首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The sea-land breeze circulation (SLBC) occurs regularly at coastal locations and influences the local weather and climate significantly. In this study, based on the observed surface wind in 9 conventional meteorological stations of Hainan Island, the frequency of sea-land breeze (SLB) is studied to depict the diurnal and seasonal variations. The statistics indicated that there is a monthly average of 12.2 SLB days and an occurrence frequency of about 40%, with the maximum frequency (49%) in summer and the minimum frequency (29%) in autumn. SLB frequencies (41%) are comparable in winter and spring. A higher frequency of SLB is present in the southern and central mountains due to the enhancement effect of the mountain-valley breeze. Due to the synoptic wind the number of SLB days in the northern hilly area is less than in other areas. Moreover, the WRF model, adopted to simulate the SLBC over the island for all seasons, performs reasonably well reproducing the phenomenon, evolution and mechanism of SLBC. Chiefly affected by the difference of temperature between sea and land, the SLBC varies in coverage and intensity with the seasons and reaches the greatest intensity in summer. The typical depth is about 2.5 km for sea breeze circulation and about 1.5 km for land breeze circulation. A strong convergence zone with severe ascending motion appears on the line parallel to the major axis of the island, penetrating 60 to 100 km inland. This type of weak sea breeze convergence zone in winter is north-south oriented. The features of SLBC in spring are similar both to that in summer with southerly wind and to that in winter with easterly wind. The coverage and intensity of SLBC in autumn is the weakest and confined to the southwest edge of the central mountainous area. The land breeze is inherently very weak and easily affected by the topography and weather. The coverage and intensity of the land breeze convergence line is significantly less than those of the sea breeze. The orographic forcing of the cen  相似文献   

2.
The diurnal cycle of the mixing ratio MR is discussed for Padova, sited about 30 km from the sea. In the morning a noticeable increase of the MR can be noted until the nocturnal inversion is completely eroded; afterwards convective activity mixes the humid sublayer with dry air aloft, so that an abrupt drop in MR follows the break-up of the inversion; the minimum is generally reached after noon. The minimum is primarily due to the enhanced activity of the thermals at mid day. During the day, increases in wind speed are generally accompanied by the arrival of new air masses, so that no general statements about the MR can be made without knowledge of the local dynamic climatology. Clouds cause an increase in MR, due to the out-of-phase relation between the dampings of the turbulent diffusion coefficient for water vapour and of the evaporation rate of the soil. In the afternoon the MR increases again until after sunset, when the sea breeze (final phase) transports humid marine air inland practically unaltered.  相似文献   

3.
The urban impact on the sea breeze is studied by means of a mesoscale model with a detailed urban parameterisation. Four simulations are carried out on an idealised two-dimensional flat domain. In the base case, half of the domain is characterised by seaand the other half by rural land. In the urban case, an urban area 10 km wide is added near the shoreline. Simulations are performed for a moist rural soil (weak sea breeze) and for a dry rural soil (strong sea breeze). Results are analysed in order to evaluate the impact of the city on the wind, temperature and turbulent kinetic energy fields. The dispersion of a passive tracer emitted near the coastline is, also, used in the comparison. Results show that the city accelerates the sea-breeze formation in the morning (combinations of urban circulation and sea breeze), but it slows thesea-breeze front penetration. Moreover, the presence of the city enhances the recirculation processes and strongly modifies the pollutant dispersion. These effects are enhanced for a moist rural soil.  相似文献   

4.
一次冷锋过境后的海风三维结构数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究大尺度系统风对海风的影响以及海风三维结构特征,利用山东省123个地面自动站资料、青岛地区三十多个内陆及沿海、海岛观测站以及奥帆赛场3个浮标站资料,对2006年8月21日青岛一次海风个例进行了分析,并利用美国俄克拉荷马大学风暴分析预测中心开发的ARPS(the Advanced Regional Prediction System)模式,对海风过程进行了数值模拟研究。结果发现:在较强的离岸风背景下,当内陆气温高于海面气温2℃左右时,海风也可以发生。海风首先在海岸线附近的海上开始,发展的同时向内陆及远海地区推进。海风低层环流很浅,主要位于500 m以下。在较强的偏北离岸风下,海风向内陆推进的距离很短。偏北的大尺度系统风由于渤海冷下垫面的影响,不利于青岛海风的维持。海风开始时,在1500~2500 m高度处同时有反环流出现,但直到傍晚前后,海风的垂直环流圈才发展得比较清晰,其高度也更接近地面。海风消亡后,高层的垂直环流圈及反环流维持3 h左右才逐渐消亡。  相似文献   

5.
Observed boundary-layer circulations close to the confluence of the Negro and Solimões rivers near Manaus in the Brazilian equatorial Amazon forest were presented in Part I. These are shown through linear analysis and second-order turbulence modelling to be aspects of a river breeze superimposed on the basic flow. Linear analysis is presented to estimate the spatial structure and intensity of a breeze induced by a river with width and thermal contrast similar to that observed in the central Amazon. It is found that observed thermal contrasts are sufficient to produce a river breeze that can be perceived more than 20 km inland daily. A one-dimensional second-order closure model is used to show that observed nocturnal low-level wind maxima and diurnal surface wind rotation are aspects of a river breeze interacting with the seasonally-varying mean flow. At night, partial decoupling of the surface from the lower atmosphere allows the land breeze to be expressed as a low-level wind maximum. During the day, convective mixing communicates upper level winds to the surface during rapid morning boundary-layer growth. Rotation of the surface wind follows as the river breeze circulation is then superimposed.  相似文献   

6.
采用WRF中尺度天气预报模式,针对海南岛多云天气条件下的一次典型海风个例,对局地海风环流结构进行数值模拟,分析海风环流的演变特征,并通过设计改变海南岛地形的敏感性试验,探究地形对海南岛局地海风环流结构以及云水分布的影响。结果表明:海岛西部陡峭的山区造成海风强迫抬升,偏南背景风使得海岛北部高空回流明显,海岛西部、北部的海风结构较为完整;地形高度越高,海岛南部山区的阻挡作用越强,西部地区的海风高空回流特征越显著,西部、西北部云水混合比的位置也越深入内陆;受南海季风的影响,与晴空天气相比,多云天气下海风强盛期全岛的最大风速稍大,海风在垂直方向上达到的高度更高;移平地形后,多云天气下全岛风速平均仅减少2~3 m·s^-1,而晴空天气下全岛风速则大大减弱,即多云天气下海风环流水平结构受地形的影响比晴空天气下弱。  相似文献   

7.
梁钊明  高守亭  王东海  王彦 《大气科学》2013,37(5):1013-1024
海风锋与沿海强对流天气密切相关,而城市化发展对沿海地区下垫面的改变会对海风锋特征产生影响。鉴于此,本文利用耦合了新一代城市物理方案UCP-BEM(Urban Canopy Parameterization-Building Energy Model)的WRF(Weather Research and Forecasting)模式开展数值试验分析了城市下垫面对渤海湾海风锋特征的影响。结果显示:城市下垫面高粗糙度对低层海风风速的明显削弱造成海风锋往内陆推进距离稍减,低层辐合和上升运动减弱;城市下垫面较大的向上感热通量和较小的向上水汽通量以及高粗糙度对海风的削弱的共同作用造成冷湿海风对低层大气的降温和增湿幅度减弱;高粗糙度的城市下垫面对海风环流的摩擦力效应使得海风得到抬升,这导致了冷湿海风对低层大气的降温和增湿的垂直范围得到提升;受这些结果影响,海风锋背后低层有效位能减小,但垂直分布范围扩大,从而造成对流抑制高值区抬升,同时海风锋背后的静力不稳定区变厚,其上面的动力不稳定区则变薄,但不稳定区总厚度基本不变。  相似文献   

8.
日照沿海海陆风的气候特点及其对天气的影响   总被引:9,自引:2,他引:7  
使用近海海温资料和莒县站、日照站气象资料,用对比分析的方法分析了日照地区沿海海陆风的气候特征及对当地天气的影响。发现海陆风明显的季节变化和日变化对当地气温、降水、湿度及天空状况等气象要素的空间和时间分布影响显著。海风强盛季节的午后和陆风强盛季节的早上,沿海的温度梯度常具有海风锋和海岸锋的特征,使沿海地区低云和雷暴天气明显增多,降水分布具有明显的海陆风和地形影响特征。  相似文献   

9.
Surface and remote-sensing instruments deployed during ESCOMPTE experiment over the Marseille area, along the Mediterranean coast, were used to investigate the fine structure of the atmospheric boundary layer (ABL) during sea-breeze circulation in relation to pollutant transport and diffusion. Six sea-breeze events are analyzed with a particular focus on 25 June 2001.Advection of cool and humid marine air over land has a profound influence on the daytime ABL characteristics. This impact decreases rapidly with the inland distance from the sea. Nearby the coast (3 km inland), the mixing height Zi rises up to 750 m and falls down after 15:00 (UT) when the breeze flow reaches its maximum intensity. A more classical evolution of the ABL is observed at only 11-km inland where Zi culminates in the morning and stabilizes in the afternoon at about 1000 m height.Fine inspection of the data revealed an oscillation of the sea-breeze with a period about 2 h 47 min. This feature, clearly discernable for 3 days at least, is present in several atmospheric variables such as wind, temperature, not only at the ground but also aloft in the ABL as observed by sodar/RASS and UHF wind profilers. In particular, the mixing height Zi deduced from UHF profilers observations is affected also by the same periodicity. This pulsated sea-breeze is observed principally above Marseille and, at the northern and eastern shores of the Berre pond.In summary, the periodic intrusion over land of cool marine air modifies the structure of the ABL in the vicinity of the coast from the point of view of stability, turbulent motions and pollutants concentration. An explanation of the source of this pulsated sea-breeze is suggested.  相似文献   

10.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

11.
利用浙江省常规气象站观测资料、地面自动站加密资料、新一代多普勒天气雷达资料、NCEP GFS分析资料以及WRF中尺度模式,对2013年7月29日发生在宁波市地区的一个局地强雷暴天气过程进行了诊断分析和数值模拟。通过对天气环流和数值模拟结果的分析发现:本次强雷暴过程发生在较稳定的大气背景下,主要影响系统是中尺度辐合线海风锋;多普勒雷达出现弱窄带回波时,对应中尺度辐合线海风锋;海风锋向内陆推进时,对应站点温度降低、湿度增大。WRF模式能较好地模拟出此次雷暴过程以及宁波地区低层海风锋环流,高空回流随时间和空间的演变特征;海风锋的锋生造成的地转强迫促使次级环流加强,在东西风辐合线西侧有垂直上升运动出现;通过与敏感试验的对比可知,海陆热力差异是影响雷暴降水强度、海风锋水平垂直环流的重要因素。  相似文献   

12.
13.
The inland and offshore propagation speeds of a sea breeze circulation cell are simulated using a three-dimensional hydrostatic model within a terrain-following coordinate system. The model includes a third-order semi-Lagrangian advection scheme, which compares well in a one-dimensional stand-alone test with the more complex Bott and Smolarkiewicz advection schemes. Two turbulence schemes are available: a local scheme by Louis (1979) and a modified non-local scheme based on Zhang and Anthes (1982). Both compare well with higher-order closure schemes using the Wangara data set for Day 33–34 (Clark et al., 1971).Two-dimensional cross-sections derived from airborne sea breeze measurements (Finkele et al. 1995) constitute the basis for comparison with two-dimensional numerical model results. The offshore sea breeze propagation speed is defined as the speed at which the seaward extent of the sea breeze grows offshore. On a study day, the offshore sea breeze propagation speed, from both measurements and model, is -3.4 m s-1. The measured inland propagation speed of the sea breeze decreased somewhat during the day. The model results show a fairly uniform inland propagation speed of 1.6 m s-1 which corresponds to the average measured value. The offshore sea breeze propagation speed is about twice the inland propagation speed for this particular case study, from both the model and measurements.The influence of the offshore geostrophic wind on the sea breeze evolution, offshore extent and inland penetration are investigated. For moderate offshore geostrophic winds (-5.0 m s-1), the offshore and inland propagation speeds are non-uniform. The offshore extent in moderate geostrophic wind conditions is similar to the offshore extent in light wind conditions (-2.5 m s-1). The inland extent is greater in light offshore geostrophic winds than in moderate ones. This suggests that the offshore extent of the sea breeze is less sensitive to the offshore geostrophic wind than its inland extent. However, these results hold only if it is possible to define an inland propagation speed. For stronger offshore geostrophic winds (-7.5 m s-1), the sea breeze is completely offshore and the inland propagation speed is ill-defined.  相似文献   

14.
`Kanpachi Street Cloud (KSC)' is an unusual small-scalecumulus cloud line visible during calm summer conditions over a major street in the Tokyo metropolitanarea. In order to understand the mechanism leading to the formation of this cloud line,numerical simulations have been performed using the Regional Atmospheric Modelling System.The general characteristics of the simulated KSC agree well with observations. On alarge-scale view, the KSC can be characterized as a cumulus cloud line generated at the convergenceline of two sea breezes on the western side of Tokyo Bay, while on the microscale view, it resemblesBenard-type thermal convection modified longitudinally by wind shear.The location of the convergence line leading to the KSCformation coincides withthe Kanpachi street location, although the street itself does notmake any direct effect on the KSC formation. Additional numerical experiments were performed toidentify causes of the KSC formation in accordance with urbanization, by changing anthropogenicheat impact, land-cover and grid resolution.They confirmed that the formation of the KSC requirestwo meteorological processes at the same time:(1) the convergence of two sea breezes – the localsouth-eastern sea breeze from Tokyo Bay andan extended southern sea breeze from thePacific Ocean, respectively; (2) Forcing due to an urban heat island. It is shown that urbanization couldchange the intensity and position of the KSC through enhancement of local upward motions and changesin the near-surface horizontal pressure gradient between urban and sub-urban areas. Further,fine horizontal grid resolution is needed to be able to resolve these local thermal convection issues.  相似文献   

15.
东西向海岸线对局地性降水的作用   总被引:4,自引:1,他引:4  
刘正奇  谢巨伦 《气象》2003,29(12):41-44
利用中尺度地面观测资料,以广东省阳江—电白之间沿岸近似东西向的海岸线为例分析了东西向海岸线对局地性降水的作用。结果发现:夏季,在梯度风较弱的背景下,这一带沿海的海陆风环流非常显著,在海忙风环流更替的后半夜—早晨和午后—傍晚期间,海风锋随着更替的局地性环流移经上述两地区沿岸,在其它条件的配合下可造成局地性降水天气。  相似文献   

16.
香港地区海陆风的显式模拟研究   总被引:2,自引:2,他引:2  
利用MM5模式对香港地区的海陆风进行了显式数值研究,模拟的风向、风速和温度与站点的观测值比较一致,较详细地分析了海陆风的日变化规律和三维结构特征,结果显示香港地区海风分布复杂,主要受偏西、偏南和偏东海风气流的影响,形成多个辐合带,海风锋最远可以深入内陆约90 km;陆风较简单,主要是偏北气流,陆风的风速和强度都比海风要弱,与山谷风、城市热岛环流等形成弱的辐合。香港是一个海岸曲折、多丘陵的地区,其中75%的面积是山区,为了研究这些丘陵地形对香港地区海陆风的影响,设计了保留海陆分布,去掉丘陵地形的敏感性试验,结果表明,由于丘陵地形的存在,在白天地形的热力作用是主要的,增强了海风的强度;而晚上动力阻挡作用比较明显,减弱了陆风的强度。  相似文献   

17.
Using data from automatic surface weather stations,buoys,lidar and Doppler,the diurnal variation and the three-dimensional structure of the sea breezes near the sailing sites of the Good Luck Beijing— 2006 Qingdao International Regatta from 18 to 31 August 2006 are analyzed.Results show that excluding rainy days and days affected by typhoon,the sea breezes occur nearly every day during this period.When Qingdao is located at the edge of the subtropical high at 500 hPa,the sea breeze is usually stronger,aroun...  相似文献   

18.
Tower measurements for the sea breeze front in the surface layer were carried out over the Kochi plain about 2 km inland from Tosa Bay in Shikoku, Japan during the period from August 1986 to October 1987. The study shows that the penetration time of the sea breeze has an annual variation, which is around 0830 JST in summer and 12 JST in winter, and that the width of the sea breeze front depends on the ratio of the sea breeze speed and the opposing flow speed. Moreover, the frontal width also shows a seasonal variation.The characteristics of the vertical winds (w) found just before and just after the passage of the sea breeze front lead to remarkable downdrafts and updrafts, respectively, with relatively large vertical velocities. Such behaviour ofw is shown to be consistent with the flow relative to the head of the front as reviewed by Simpson (1987), influencing the magnitude of the turbulence scale and the turbulent energy dissipation near the ground surface.  相似文献   

19.
Simultaneous observations were made by an acoustic sounder and on a meteorological tower during the month of May 1978 at the Atomic Power Station Tarapur. The probing range of the acoustic sounder was 700 m. The meteorological tower could sense wind and temperature at various levels up to a height of 120 m.The site being close to the sea shore, the thermal environment of the lower atmosphere is controlled mostly by land and sea breeze circulations. Thermal convective structures were seen during the daytime and also at night. The frequency of plume formation and the height of the plumes were, however, low during the night. The convective boundary layer in the daytime ranged from 400–500 m while at night it was mostly under 200 m. The observation of thermals at night is explained by the presence of a naturally stable marine layer above 30 m at this site. In the morning hours, winds suddenly change their direction allowing advection of a land breeze which is responsible for the formation of surface-based shear echoes to a height of 200 m during the transition period and for the subsequent development of an elevated layer due to mixing of two different air masses. A marine layer was also seen over Tarapur for a few days during the early evening and night hours. Its height was mostly around 400 m. It may indicate the presence of a subsidence inversion at Tarapur. The need for collection of supporting meteorological data to a height of 500 m by tethered balloon or some other suitable in-situ technique is stressed.  相似文献   

20.
The atmospheric boundary layer (ABL) is characterized by the turbulence eddies that transport heat, momentum, gaseous constituents and particulate matter from Earth’s surface to the atmosphere and vice versa. Thus, the determination of its height has a great importance in a wide range of applications like air quality forecasting and management. This study aims at estimating the height of the ABL in a suburban environment and at investigating its temporal variation and its relationship with meteorological variables, like temperature and wind. For this purpose, radiosonde data from the suburban area of Thessaloniki, Greece, are analyzed. The data analysis reveals that ABL height is usually below 200 m in the morning hours during all seasons of the year and that is also low when near-surface temperature and wind speed are low too. Additionally, noon ABL height exhibits a strong seasonal variation, reaching higher values during summer than during winter.Very high values of ABL height, of the order of ~3,000 m, are occasionally observed in Thessaloniki during summer. Moreover, sea breeze development during summer is related to a slight reduction of the ABL height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号