首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 578 毫秒
1.
本文统计分析了广西涠洲岛沿海气候、潮汐和风暴潮等历史资料,利用耿贝尔方法推算了涠洲岛多年一遇年极值高潮位,并估算了其漫滩范围分布,指出近几年高潮位出现的频次和极值均越来越高是涠洲岛西南部沙滩侵蚀愈加严重的重要原因,最后结合风暴潮-海浪耦合数值模拟了研究区域内"0312"号台风风暴潮漫滩的情况,分析了风暴潮和大潮对涠洲岛西南部沙滩侵蚀的影响,对当地岸滩修复和防护具有一定的指导意义。  相似文献   

2.
本文以现场的实测资料和44年间台风波浪后报结果为基础,考虑到各种重现期波浪出现时伴随着台风增水对计算点各种累积率波高的影响,通过对复合极值分布法,皮尔逊Ⅲ型曲线法和短期资料外推法的比较,给出进行波和破碎波条件下的各种重现期台风波浪要素。  相似文献   

3.
一个台风海面风场的数值模式及其后报检验   总被引:3,自引:0,他引:3  
本文建立了一个用于台风海面风场后报的数值模式,并给出了用于实际台风海面风场后报时求解上述模式的全过程,首先根据边界层风速垂直分布特点,对贴地面摩擦应力使用平均风进行参数化,进而导出边界层平均风动力学方程,对上述动力学方程积分到一准稳态,得到边界层平均风分布;再使用Monin-Obkhov相似理论,将平均风换算到10m高度,从而得到10m高度风场.对3个台风过程,给出了10m高度风场和浪场的数值后报结果.海浪同实测的结果比较表明,该风场模式的结果在实测点的后报风与实测风较一致,两者相关系数为0.95左右,台风影响测点时,极值误差均在2m/s以内,平均误差范围约10%;后报风向与实测风向的平均绝对值误差为20°,将该后报风场模式用于海浪数值后报也得到了满意的结果,后报波高与实测波高的相关系数约为0.95,最大有效波高和跨零周期的实测值与后报值相差符合得很好.这些结果均表明本文提出的风场模式是合理的,并且适用于强海况的数值计算.  相似文献   

4.
本研究对近40年来影响南海东北部陆架海区的28次台风引起的风暴潮进行了数值后报,其中8个过程的沿岸后报增水值与实测值进行了比较,表明后报值与实测值符合良好,90%以上的最大增水值偏差在30厘米以下。为了得出本海区多年一遇的台风增水极值,在后报台风路径密集处选择了9个不同水深点,对每点取出各次台风下的最大增水值,然后用Weibull分布进行拟合,得出了各点的极值分布。  相似文献   

5.
有关太平洋海洋环流,特别是对亚热带(又称副热带)、热带和赤道带环流的调查研究,近数十年来在国内、外海洋学界已蓬勃展开。其中,日本气象厅于1967年至今在137°E断面上每年进行1-2次定期海洋观测,并于1972-1979年、1987-1995年在155°E断面上每年夏季进行一次观测。根据上述经向断面观测资料,许多学者对137°E断面的海流结构,温、盐分布,水团及其变异,以及与ENSO现象的关系作了细致的分析研究(邹娥梅等,1993;顾玉荷,1996;Guan,1986;Masuzawa,1967);关于155°E断面的研究,则着重于太平洋赤道区域海流结构和它的变异及其与ENSO现象的关系等(顾玉荷,1990;Guan,1986)。本文拟根据155°E断面1972-1979年夏季(6-7月)日本气象厅的海洋水文气象观测资料(其中1974年无资料),分析研究该断面(北亚热带、热带和赤道带海域)的温、盐度分布特征和热、盐含量及其年际变异,并探讨其与ENSO现象之间的关系。 155°E断面北起30°N,南至11°S,自北向南横穿北亚热带、热带、赤道带和南半球热带。测站的密度以1975-1977年最密(设55个测站),1972年和1973年次之(分别设测站33个和40个),1978年和1979年测站稀疏,仅为15个和12个。采样深度间隔于30m以浅为10m,50-150m层间为25m,150-300m层间为50m,300-1000m层间为100m。图1为断面的位置和站位分布(5028站至5058站每相邻两站中间省略一站位)。 为了便于分析断面上各纬度带的水文特征及年际变异,将该断面自北向南划分为4个纬度带,即北亚热带(18°-30°N)、北半球热带(2°-18°N,以下简称北热带)、赤道带(2°N-2°S)和南半球热带(2°S以南,以下简称南热带)。其中北热带又划分为北赤道流区(8°-18°N)和北赤道逆流区(2°-8°N)。  相似文献   

6.
本文采用先进的LAGFD风、浪数值模式和POM(PrincetonOceanModel)三维海流模式对自1945~1995年间发生并影响南海东部海域的299个历史最强热带气旋过程进行数值后报,给出了南海东部部分海域(19°~23°N,113°~118°E)中1000m等深线内60个点的多年一遇风、浪、流和水位极值,并简要分析了南海东部(15°~27°N,108°~122°E)的气候特征,为该海域区域性海洋环境研究与工程开发提供了基础参考数据。  相似文献   

7.
基于Delft3D模型建立了适用于北部湾海域的台风风暴潮数学模型,同时根据进入北部湾海域67 a(1949—2015年)历史台风资料,采用蒙特卡罗方法随机构造55场台风进行风暴增水计算,并选取受风暴潮影响最严重的铁山港与最频繁的涠洲岛进行了风险分析。结果表明:(1)从铁山湾下侧进入北部湾海域,中心气压为952 h Pa的台风会造成石头埠站风暴增水为3.68 m,达到1 000 a一遇的级别;(2)广西沿岸的风暴增水对经过北部湾海域的台风存在滞后效应;(3)涠洲岛风暴增水普遍较低,但进入北部湾的台风均会在涠洲岛产生风暴潮,因此要做好涠洲岛的防护工程以防止海岸线继续后退。  相似文献   

8.
收集巴伦支海海域近岸1996-2015年海流数据,提取各年流速最大值得到不分方向的年极值流速序列,绘制16个方向的海流流速玫瑰图,选取N至S向9个流向的各年流速最大值得到9个分向的年极值流速序列。采用4种概率模型,即GEV分布,Gumbel分布,Weibull分布和P-III型分布,对抽取的年极值流速序列进行拟合,采用K-S检验和均方根误差法(RMSE)对分布进行拟合优度检验。选取一工程点并计算得到该点处的分方向和不分方向的年极值流速多年一遇重现值。  相似文献   

9.
基于广义极值分布的设计波高推算   总被引:1,自引:0,他引:1  
简介了广义极值分布函数及其3种参数估计方法,包括极大似然(ML)、线性矩(LM)和间隔最大积(MPS)估计的计算方法。使用广义极值分布函数推算了北部湾涠洲岛海域3个波向的年波高极值序列设计波高,并与Weibull分布、Gumbel分布和皮尔逊Ⅲ型分布的推算结果加以对比。分析表明,涠洲岛海域极值波高服从于广义极值Ⅲ型分布,拟合优度检验结果表明广义极值分布能更好地拟合极值波高;MPS方法是一种优良的参数估计法,推算的设计波高可作为海岸环境工程设计的首要参考值。  相似文献   

10.
通过网格定点法对我国东南沿海区域性台风危险性进行了分析。利用对各网格点有影响的历史台风数据,建立了各网格点的台风关键参数的最优概率模型。利用Monte-Carlo方法产生每个网格点1000年间的虚拟台风事件。采用YanMeng(YM)风场模型模拟了100个历史台风的最大风速,通过使这些最大风速与观测的最大风速误差和最小,建立了一组新的计算最大风半径Rmax和Holland气压参数B的公式,结果表明新的台风参数计算方案效果良好。利用新的参数计算方案、YM风场模型、特定地点的台风衰减模型以及合适的极值分布模型,预测了各个网格点不同重现期的极值风速,进而绘制了台风多发区域的设计风速图。最后研究了不同B模型、Rmax模型和极值分布模型对预测的极值风速的影响。可以为结构抗风设计和台风防灾减灾提供新的参考。  相似文献   

11.
李萍  李林斌 《海洋工程》2014,32(3):14-21
基于中国南海海域风暴环境条件,研究分析南海海域固定式导管架平台结构整体性和可靠性,以及新建固定式平台结构设计准则。采用海洋环境数据后报方法,得到南海海域1972~2011共40年的风、浪、流联合数据,从中抽取风暴环境条件;利用通用荷载模型,将40年间的风暴环境数据转变成结构的荷载数据,即基底剪力或倾覆力矩;并计算得到风暴环境荷载的短期及长期分布,以及任意风暴下荷载的概率分布;根据结构可靠性模型,结合荷载的长期分布,研究基于结构暴露等级及失效概率的固定式平台结构强度储备比。根据计算,得到了不同暴露等级下中国南海平台的强度储备比,并与墨西哥湾及北海海域进行了比较,为新建平台提供设计参考。  相似文献   

12.
基于辽东东探区1966—2007年出现的76次温带气旋减水过程,对10个工程地点抽取了10个统计样本。考虑每年温带气旋出现频次的影响,使用泊松最大熵分布对其进行减水的长期统计分析。得到100年一遇和50年一遇最大幅度的减水重现值分别为304和286cm。由于受地形的影响,北部海域的减水幅度大于南部区域。  相似文献   

13.
Long term wave climate of both extreme wave and operational wave height is essential for planning and designing coastal structures. Since the field wave data for the waters around Korean peninsula is not enough to provide reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. Basic data base of hindcasted wave parameters such as significant wave height, peak period and direction has been established continuously for the period of 25 years starting from 1979 and for major 106 typhoons for the past 53 years since 1951 for each grid point of the North East Asia Regional Seas with grid size of 18 km. Wind field reanalyzed by European Center for Midrange Weather Forecasts (ECMWF) was used for the simulation of waves for the extratropical storms, while wind field calculated by typhoon wind model with typhoon parameters carefully analyzed using most of the available data was used for the simulation of typhoon waves. Design wave heights for the return period of 10, 20, 30, 50 and 100 years for 16 directions at each grid point have been estimated by means of extreme wave analysis using the wave simulation data. As in conventional methodsi of design criteria estimation, it is assumed that the climate is stationary and the statistics and extreme analysis using the long-term hindcasting data are used in the statistical prediction for the future. The method of extreme statistical analysis in handling the extreme events like typhoon Maemi in 2003 was evaluated for more stable results of design wave height estimation for the return periods of 30–50 years for the cost effective construction of coastal structures.  相似文献   

14.
Simulation of a storm surge caused by Typhoon 9918 in the Yatsushiro Sea, Kyushu, Japan was hindcasted by the synchronous coupled wind-wave-surge model composed of a Meso-scale meteorological model (MM5) for the wind and sea surface pressure, a spectral third-generation wind-wave model (Wavewatch III) for waves, and the coastal ocean model (Princeton Ocean Model). Inclusion of the whitecap wave breaking stresses (whitecap dissipation stress) in the coastal ocean model made it possible to reproduce the extreme surge height in the extremely shallow bay.  相似文献   

15.
A hindcast study of extreme wave conditions in the Tyrrhenian Sea is described. The paper covers the different steps of the work, including the identification and the statistics of the weather patterns in the area, the choice of the storms to be hindcasted, the wind and wave models, a check of the best extremal distributions for the estimate of the extreme values probability, and the estimate of the accuracy of the final results. Detailed examples of the results are given, followed by a discussion of their reliability.  相似文献   

16.
This study analyses a 4.5 year (September 2009–March 2014) time-series of remotely-sensed data of altimeter significant wave heights to describe the temporal and spatial variability of ocean swells along the northern coast of the Gulf of Guinea. The NOAA WAVEWATCH III (NWW3) wave model data were used with altimeter data to determine the origin of the swells that occur along the coast of Côte d'Ivoire in West Africa. We show that the ocean swells along the northern coast of the Gulf of Guinea are generated in the Southern Ocean and then propagate from south to north in the South Atlantic Ocean, before turning south-west to north-east close to the coast. This finding corroborates previous studies in this area. The remotely-sensed and NWW3 significant wave height data captured the strong swells observed along the coast of Côte d'Ivoire from the period 28 August–3 September 2011, which were responsible for an extreme erosion event of more than 12?m along that country's coastline. This extreme event was triggered by a strong storm in the region between 40° and 60° S that occurred eight days previously in the South Atlantic. The waves propagated as swells at a speed of about 875?km day–1 before reaching the northern African coast.  相似文献   

17.
Regional projection of future extreme wave heights around Korean Peninsula   总被引:1,自引:0,他引:1  
In this study, future changes in regional extreme wave heights around the Korean Peninsula are projected by using the results of an atmosphere general circulation model and a third-generation wave model. The direct use of the model output at each grid point is not appropriate even though high resolution of 20 km is used for the models. Therefore, the model output is grouped into six regions around the Korean Peninsula. The grouping approach is reasonable in assessing climate change effects with alleviated model uncertainty. The extreme wave heights are simulated for two climate periods of 1979–2003 (present climate) and 2075–2099 (future climate). The model results are validated by comparing the simulated wave heights for the present climate with observed and hindcasted wave data. The extreme wave heights for the future climate are then projected for different seasons and in different regions. The 50-year return wave height in summer is projected to increase in most regions, especially in the high-latitude Yellow Sea and the East Sea, while the wave height in winter is projected to decrease in all the regions, especially in the East Sea.  相似文献   

18.
Statistical analysis of the extreme values of the Baltic Sea level has been performed for a series of observations for 15–125 years at 13 tide gauge stations. It is shown that the empirical relation between value of extreme sea level rises or ebbs (caused by storm events) and its return period in the Baltic Sea can be well approximated by the Gumbel probability distribution. The maximum values of extreme floods/ebbs of the 100-year recurrence were observed in the Gulf of Finland and the Gulf of Riga. The two longest data series, observed in Stockholm and Vyborg over 125 years, have shown a significant deviation from the Gumbel distribution for the rarest events. Statistical analysis of the hourly sea level data series reveals some asymmetry in the variability of the Baltic Sea level. The probability of rises proved higher than that of ebbs. As for the magnitude of the 100-year recurrence surge, it considerably exceeded the magnitude of ebbs almost everywhere. This asymmetry effect can be attributed to the influence of low atmospheric pressure during storms. A statistical study of extreme values has also been applied to sea level series for Narva over the period of 1994–2000, which were simulated by the ROMS numerical model. Comparisons of the “simulated” and “observed” extreme sea level distributions show that the model reproduces quite satisfactorily extreme floods of “moderate” magnitude; however, it underestimates sea level changes for the most powerful storm surges.  相似文献   

19.
The three-parameter generalized-extreme-value (GEV) model has been recommended by FEMA [FEMA (Federal Emergency Management Agency of the United States), 2004. Final Draft Guidelines for Coastal Flood Hazard Analysis and Mapping for the Pacific Coast of the United States. http://www.fema.gov/library/viewRecord.do?id=2188] for frequency analysis of annual maximum water levels in the Pacific coast of the United States. Yet, the GEV model's performance in other coastal areas still needs to be evaluated. The GEV model combines three types of probability distributions into one expression. The probability distributions can be defined by one of the three parameters of the GEV model. In this study, annual maximum water levels at nine water-level stations with long history data (more than 70 years) were chosen for analysis in five coastal areas: Pacific, Northeast Atlantic, East Atlantic, Southeast Atlantic, and Gulf of Mexico coasts. Parameters of the GEV model are estimated by the maximum likelihood estimation (MLE) method. Results indicate that probability distributions are characterized by the GEV Type III model at stations in the Pacific, Northeast, and East Atlantic coastal areas, while they are described by GEV Type II in stations of the Southeast Atlantic and Gulf of Mexico coastal areas. GEV model predictions of extreme water levels show good correlation to observations with correlation coefficients of 0.89 to 0.99. For predictions of 10% annual maximum water levels, the GEV model predictions are very good with errors equal to or less than 5% for all nine stations. Comparison of observations and GEV model estimations of annual maximum water levels for the longest recorded return periods, close to 100 years, revealed errors equal to or less than 5% for stations in the Pacific and Northeast Atlantic coastal areas. However, the errors range from 10% to 28% for other stations located in the East and Southeast Atlantic coasts as well as Gulf of Mexico coastal areas. Findings from this study suggest caution regarding the magnitudes of errors in applying the GEV model to the East and Southeast Atlantic coasts and Gulf of Mexico coast for estimating 100-year annual maximum water levels for coastal flood analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号