首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Late Quaternary ( c . 130,000–10,000 BP) glacial history of the central west coast of Jameson Land, East Greenland, is reconstructed through glacial stratigraphical studies. Seven major sedimentary units are described and defined. They represent two interglacial events (where one is the Holocene). one interstadial event and two glacial events. The older interglacial event comprises marine and fluvial sediments, and is correlated to the Langelandselv interglacial, corresponding to oxygen isotope sub-stage 5e. It is followed by an Early Weichselian major glaciation during the Aucellaelv stade, and subsequently by an Early Weichselian interstadial marine and deltaic event (the Hugin Sø interstade). Sediments relating to the Middle Weichselian have not been recognized in the area. The Hugin Sø interstade deposits have been overrun by a Late Weichselian ice advance, during the Flakkerhuk stade, when the glacier, which probably was a thin, low gradient fjord glacier in Scoresby Sund, draped older sediments and landforms with a thin till. Subsequent to the final deglaciation, some time before 10,000BP, the sea reached the marine limit around 70 m a.s.l., and early Holocene marine, fluvial and littoral sediments were deposited in the coastal areas.  相似文献   

2.
Detailed investigations of sediments exposed along river sections in the coastal part of Jameson Land have revealed a Saalian to Holocene glacial history. Eleven sedimentary units have been distinguished. most of which are found in superposition at one single large section. Four subglacially formed till beds are recognized; three of which are of Weichselian age. All the tills are considered to have been deposited at the base of fjord glaciers restricted to the Scoresby Sund basin. The tills are separated by marine, fluvial or deltaic sediments, and demonstrate changes in the depositional environnient considered to represent changes in relative sea level during the ice-free periods. The fossil content. supported by a series of luminescence dates, suggest that most of the succession is of Eemian and Early Weichselian age. From the luminescence dates, a short duration of <10ka is suggested for the Early Weichselian glacial stades. Sedimentation during this period was partly controlled by glacio-isostatic subsidence caused by net growth of the Greenland Ice Sheet. The Middle Weichselian is represented by a large hiatus. whereas the Late Weichselian is represented by a subglacial till.  相似文献   

3.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Deposits of Late Pleistocene age were investigated near the Fynselv river on the southwestern coast of Jameson Land. East Greenland. The deposits are of fluvial, deltaic shallow marine and glacigenic origin. Four stratigraphic units are recorded. Unit I consists of deltaic and shallow marine deposits reflecting a relative sea level of at least 20 m above the present. Elevated fluvial deposits represent the subaerial part of the depositional system. The system existed during full interglacial and subarctic conditions as indicated by remains or flora and Fauna and unit I is correlated with the Langelandselv interglaciation (isotopic substage 5e). Unit II consists of a till deposited by a glacier in the Scoresby Sund Fjord during the beginning of the Early Weichselian referred to as the Aucellaelv stade. The glacier probably melted in a marine environment. Unit III represents a marine delta system during the Hugin Sø interstade. and reveals a relative sea level of at least 62 m above the present. Unit IV consists of till and kame deposits assumed to be deposited by a glacier in the Scoresby Sund Fjord during the Flakkerhuk stade. probably a Late Weichselian glacier advance.  相似文献   

5.
The sedimentary record around outer Scorcsby Sund begins with the Scorcsby Sund glaciation (≅ isotope stage 6), but is incomplete. Both at Kap Hope, headward of the fjord mouth, and at Kikiakajik on the outer coast. there are shallow marine sediments, correlated with the Langelandselv interglaciation (≅ isotope substagc 5e) on the basis of molluse assemblages and luminescence dates. Abundant Balanus crenatus , and several bivalves. show that thc adveetion of warm Atlantic water to the East Greenland coast was higher during that interglacial than during the Holocenc. Glacial striae at Kap Brewster (facing the open ocean) and till on top of the interglacial beds at Kikiakajik show that both an outlet from the Greenland Iee Sheet, and more local glaciers reached the continental shelf during the Weichselian. This glacial event is poorly dated. but tentatively correlated with the Flakkerhuk stade (≅ 19 15 ka BP) when, from marine geological data, it is suggested that thc Scoresby Sund glacier terminated c . 30 km east of Kap Brewster. During the Milne Land stade ( c . 10 ka BP) there was a resurgence of local ice caps in the mountains both north and south of the fjord mouth, but Scoresby Sund and Hall Bredning probably remained free of glaciers. Dating of these events was achieved through Iuminescence- (TL and OSL) and the 14C-method. and biostratigraphical and amino acid correliition Interglacial shells on thc outer coast show much lower amino acid D/L ratios than shells of the same age within the Scoresby Sund area. This may indicate that the outer coast remained free of ice cover and marine inundation much longer, arid suffered colder temperatures than areas along the fjord.  相似文献   

6.
This paper is the first to summarize research on fluctuations of local glaciers in Greenland (e.g. ice caps and mountain glaciers independent of the Greenland Ice Sheet) during latest Pleistocene and Holocene time. In contrast to the extensive data available for fluctuations of the Greenland Ice Sheet, surprisingly little data exist to constrain local glacier extents. Much of the available research was conducted prior to wide-spread use of AMS radiocarbon dating and the advent of surface-exposure and luminescence dating. Although there is a paucity of data, generally similar patterns of local glacier fluctuations are observed in all regions of Greenland and likely reflect changes in paleoclimate, which must have influenced at least the margins of the Inland Ice. Absolute-age data for late-glacial and early Holocene advances of local glaciers are reported from only two locations: Disko (island) and the Scoresby Sund region. Subsequent to late-glacial or early Holocene time, most local glaciers were smaller than at present or may have disappeared completely during the Holocene Thermal Maximum. In general, local glacier advances that occurred during Historical time (1200–1940 AD) are the most extensive since late-glacial or early Holocene time. Historical documents and more recent aerial photographs provide useful information about local glacier fluctuations during the last 100 yrs. In all but one area (North Greenland), local glaciers are currently receding from Historical extents.  相似文献   

7.
Coastal Jameson Land is characterized by thick Quaternary deposits from the last interglacial/glacial cycle. The successions at the mouth of Langelandselv exhibit a key stratigraphy where sediments from the Langelandselv interglaciation (Eemian) are overlain by three till units interbedded with glacimarine and deltaic interstadial successions. Immediately after the retreat of glaciers after the extensive Scoresby Sund glaciation (Saalian). advection of warm Atlantic surface water surpassed what is known from the Holocene. The two lowermost Weichselian tills, deposited during the Aucellaelv and Jyllandselv stades (Early Weichselian), reflect short-lasting readvances of fjord glaciers. Luminescence dates and correlation with adjacent areas suggest ages of 110–80 ka and 70–60 ka for the Hugin Sø and the Møselv interstades, respectively.  相似文献   

8.
Almost 90% of 39 m of core material recovered from Scoresby Sund and the adjacent East Greenland shelf is massive diamicton, interpreted to be formed predominantly by the release of iceberg rafted debris and reworking by iceberg scouring. There is also likely to be a contribution from suspension settling of fines derived from glaciofluvial sources. Model calculations suggest that the 14C derived Holocene sedimentation rate of 0.1-0.3 m 1000 yr−1 in Scoresby Sund can be accounted for mainly by iceberg rafting of debris. A further 4% of core material is of gravel or coarse sand lenses, interpreted to reflect iceberg dumping of debris. Intensive iceberg scouring, which reworks sea floor sediments, is observed on acoustic records from over 30 000 km2 of the Scoresby Sund fiord system and the adjacent East Greenland shelf (69-72°N and 75°N). The rate of iceberg production from Greenland Ice Sheet outlet glaciers, and iceberg drift tracks on the shelf, suggests that iceberg rafting and scouring may be important over a significant proportion of the 500 000 km2 area above the shelf break. The relatively extensive modern occurrence of massive diamicton, formed by iceberg rafting and scouring, together with suspension settling of fines, suggests that it may also be a significant facies in the glacier-influenced geological record. The recognition in the geological record of the massive diamicton facies described above may also indicate the former presence of fast flowing ice sheet outlet glaciers.  相似文献   

9.
Macrofossil plant and insect remains from nearshore marine sediments in Jameson Land, central East Greenland show that the land biotas of the last interglacial stage, the Langelandselv stage, were more diverse than those of the Holocene. Rich dwarf shrub heaths with a diverse assemblage of ericaceous plants occupied low land areas with copses of Betula pubescens on sheltered sites. Many southern extra-limital species were present, and the mean summer temperature was c . 5°C higher than today. The subarctic bioclimatic zone was displaced from southernmost Greenland/Iceland to central East Greenland. The diverse beetle fauna was of palaearctic affinity and strikingly different from the Plio-Pleistocene and the Holocene Greenlandic beetle faunas. A few fossil assemblages from the Hugin Sø Interstade, which is correlated with oxygen isotope stage 5c (early last glacial stage), point to poor, perhaps entirely herbaceous vegetation with a mean summer temperature that was perhaps 3 4°C lower than today.  相似文献   

10.
Until recently, little was known about the Quaternary marine sedimentary record in East Greenland. Geophysical and geological investigations in Scoresby Sund were undertaken to characterize the nature and chronology of this record. Seismic records show that almost 70% of the outer fjord system is covered by about 10 m of unlithified sediments, making direct correlation with the Quaternary records on land and the adjacent continental margin difficult. These acoustically unstratified sediments are scoured by icebergs above 550 m water depth. Almost 90% of core material is massive diamicton of Holocene age, deposited mainly from iceberg rafting and turbid meltwater. Sedimentation rates are 0.1 -0.3 m 1000 yr-1. Thicker accumulations of unlithified Quaternary sediments in Scoresby Sund occur as sediment ridges and in two other major depocentres. A low sediment ridge runs across the mouth of Scoresby Sund, and is interpreted as an end moraine of Late Weichselian Flakkerhuk stadial age. The very restricted sediment thickness suggests that grounded ice filled the fjord during the Flakkerhuk and an ice shelf was not present. High inputs of ice rafted debris to the continental margin at about 18 000 BP indicate this as a probable age for the moraine. During the Allerød Interstadial, ice probably retreated from the outer fjord system, since massive diamictons similar to those of Holocene age are present at the base of most cores. A major depocentre of acoustically stratified sediments at the head of Hall Bredning is interpreted to represent ice proximal deposits from a glacier margin extending across the fjord. It is adjacent to dated moraines on land and is inferred to be of Milne Land stadial age (about 10 000 BP). A similar age is interpreted for acoustically laminated sediments and a moraine at the entrance of Vikingebugt, on the south side of Scoresby Sund. Dated kame terraces in the inner fjord system indicate that ice retreated to its present position 6–7000 years ago.  相似文献   

11.
Laminated glacimarine sediments are observed in visual core logs and x-radiographs from Scoresby Sund and Nansen Fjord, east Greenland. They are mostly underlain and overlain by massive or stratified glacimarine diamicton (Dmm or Dms), which is a product of iceberg delivery of heterogeneous debris and, in Scoresby Sund, reworking by deep-drafted iceberg keels. The laminated sediments are AMS radiocarbon dated to two cold periods since the last, Late Weichselian deglaciation: the Younger Dryas stadial (Milne Land Stadial in east Greenland) and the Little Ice Age. During cold climatic events, multiyear shorefast sea ice ('sikussak') formed in these fjords and trapped the icebergs. Fine-grained, laminated muds (Fl) were deposited in Scoresby Sund when the flux of icebergs was suppressed, but turbid meltwater continued to provide some sediment flux to the fjord systems, varying through time to produce laminations. In Nansen Fjord, thinner and often massive mud layers (Fm) resulted from shorter intervals of sea-ice cover with no ice rafting. Stratified diamicton layers (Dms), which alternate with mud deposition to produce a laminated unit, probably represent intervening times of more open conditions with iceberg rafting. In Scoresby Sund, foraminifera are either absent from the laminated unit or begin to appear towards the end of its deposition. The absence of both benthic and planktonic foraminifera also suggests that multiyear sea ice was covering the core sites. There is no evidence of macrofaunal activity, and bioturbation is absent from the laminated sediments. Satellite data show that multiyear shorefast sea ice is present in several areas of the high Arctic today, and this traps icebergs calved from interior ice-cap drainage basins. Thus, the process of laminated glacimarine sediment formation is likely to be applicable to a number of areas of the modern and Quaternary Arctic.  相似文献   

12.
Two paleomagnetic excursions, the Skjong correlated with the Laschamp (about 41,000 GISP2 yr B.P.) and the Valderhaug correlated with the Mono Lake (about 34,000 GISP2 yr B.P.), have been identified in stratigraphic superposition in laminated clay deposited in ice-dammed lakes in three large caves in western Norway. During both periods the margin of the Scandinavian Ice Sheet advanced and reached the continental shelf beyond the outermost coastline. The mild, 4000-yr-long Ålesund interstade, when the coast and probably much of the hinterland were ice-free, separated the two glacial advances. The two paleomagnetic excursions have also been indirectly identified as increased fluxes of 36Cl and 10Be in the GRIP ice core, Greenland. This article presents a correlation between ice-margin fluctuations of the Scandinavian Ice Sheet and the stratigraphy of GRIP/GISP cores, using the paleomagnetic excursions and the 36Cl and 10Be peaks and thus circumventing the application of different dates or time scales. Some of the fluctuations of the Scandinavian Ice Sheet were of the “Allerød/Younger Dryas type” in the sense that its margin retreated during mild interstades on Greenland and readvanced during cold stades. However, some fluctuations were apparently not in phase with the Greenland climate.  相似文献   

13.
The first major Weichselian ice advance in Scoresby Sund, during the Aucellaelv stage, deposited thick till beds along the coast of Jameson Land between > 107 ka and 140 ka. and is correlated with isotope substage 5d in the marine record. This is shown by stream-cut sections at the mouth of the Aucellaelv. Jameson Land, which contain a scquence of shallow marine, fluvial and glacigene sediments extending from the Scoresby Sund glaciation (≅Saalian) to the Flakkerhuk stade (Late Weichselian). The sequence is dated by palaeoceanographic correlation with the deep-sea record, U/Th and luminescence dating, and correlated with the record in adjacent areas by mapping of marker horizons, and by mollusc fauna assemblages and amino acid analyses.  相似文献   

14.
Here we combine 10Be depth profile techniques applied to late glacial ice‐contact marine and lacustrine deltas, as well as boulder exposure dating of associated features in the Scoresby Sound region, east Greenland, to determine both the surface age and the magnitude of cosmogenic nuclide inheritance. Boulder ages from an ice‐contact delta in northern Scoresby Sund show scatter typical of polar regions and yield an average age of 12.8 ± 0.5 ka – about 2 ka older than both our average profile surface age of 10.9 ± 0.7 ka from three depth profiles and a radiocarbon‐based estimate. On the other hand, boulder exposure ages from a set of moraines in southern Scoresby Sund show excellent internal consistency for polar regions and yield an average age of 11.6 ± 0.2 ka. The profile surface age from a corresponding ice‐contact delta is 8.1 ± 0.9 ka, while a second delta yields an age of 10.0 ± 0.4 ka. Measured 10Be inheritance concentrations from all depth profiles are internally consistent and are between 10% and 20% of the surface concentrations, suggesting a regional cosmogenic inheritance signal for the Scoresby Sound landscape. Based on the profile inheritance concentrations, we explore the first‐order catchment‐averaged bedrock erosion under the Greenland ice sheet, yielding estimates of total erosion during the last glacial cycle of the order of 2–30 m. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The Hitura open pit exposes a sedimentary sequence up to 50 m thick representing Late Saalian to Holocene glacial and non-glacial sediments. The sequence was investigated using sedimentological methods, OSL-dating and pollen and diatom analyses to reconstruct the Middle Weichselian (MWG) glacial event in the central part of the Scandinavian Ice Sheet (SIS). The results indicate that the sediment succession represents two entire glacial advance and retreat cycles. The lowermost deposits are Late Saalian esker and delta sediments overlain by sediments that correlate with the early Eemian lacustrine phase. Remnants of the Eemian soil post-dating the lacustrine phase were also observed. The area was ice-free during the entire Early Weichselian (EWG). The first glacial advance recorded in the sediments is related to the MWG. It started 79 kyr ago, deformed underlying sediments and deposited an immature till, including large detached sediment pods containing remains of organic material, soils and fluvial sediments representing allochthonous material from EWG ice-free stadials and interstadials. The glacial deposits are conformably overlain by glaciolacustrine and littoral accumulations, indicating MWG deglaciation between 62 and 55 kyr ago. Based on the fabric measurements from the till unit overlying the MWG sediments, ice advance during the Late Weichselian (LWG) was initially from the west and later from a north-northwesterly direction. The Hitura strata provide the first dating of the MWG deglaciation (55 to 62 kyr ago) from central parts of the SIS. It can be considered as a key site for studying the growth and decay of SIS during the poorly known early parts of the glaciation.  相似文献   

16.
Along the northeast Greenland continental margin, bedrock on interfjord plateaus is highly weathered, whereas rock surfaces in fjord troughs are characterized by glacial scour. Based on the intense bedrock weathering and lack of glacial deposits from the last glaciation, interfjord plateaus have long been thought to be ice-free throughout the last glacial maximum (LGM). In recent years there is growing evidence from shelf and fjord settings that the northeast Greenland continental margin was more extensively glaciated during the LGM than previously thought. However, little is still known from interfjord settings. We present cosmogenic 10Be data from meltwater channels and weathered sandstone outcrops on Jameson Land, an interfjord highland north of Scoresby Sund. The mean exposure age of samples from channel beds (n = 3) constrains on the onset of deglaciation on interior Jameson Land to 18.5 ± 1.3–21.4 ± 1.9 ka (for erosion conditions of 0–10 mm/ka, respectively). This finding adds to growing evidence that the northeast Greenland continental margin was more heavily glaciated during the LGM than previously thought.  相似文献   

17.
Tephra abundance data and geochemistry in Late‐glacial and Holocene sediments on the East Greenland shelf are presented. Two well‐known tephras were identified from electron microprobe analysis of tephra shards picked from ash peaks in the cores. These are the Vedde Ash and Saksunarvatn Ash, which probably were deposited on the shelf after transport on drifting ice. The radiocarbon dates (marine reservoir corrected by −550 yr) that constrain the timing of deposition of the tephra layers compare well with the terrestrial and ice‐core ages of the tephras without requiring additional reservoir correction to align them with the known tephra ages. Several prominent tephra layers with a composition of Ash Zone 2 tephra punctuate the deglacial sediments. These tephra peaks coincide with significant light stable isotope events (signifying glacial meltwater) and fine‐grained sediments poor in ice‐rafted detritus. We interpret the Ash Zone 2 tephra peaks as sediment released from the Greenland Ice Sheet during strong melting pulses of the deglaciation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
The position of the Inland Ice margin during the late Wisconsin-Würm glaciation (ca. 15,000 yr BP) is probably marked by offshore banks (submarine moraines?) in the Davis Strait. The history of the Inland Ice since the late Wisconsin-Würm can be divided into four principal phases: (1) Relatively slow retreat from the offshore banks occurred at an average rate of approximately 1 km/100 yr until ca. 10,000 yr BP (Younger Dryas?) when the Taserqat moraine system was formed by a readvance. (2) At ca. 9500 yr BP, the rate of retreat increased markedly to about 3 km/100 yr, and although nearly 100 km of retreat occurred by ca. 6500 yr BP, it was punctuated by frequent regional reexpansions of the Inland Ice that formed extensive moraine systems at ca. 8800-8700 yr BP (Avatdleq-Sarfartôq moraines), 8400-8100 yr BP (Angujârtorfik-Fjord moraines), 7300 yr BP (Umîvît moraines), and 7200-6500 yr BP (Keglen-Mt, Keglen moraines). (3) Between 6500 and 700 yr BP, discontinous ice-margin deposits and ice-disintegration features were formed during retreat, which may have continued until the ice margin was near or behind its present position by ca. 6000 yr BP. Most of the discontinuous ice-margin deposits occur within 5–10 km of the present ice margin, and may have been formed by two main phases of readvance at ca. 4800-4000 yr BP and 2500-2000 yr BP. (4) Since a readvance at ca. 700 yr BP, the Inland Ice margin has undergone several minor retreats and readvances resulting in deposition of numerous closely spaced moraines within about 3 km of the present ice margin. The young moraines are diffieulto to correlate regionally, but several individual moraines have the following approximate ages: A.D. 1650, 1750, and 1880–1920.Inland Ice fluctuations in West Greenland were very closely paralleled by Holocene glacial events in East Greenland and the eastern Canadian Aretic. Such similarity of glacier behavior over a large area strongly suggests that widespread climatic change was the direct cause of Holocene glacial fluctuations. Moreover, historical advances of the Inland Ice margin followed slight temperature decreases by no more than a few decades, and 18O data from Greenland ice cores show that slight temperature decreases occurred frequently throughout the Holocene. Therefore, we conclude that construction of the major Holocene moraine systems in West Greenland was caused by slight temperature decreases, which decreased rates of ablation and thereby produced practically immediate advances of the ice sheet margin, but did not necessarily affect the long-term equilibrium of the ice sheet.  相似文献   

19.
From central East Greenland, C14 ages between 19,500 > 40,000 years B.P. have been obtained for six samples of marine bivalve shells. The ages seem to be consistent with geological observations and form the basis for a tentative chronology for the Weichselian ice age in the region. It appears that the maximum glaciation during Weichselian times was attained more than 40,000 years ago, and that since then ice-free areas have existed. This assumption agrees with evidence of botanical refugia in the region, and the restricted glacier activity especially during the Upper Pleniglacial (ca. 30,000–15,000 years B.P.) is explained by a reduced supply of moisture. A comparison with evidence from other parts of Greenland indicates that different glacial histories can be expected for different sectors of the Greenland Inland Ice.  相似文献   

20.
Terraces of different age in the Zackenberg delta, located at 74°N in northeast Greenland, have provided the opportunity for an interdisciplinary approach to the investigation of Holocene glacial, periglacial, pedological, biological and archaeological conditions that existed during and after delta deposition. The raised Zackenberg delta accumulated mainly during the Holocene Climatic Optimum, starting slightly prior to 9500 cal. yr BP (30 m a.s.l.) and continued until at least 6300 cal. yr BP (0.5 m a.s.l.). Evidence of sea‐level change is based on conventional 14C dates of shells from the marine delta bottomsets, 14C AMS dating of macroscopic plant material from the foresets and of fluvial deposits. Arthropod and plant remains from 7960 cal. yr BP in the delta foresets include the oldest evidence of the arctic hare in Greenland and evidence of a rich herb flora slightly different from the modern flora. Empetrum nigrum and Salix herbacea remains indicate a summer temperature at least as high as today during delta deposition. Post‐depositional nivation activity, dated by luminescence, lichenometry and Schmidt Hammer measurements indicate mainly late Holocene activity, at least since 2900 yr BP, including Little Ice Age (LIA) avalanche activity. Pedological analyses of fossil podsols in the Zackenberg delta, including 14C AMS dating of selected organic rich B‐horizons, show continued podsol development during the Holocene Climatic Optimum and into the subsequent colder period of the late Holocene, until 3000–2400 yr BP. A Neo‐Eskimo house ruin found on the lower part of the delta, presently being eroded by the sea, is dated to AD 1800. It presumably was abandoned prior to AD 1869, and suggests that some of the last Eskimos that lived in northeast Greenland might have occupied the Zackenberg delta. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号