatological precipitation better than JRA-25, and NHRCM simulated the wintertime precipitation better than JRA-25. TWRF, however, overestimated precipitation in the 60 regions in both the winter and summer, and NHRCM overestimated precipitation in the summer. The three RCMs simulated interannual variations, particularly summer precipitation, better than JRA-25. AEM simulated both climatological precipitation and interannual variations during the two seasons more realistically than JRA-25 and the three RCMs overall, but the best RCM was often superior to the AEM result. In contrast, the weighted ensemble mean skills were usually superior to those of the best RCM. Thus, both RCMs and multi-model ensemble means, especially multi-model ensemble means weighted according to model reliability, are powerful tools for simulating seasonal and interannual variability of precipitation in Japan under the current climate.  相似文献   

17.
Climate model dependence and the replicate Earth paradigm   总被引:1,自引:1,他引:0  
Multi-model ensembles are commonly used in climate prediction to create a set of independent estimates, and so better gauge the likelihood of particular outcomes and better quantify prediction uncertainty. Yet researchers share literature, datasets and model code—to what extent do different simulations constitute independent estimates? What is the relationship between model performance and independence? We show that error correlation provides a natural empirical basis for defining model dependence and derive a weighting strategy that accounts for dependence in experiments where the multi-model mean would otherwise be used. We introduce the “replicate Earth” ensemble interpretation framework, based on theoretically derived statistical relationships between ensembles of perfect models (replicate Earths) and observations. We transform an ensemble of (imperfect) climate projections into an ensemble whose mean and variance have the same statistical relationship to observations as an ensemble of replicate Earths. The approach can be used with multi-model ensembles that have varying numbers of simulations from different models, accounting for model dependence. We use HadCRUT3 data and the CMIP3 models to show that in out of sample tests, the transformed ensemble has an ensemble mean with significantly lower error and much flatter rank frequency histograms than the original ensemble.  相似文献   

18.
A statistical calibration scheme is applied to multi-model global seasonal ensemble reforecasts in order to predict the interannual variability of summer averaged surface maximum temperature over Italy. In some cases, this technique is shown to be able to improve the skill scores of the seasonal predictions during the last 35 years, with respect to the direct model output (DMO), using seasonal predictions initialised 1 month before the beginning of the season. It is shown that the presence of some skill in the DMO multi-model predictions is mostly due to the correct prediction of the observed secular trends in maximum temperature, and, partly, to the correct prediction of outliers, in particular, of the summer of 2003. At the same time, while the removal of trends produces a small reduction of skill in both the raw and calibrated predictions, the removal of outliers improves the performance of the calibration scheme. Once all trends and outliers are removed, the DMO predictions have no skill, while the calibrated predictions still present a detectable skill. The improvement introduced by the calibration are shown to be statistically significant by applying resampling techniques. It is shown that the reason of this partial success is linked to the fact that although the models present several shortcomings, some models can capture the existence of a weak large-scale signal, possibly linked with the presence of a summer teleconnection between the equatorial Pacific and Europe, with a spatial pattern substantially different from that associated with the temperature secular trend. The teleconnection is associated with a modulation of the quasi-stationary barotropic eddies in the Northern Hemisphere extra-tropics.  相似文献   

19.
We explore the potential to improve understanding of the climate system by directly targeting climate model analyses at specific indicators of climate change impact. Using the temperature suitability of premium winegrape cultivation as a climate impacts indicator, we quantify the inter- and intra-ensemble spread in three climate model ensembles: a physically uniform multi-member ensemble consisting of the RegCM3 high-resolution climate model nested within the NCAR CCSM3 global climate model; the multi-model NARCCAP ensemble consisting of single realizations of multiple high-resolution climate models nested within multiple global climate models; and the multi-model CMIP3 ensemble consisting of realizations of multiple global climate models. We find that the temperature suitability for premium winegrape cultivation is substantially reduced throughout the high-value growing areas of California and the Columbia Valley region (eastern Oregon and Washington) in all three ensembles in response to changes in temperature projected for the mid-twenty first century period. The reductions in temperature suitability are driven primarily by projected increases in mean growing season temperature and occurrence of growing season severe hot days. The intra-ensemble spread in the simulated climate change impact is smaller in the single-model ensemble than in the multi-model ensembles, suggesting that the uncertainty arising from internal climate system variability is smaller than the uncertainty arising from climate model formulation. In addition, the intra-ensemble spread is similar in the NARCCAP nested climate model ensemble and the CMIP3 global climate model ensemble, suggesting that the uncertainty arising from the model formulation of fine-scale climate processes is not smaller than the uncertainty arising from the formulation of large-scale climate processes. Correction of climate model biases substantially reduces both the inter- and intra-ensemble spread in projected climate change impact, particularly for the multi-model ensembles, suggesting that—at least for some systems—the projected impacts of climate change could be more robust than the projected climate change. Extension of this impacts-based analysis to a larger suite of impacts indicators will deepen our understanding of future climate change uncertainty by focusing on the climate phenomena that most directly influence natural and human systems.  相似文献   

20.
Performance of seven fully coupled models in simulating Indian summer monsoon climatology as well as the inter-annual variability was assessed using multi member 1 month lead hindcasts made by several European climate groups as part of the program called Development of a European multi-model ensemble system for seasonal-to-inter-annual prediction (DEMETER). Dependency of the model simulated Indian summer monsoon rainfall and global sea surface temperatures on model formulation and initial conditions have been studied in detail using the nine ensemble member simulations of the seven different coupled ocean–atmosphere models participated in the DEMETER program. It was found that the skills of the monsoon predictions in these hindcasts are generally positive though they are very modest. Model simulations of India summer monsoon rainfall for the earlier period (1959–1979) are closer to the ‘perfect model’ (attainable) score but, large differences are observed between ‘actual’ skill and ‘perfect model’ skill in the recent period (1980–2001). Spread among the ensemble members are found to be large in simulations of India summer monsoon rainfall (ISMR) and Indian ocean dipole mode (IODM), indicating strong dependency of model simulated Indian summer monsoon on initial conditions. Multi-model ensemble performs better than the individual models in simulating ENSO indices, but does not perform better than the individual models in simulating ISMR and IODM. Decreased skill of multi-model ensemble over the region indicates amplification of errors due to existence of similar errors in the individual models. It appears that large biases in predicted SSTs over Indian Ocean region and the not so perfect ENSO-monsoon (IODM-monsoon) tele-connections are some of the possible reasons for such lower than expected skills in the recent period. The low skill of multi-model ensemble, large spread among the ensemble members of individual models and the not so perfect monsoon tele-connection with global SSTs points towards the importance of improving individual models for better simulation of the Indian monsoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号