首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
2014年8月15日,山西省人工降雨防雹办公室在山西忻州开展了气溶胶和浅积云的飞机观测,本文利用机载云物理资料,详细分析了华北地区气溶胶、云凝结核(CCN)和浅积云微物理特性及其相互影响。主要结论有:(1)此次过程的边界层高度约为3600 m,不同层结情况下,0.1~3 μm尺度范围内的气溶胶粒子浓度Na、有效直径Da和CCN数浓度的垂直廓线明显不同,近地面Na可达2500 cm?3。(2)CCN的主要来源为积聚模态、爱根模态或者核模态的气溶胶颗粒,0.2%过饱和度下,气溶胶活化率(AR)在各高度层的结果变化不大;0.4%过饱和度下,AR随着高度增加而降低。(3)后向轨迹模式分析表明,2 km以下的气溶胶主要来自于当地城市排放,由细颗粒污染物组成;2 km以上的气溶胶主要来源于中国西北和蒙古地区的沙漠,由亚微米沙尘组成,溶解度相对较低,可作为潜在的冰核。(4)本文细致分析了两块相邻浅积云(Cu-1和Cu-2)的云物理特性。Cu-1云底高度约4500 m,云厚约600 m,云体松散,夹卷较多;云中液态含水量(LWC)基本保持在0.5 g m?3,云粒子浓度Nc平均值为278.3 cm?3,云滴有效直径Dc整体在15 μm以内;毛毛雨滴粒子浓度最大值为0.002 cm?3,云中几乎无降水粒子;粒子谱宽随着高度增加而增大,主要集中在30 μm以内。Cu-2云底高度约3900 m,云厚约1200 m,云体密实;云中过冷水丰沛,LWC有多个超过1 g m?3的区域,云顶附近出现冰晶,云中粒子从凝结增长状态直接进入到混合相态;积云内部粒子水平分布不均,同一高度Nc相差较大,最大可达1240 cm?3。Dc随着高度增加而增大;粒子谱宽随着高度增加而拓展,最大可达1100 μm,谱型由单峰向多峰转变;降水粒子和冰晶图像大多为霰粒子、针状和板状。  相似文献   

2.
祁连山是我国西北地区重要的生态屏障,地形云是祁连山主要降水云系,加强对祁连山云微物理过程的认识,对科学有效开展人工增雨作业、改善生态环境具有重要意义。利用2020年8月29日祁连山一次地形云降水过程的飞机观测数据,研究祁连山地区夏季云降水过程的微物理特征。此次降水过程云系呈明显的分层结构,云底高度为4000 m,整层含水量较丰富,云水大值区出现在4500~5300 m高度,与云滴高浓度区对应,云水含量主要由粒子直径为15~20 μm的云滴粒子贡献。小云粒子和大云粒子平均浓度分别为7.54 cm-3和0.86 cm-3,有效直径平均值分别为11.02 μm和198.11 μm,呈现出浓度小、直径大的特征。云系翻越祁连山过程中南北坡云微物理特征有明显变化,北坡(背风坡)粒子浓度、直径和液态水含量明显大于南坡(迎风坡)。祁连山地区不同高度小云粒子谱呈单峰型分布,Gamma分布可较好拟合直径小于50 μm的云滴谱,直径大于50 μm的云粒子谱更符合幂指数分布。凝华和聚并是冰相层冰雪晶的增长机制,混合层冰晶增长以贝吉龙过程为主,并伴有凇附和聚并生长。  相似文献   

3.
一次层状云飞机播云试验的云微物理特征及响应分析   总被引:3,自引:1,他引:2  
于丽娟  姚展予 《气象》2009,35(10):8-24
根据2005年3月21日在河南进行的层状云飞机播云试验的探测资料,对人工增雨催化前后层状云的宏微观物理量进行对比分析.结果表明,播云前在4200m高度平飞中观测到的小云粒子数浓度最大值为1.36×108个/m3,相应平均直径在5μm左右;小云粒子数浓度和云液态水含量在催化后均减小,播撒层下方变化较之播撒层变化更加显著;5000m高度小云粒子平均直径由催化前的17.32μm增加到催化后的18.07μm,平均直径明显增大,这些作业前后微观物理量的变化表明了人工催化层状云的物理响应.不同高度飞行具有相似的粒子谱分布.  相似文献   

4.
2003年8~9月北京及周边地区云系微物理飞机探测研究   总被引:7,自引:4,他引:7  
对2003年8~9月北京及周边地区4次飞机探测结果,特别对资料较完整的8月15日的层积云(Sc)和9月4日的层状云(St)系进行了较详细的分析。结果表明,FSSP-100测量的小云粒子(云滴、冰晶)最大浓度的变化范围从Sc云的120 cm-3到深厚高层云(As)的183 cm-3,平均直径7.22~16.05 μm。2D-GA2探头观测的冰粒子最大浓度变化范围从2.25×10-3 cm-3到3.29×10-1 cm-3。机载King热线液态水含量仪(King-LWC)的最大含水量变化范围为0.42~0.69 g/m3。St云垂直和水平分布不均匀特性很明显,高空(-10℃层以上)有较大的小云粒子浓度,达到120 cm-3以上,尺度也比较大,最大值为20 μm。云中液态水含量随高度缓慢减小,基本处于0.1~0.2 g/m3的范围。在-5.9~-8℃层,主要是柱状冰晶和少量结淞体,-8~-12℃层显示基本为结淞粒子,-20℃层左右表现出较多的枝状冰粒子。大冰粒子浓度基本在0.01~1 L-1左右。Sc云和St云的平均谱存在明显的差异。Sc云系的大粒子不同层的平均谱很相似,为单峰分布,谱宽达到1500 μm。越到云低层,云粒子浓度越低。St云系的大粒子不同层的谱分布差异比较大,云中在0~-8℃和-8~-12℃层,直径小于400 μm的粒子谱型基本相似,大于400 μm的大粒子谱分布差异较大,-8~-12℃层有明显的双峰分布特征,而0~-8℃呈现多峰特征,谱宽达到1300~1400 μm。  相似文献   

5.
基于2011年5月9日山西中部地区一次积层混合云降水的机载探测和地面雨滴谱观测资料,分析了空中云系微物理参量的垂直分布、冰晶形态及演变和地面降水的微物理特征。结果表明:此次积层混合云为冷云结构,垂直分布不均匀,云中过冷水较为丰沛,对流泡的存在造成云内不同区域云水含量不均匀。云滴的凝华增长导致5.3 km处大云粒子和降水粒子数浓度明显增加。小云粒子谱分布以单峰型为主,峰值直径主要位于5~6 μm或9~10 μm,大云粒子谱分布呈多峰型,不同高度处变化较大。此次降水观测到的冰晶形态包括板状、针柱状、柱帽状、辐枝状和不规则形状,4.9 km处受聚合和淞附过程的共同影响,辐枝状和针柱状冰晶增多,在4.1 km处融化层附近淞附状冰晶明显增加。地面降水受到雨滴谱仪布设位置的影响,其微物理结构主要呈现为层状云降水的特征。  相似文献   

6.
山西省层状云微物理结构探测分析   总被引:1,自引:1,他引:0  
针对山西省2009年6月18~19日的一次降水过程,利用机载DMT探测资料、Micaps常规天气资料和卫星云图等资料分析了这次降水的宏微观特征.结果表明:这次降水是锋面云系产生的,18日山西省处于冷锋锋前,19日为冷锋锋后;锋前云底较低,云层较厚,有夹层存在,云中上升气流很强,云滴数浓度最大为280 cm3、平均直径最大为15 μm、含水量最大值为0.35 g/m3,云滴谱呈双峰或多锋型;锋后云底较高,云层较薄,云滴数浓度最大值为170 cm-3、平均直径最大为10 μm、含水量最大值为0.05 g/m3,云滴谱呈双峰或多锋型;层状云在垂直方向和水平方向均存在不均匀性;垂直方向含水量变化与云滴尺度变化较为一致,水平方向含水量增加主要因为大云滴数密度的增加;T分布拟合云滴谱结果接近实际分布.  相似文献   

7.
利用山东省2007年10月27日1架次机载粒子测量系统(Particles Measuring System,PMS)积层混合云探测资料,分析了云中粒子浓度和尺度、液态含水量,以及小云滴和大云滴谱的垂直分布特征,比较了催化前后云微物理特征的变化。结果表明,催化前,云层中小云滴谱型为单峰,谱宽随高度增加先变窄后变宽,大云滴谱型在云低层为单峰,中高层为双峰谱,谱宽随高度增加先变宽后变窄,并且没有探测到降水粒子。催化后,小云滴尺度在低层减小、高层增加,整层液态水含量减小;大云滴浓度增加,尺度增大,出现降水粒子,固态粒子类型增多。在3 700~4 000 m高度层内小于10μm粒子明显增加,说明凝结过程比较明显,并且10~27.5μm粒子开始出现,启动了云滴的碰并机制。小云滴谱变化较小,基本为单峰谱,但在较大云滴处谱型略有起伏,在3 000m和3 300m高度的谱宽增宽。大云滴粒子谱有较大的变化,低层变成双峰谱,谱宽最宽可达650μm,中高层为双峰或多峰,峰值从小值向较大值移动。2D-P探头在催化云高层探测到降水粒子,谱型呈单调下降形态,谱宽最大为600μm。  相似文献   

8.
一次秋季冷锋降水过程气溶胶与云粒子分布的飞机观测   总被引:2,自引:1,他引:1  
利用机载PMS(Particle Measuring Systems)测量系统,对2008年10月4—5日石家庄地区一次冷锋降水云系的3次气溶胶和云粒子探测资料进行了分析。结果表明,冷锋过境降水前后,气溶胶粒子分布差异较大。降水发生前,气溶胶粒子平均数浓度约为103cm-3,平均直径为0.95μm;气溶胶主要集中于3000m高度以下的对流层低层,云内气溶胶数浓度明显减少。降水发生后,气溶胶粒子平均数浓度约为102cm-3,比降水前约小1个量级,平均直径为1.28μm;气溶胶主要集中于1200m以下的近地面层,其数浓度随高度增加而降低。气溶胶粒子浓度在低层云区内水平变化较小,而在无云区和云下近地层水平起伏较大。云粒子平均浓度比气溶胶小1~2个量级。气溶胶粒子平均谱主要呈双峰型,而云粒子谱主要为单峰型。  相似文献   

9.
台风眼壁及周围螺旋云带云属性垂直分布研究   总被引:1,自引:0,他引:1  
选取2006—2010年间CloudSat监测到热带气旋中心的7个案例,利用CloudSat和其它A-Train卫星的反演数据,主要分析了台风眼壁及周围螺旋云带的云微物理属性的垂直分布并给出了初步的概念模型。结果表明,云中冰水分布在5 km以上高度。冰粒子等效半径随云高度增加呈减小趋势,大值区主要分布在5~10 km高度,7个热带气旋的最大值为171.7~226.6 μm;冰粒子数浓度随云高度增加呈增大趋势,大值区分布在13 km以上高度,7个热带气旋的最大值为550~2 148 个/l;冰水含量随云高度增加呈先增后减的趋势,大值区分布在8~15 km高度,7个热带气旋的最大值为986.0~4 009.0 mg/m3。云中液态水分布在0.5~9.0 km高度。液态水粒子等效半径大值区分布在3~9 km高度,7个热带气旋的最大值为19.1~29.4 μm;液态水粒子数浓度大值区分布在6 km以下高度,7个热带气旋的最大值为93~117 个/l;液态水含量大值区分布在5 km左右高度,7个热带气旋的最大值为659.0~2 029.0 mg/m3。台风或超强台风阶段,云体最大高度存在于台风眼壁,眼壁云高可达17~18 km;近地表降水率、冰水柱含量的高峰值大多存在于台风眼壁区域,其中眼壁区域的近地表降水率可超过20.0 mm/h,冰水柱含量可超过9.1 kg/m2。7个热带气旋的垂直降水率和液态水柱含量值分别小于11.3 mm/h和2.7 kg/m2。   相似文献   

10.
本文利用机载云粒子探测设备对2014年11月6日至12月25日期间在江西地区探测获得的7次暖云飞行个例资料,详细分析降水云和非降水云的微物理结构特征。云雨自动转化阈值函数(T)是描述云内碰并强度的重要微物理参量。我们发现T值在云内分布呈现云底较小,随着云内高度的增加T值逐渐增大,并且在云中部和上部达到最大值;研究还发现降水云的T值在0.6以上的频率远大于非降水云,表明降水云中的碰并过程更强,云滴更易通过凝结和碰并过程形成雨滴,符合暖云降水机制。降水云中云滴谱相对离散度(ε)和云滴数浓度(Nc)的负相关程度较非降水云更为显著,随着T的增大,二者的负相关程度增强;相比于云滴平均半径(ra)的变化,云滴谱标准差(σ)的变化主导ε–Nc负相关程度的增强。  相似文献   

11.
气溶胶与云的垂直分布特征是气溶胶间接气候效应关注的重点。基于2018年7—8月华北中部6架次飞机观测数据,研究气溶胶和云滴的垂直和水平分布特征。结果表明:华北中部780~5687 m高度内气溶胶数浓度( Na )平均值为821.36 cm-3,最大量级可达到104 cm-3,云中气溶胶数浓度(Nacc)占总颗粒浓度的80%以上,表明细颗粒占大多数,气溶胶粒子算术平均直径( Dm )平均值为0.12~0.52 μm;大气层结对气溶胶垂直分布影响较大,逆温阻挡气溶胶垂直输送,高空(高度2000 m以上) Dm 的垂直分布受到相对湿度影响较大; Na 和 Dm 在垂直方向波动较大,水平方向波动较小;低层云中云滴数浓度(Nc)较大、液态水含量(L)较小,而中层和高层云中Nc较小、L较大,Nc和云滴有效半径(Re)的概率密度函数均为双峰型分布,L的概率密度函数为单峰型分布;气溶胶数浓度谱基本呈现多峰型分布,而云滴数浓度谱多呈现单峰型分布。  相似文献   

12.
利用2011年和2013年夏秋季在青藏高原中东部开展的11架次气溶胶特征飞机观测数据,分析气溶胶数浓度、数谱及核化相关特征。结果表明:受天气系统、地形和地表影响,观测区内气溶胶数浓度(Na)和体积直径(Dv)的垂直和水平分布差异较大,Na呈西北高、东南低,Dv低层大、高层小,局地中高层有沙尘。格尔木盛行东风时,云降水对低层气溶胶有清除作用,Na和Dv明显降低,6.2 km高度和7.2~7.4 km高度的中高空受高原大风或对流影响形成沙尘;盛行西风时,低层Dv以0.5~0.8 μm为主,随高度升高和风速增大Na升高,Dv变幅较小,6.2 km高度也有沙尘;不同天气系统影响下6.5 km高度以上均输入亚微米颗粒,Na达5×103 cm-3,8.0 km高度盛行东风时比西风时Na更高,Dv更小,谱垂直分布也有以上特征,整层输入以偏北或偏西路径为主。不同过饱和度测量云凝结核数浓度(Nccn)表明,除格尔木6.0 km高度以下核化率(Nccn/Na)在21%~47%外,其他观测区平均核化率介于1%~16%,6.0~8.5 km高度的核化率总体偏低;当Na增加时核化率明显下降,且过饱和度1%~2%,-15~-5℃层或粒径1~3 μm时的核化率相对偏高。  相似文献   

13.
An algorithm is described for generating stochastic three-dimensional (3D) cloud fields from time–height fields derived from vertically pointing radar. This model is designed to generate cloud fields that match the statistics of the input fields as closely as possible. The major assumptions of the algorithm are that the statistics of the fields are translationally invariant in the horizontal and independent of horizontal direction; however, the statistics do depend on height. The algorithm outputs 2D or 3D stochastic fields of liquid water content (LWC) and (optionally) effective radius. The algorithm is a generalization of the Fourier filtering methods often used for stochastic cloud models. The Fourier filtering procedure generates Gaussian stochastic fields from a “Gaussian” cross-correlation matrix, which is a function of a pair of heights and the horizontal distance (or “lag”). The Gaussian fields are nonlinearly transformed to give the correct LWC histogram for each height. The “Gaussian” cross-correlation matrix is specially chosen so that, after the nonlinear transformation, the cross-correlation matrix of the cloud mask fields approximately matches that derived from the input LWC fields. The cloud mask correlation function is chosen because the clear/cloud boundaries are thought to be important for 3D radiative transfer effects in cumulus.The stochastic cloud generation algorithm is tested with 3 months of boundary layer cumulus cloud data from an 8.6-mm wavelength radar on the island of Nauru. Winds from a 915-MHz wind profiler are used to convert the radar fields from time to horizontal distance. Tests are performed comparing the statistics of 744 radar-derived input fields to the statistics of 100 2D and 3D stochastic output fields. The single-point statistics as a function of height agree nearly perfectly. The input and stochastic cloud mask cross-correlation matrices agree fairly well. The cloud fractions agree to within 0.005 (the total cloud fraction is 18%). The cumulative distributions of optical depth, cloud thickness, cloud width, and intercloud gap length agree reasonably well. In the future, this stochastic cloud field generation algorithm will be used to study domain-averaged 3D radiative transfer effects in cumulus clouds.  相似文献   

14.
Results of aircraft investigations of the microphysical structure and properties of an As-Cs cloud system in the Arctic are presented. Data were collected over the Beaufort Sea using the US National Center for Atmospheric Research (NCAR) C-130 research aircraft. One of the modern sets of instruments was used to study the microphysical cloud structure. It was found that the clouds consisted of several layers of limited horizontal length. Spherical crystals were the prevailing habit. A decrease in their concentration with height decrease was discovered. Measurements of particle size spectra indicate their significant inhomogeneity. Spectra parametrization was carried out with the help of a gamma distribution for particles less smaller than 50 μm and exponential distribution for particles larger than 50 μm.  相似文献   

15.
山西省层状云飞机云物理观测试验结果分析   总被引:1,自引:0,他引:1  
利用山西省2008年-2010年64架次云结构的粒子测量系统(DMT)探测资料,配合地面观测和卫星资料统计分析了层状云系的宏微观特征。发现:降水性层状云低云含水量垂直方向上平均为0.03g,m^3,中云含水量垂直方向上平均为0.05g/m30对比分析降水云和非降水云系的微物理特征量,两者存在显著的差异,降水性层状云云粒子有效半径要达到10μm-14μm。对云系不同温度层的微物理特征和云中水分按不同粒子尺度的分配特征进行了对比分析,结果表明:降水性层状云在垂直方向上的微物理结构特征非常明显,也是分层的。高层主要是冰相粒子,主要是冰雪晶,随高度降低冰雪晶的尺度增大,在四个典型温度层的观测中,LWC、云粒子及降水的浓度、尺度相较有很大不同。云中水分按不同粒子尺度的分配可以看出,直径20μm、30μm的粒子含水量较高,对云中液态水含量的贡献较大,降水粒子主要由20μm、30μm的粒子转化。  相似文献   

16.
利用2009年5月8日多普勒雷达资料和飞机穿云观测资料,综合分析了西风槽影响下山西省一次积层混合云的形成过程和微物理结构。结果表明,此次飞机探测到的积层混合云是由对流单体多次并合形成的带状对流云团减弱后形成的,云中嵌有明显的对流泡,最大强度为45~50dBZ,最大垂直尺度在6km左右。CDP(cloud droplet probe,前向散射粒子谱探头)、CIP(cloud ima-ging probe,二维灰度云粒子探头)、PIP(precipitation imaging probe,二维灰度降水粒子探头)测量的平均数浓度变化范围分别是132.4~220.2cm-3、1.54×10-1~6.28×100cm-3、9.09×10-4~7.34×10-3cm-3。二维图像表明,冷层中的固态粒子主要是形状不规则的霰粒子,说明过冷水供应充足;在-7℃左右观测到柱状聚合体和凇附程度不同的冰雪晶粒子,表明柱状冰晶通过凝华形成后,碰并和凇附是其增长为霰粒子的重要机制。不同高度的CDP平均谱(2~50μm)存在一定的差异,因低层水汽凝结作用较强,2~18μm的云粒子数浓度基本随高度的增加而降低;因暖层中碰并效率低和冷层中小冰晶浓度随高度增加,24~35μm粒子数浓度随高度增加而增大。CIP平均谱(25~1550μm),除4100m为双峰谱外,其他高度均为单峰谱。PIP平均谱(100~6200μm),4450m高度处的粒子谱宽和数浓度最大,3200~4000μm之间出现大值区域,表明对流单体及周边区域为较大固态降水粒子的形成提供了良好的环境。  相似文献   

17.
2017-2020年利用运-12和空中国王-E350飞机搭载的国产云粒子测量设备在云南开展了 76架次积层混合云观测,数据分析表明:云南的云粒子数浓度远高于华北地区,云粒子(直径为2~50 μm)数浓度平均值为339.7 cm-3,最大值为1067.6 cm-3,平均含水量为0.181 g·m-3,最大值为2.827 ...  相似文献   

18.
环北京地区积层混合云微物理结构飞机联合探测研究   总被引:6,自引:2,他引:4  
利用北京、山西和河北三省市飞机在环北京地区探测的积层混合云微物理结构特征资料,结合卫星等宏观观测资料,分析了环北京地区积层混合云系空间云微物理结构特征。结果显示,冷锋云系前部,云内部微物理参数空间分布不均匀,2700m以上较大,垂直方向云粒子浓度和直径呈正相关关系,浓度极值间差7个量级,大滴粒子浓度差7个量级,降水粒子浓度差6个量级,水平方向云粒子浓度和直径分布不均匀,呈反相关关系。冷锋云系中部,云微物理参数垂直分布不均匀,在2500~3600m和4000m以上高度层出现云粒子峰值,且云粒子浓度和直径呈反相关关系,云滴粒子浓度极值间差6个量级,大滴粒子浓度差7个量级,降水粒子浓度差5个量级,水平方向云粒子分布不均匀,云粒子浓度和直径呈反相关关系。冷锋云系前部,云粒子谱在4800m高度谱型为单峰谱,4200m高度谱型多峰分布,3600m高度谱型为双峰谱。云降水粒子谱三高度层谱型差异不大,4800m高度谱型为单调递减谱,峰值在小粒子端(≤100μm),4200m和3600m高度谱型相似,为双峰谱,峰值分别在≤小于100μm和230μm处。降水粒子谱三高度层谱型相似,都为单峰谱,峰值相差不大。冷锋云系中部,云粒子谱在三高度层谱型差异较大,4800m高度谱型为单峰谱,峰值在小滴端,4200m高度谱型为单峰谱,峰值在15μm处,3600m高度谱型为双峰谱,峰值分别在7μm和30μm处。云降水粒子谱三高度层谱型差异不大,4800m高度谱型为单调递减谱,峰值在小粒子端(≤100μm),4200m和3600m高度谱型相似,为双峰谱,峰值分别在≤100μm和200μm处。降水粒子谱三高度层谱型相似,都为单峰谱,峰值相差不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号