首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海南岛海风演变特征的观测分析   总被引:4,自引:1,他引:3  
王静  苗峻峰  冯文 《气象科学》2016,36(2):244-255
本文利用2012年海南岛19个常规气象站、5个海岛站的逐时资料以及海口站的探空资料,对海南岛海风的时空演变特征及在不同天气条件下海风发展的特征进行了统计分析,结果表明:2012年全年海南岛的海风多发生于春、秋季,频率分别为40%和33%,冬季最少(约为19%),尤其是一月,大部分站点均不足10%。夏季海风出现时刻较早;南部沿海海风结束时间晚于北部沿海;冬季海风开始得较晚,南部海风结束时间早于北部沿海。海风平均持续时间约为10 h。沿海站的海风风速主要集中在3~6 m·s~(-1),且最大风速值出现在春季,除琼山、海口站外,最大海风强度多出现于春夏季。内陆站中部山区附近海风出现频率较高、开始时刻较早、持续时间较长、强度也较大。海风向内陆的传播距离至少为70 km;海风易发生在阴天,其次为多云天气,少云日的海风最少。  相似文献   

2.
一次冷锋过境后的海风三维结构数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究大尺度系统风对海风的影响以及海风三维结构特征,利用山东省123个地面自动站资料、青岛地区三十多个内陆及沿海、海岛观测站以及奥帆赛场3个浮标站资料,对2006年8月21日青岛一次海风个例进行了分析,并利用美国俄克拉荷马大学风暴分析预测中心开发的ARPS(the Advanced Regional Prediction System)模式,对海风过程进行了数值模拟研究。结果发现:在较强的离岸风背景下,当内陆气温高于海面气温2℃左右时,海风也可以发生。海风首先在海岸线附近的海上开始,发展的同时向内陆及远海地区推进。海风低层环流很浅,主要位于500 m以下。在较强的偏北离岸风下,海风向内陆推进的距离很短。偏北的大尺度系统风由于渤海冷下垫面的影响,不利于青岛海风的维持。海风开始时,在1500~2500 m高度处同时有反环流出现,但直到傍晚前后,海风的垂直环流圈才发展得比较清晰,其高度也更接近地面。海风消亡后,高层的垂直环流圈及反环流维持3 h左右才逐渐消亡。  相似文献   

3.
香港地区海陆风的显式模拟研究   总被引:2,自引:2,他引:2  
利用MM5模式对香港地区的海陆风进行了显式数值研究,模拟的风向、风速和温度与站点的观测值比较一致,较详细地分析了海陆风的日变化规律和三维结构特征,结果显示香港地区海风分布复杂,主要受偏西、偏南和偏东海风气流的影响,形成多个辐合带,海风锋最远可以深入内陆约90 km;陆风较简单,主要是偏北气流,陆风的风速和强度都比海风要弱,与山谷风、城市热岛环流等形成弱的辐合。香港是一个海岸曲折、多丘陵的地区,其中75%的面积是山区,为了研究这些丘陵地形对香港地区海陆风的影响,设计了保留海陆分布,去掉丘陵地形的敏感性试验,结果表明,由于丘陵地形的存在,在白天地形的热力作用是主要的,增强了海风的强度;而晚上动力阻挡作用比较明显,减弱了陆风的强度。  相似文献   

4.
通过分析2008—2016年青岛流亭机场(简称青岛机场)各季节地面风向日变化规律,发现有两支海风环流影响青岛机场:一支是西支海风,风向210°~230°,一般上午影响机场,午后发展至最强,下午消失;另一支为南支海风,风向150°~170°,午后影响机场,下午取代西支海风,傍晚发展至最强,夜间逐渐减弱消失。两支海风夏季最为明显,南支海风强度季节性差异强于西支海风。海风对机场飞行的影响主要体现在两支海风引起的三种海风锋型低空风切变,分别为西支海风锋引起的侧风切变、两支海风环流相互作用引起的侧风切变以及南支海风引起的顺风切变,其季节及日变化规律为:夏季出现概率最大,春、秋季次之,冬季几乎不会发生;一天中最可能发生时段分别为08:00—11:00、12:00—15:00和15:00—17:00,具体时段在各季节略有差异。  相似文献   

5.
Observational results of the structure of the sea breeze over the urban and suburban areas of Tokyo for four summer days are presented.On two of these days, the inland penetration of the sea breeze front could be clearly traced. In one case, the sea breeze was first observed along the shores of Tokyo Bay around 0900 JST, and propagated in three hours through the Tokyo City area, the width of which is about 20 km. It then advanced inland at a rate of 16 km h–1. Prior to the arrival of the sea breeze at the suburban site, the mixing height had remained at about 600 m for four hours. With the arrival of the sea breeze front, accompanied by an abrupt change in wind speed and direction, the mixing height increased sharply to 1700 m. It is suggested that this behavior and the structure of the front are intensified due to the urban effect, or the difference in the thermal characteristics between the urban and rural areas.On the days without a sea breeze front, the land breeze system during the early morning was less intense, allowing the sea breeze to develop simultaneously with the inland valley wind and easily form a large-scale local wind system during the morning hours. In both cases, the vertical motion accompanying the local wind system works as a feedback mechanism to control the local winds by modifying the thermal and pressure fields.  相似文献   

6.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

7.
This study analyses the atmospheric boundary layer over the Bilbao metropolitan area during summer (13–18 Jul 2009) and winter (20–29 Jan 2010) episodes using the Environment–High Resolution Limited Area Model (Enviro-HIRLAM) coupled with the building effect parameterisation (BEP). The main objectives of this study are: to evaluate the performance of the model to simulate the land–sea breezes over this complex terrain; to assess the simulations with the integration of an urban parameterisation in Enviro-HIRLAM and finally; and to analyse the urban–atmosphere interactions. Even if the hydrostraticity of the model is a limitation to simulate atmospheric flows over complex terrain, sensibility tests demonstrate that 2.4 km is the optimal horizontal resolution over Bilbao that allows at the same time: to obtain satisfactory reproducibility of the large-scale processes and to explore the urban effects at local scale. During the summer episode, a typical regime of diurnal sea breeze from the NW-N-NE direction and nocturnal valley breezes from the SE direction are observed over Bilbao. The urban heat island (UHI) phenomenon is developed in the city centre expanding to the suburbs from 22 to 10 local time (LT), covering an area of 130 km2. The maximum UHI intensity, 1 °C, is reached at the end of the night (5 LT), and it is advected 12 km towards the sea by the land breezes. The urban boundary layer (UBL) height amplitude varies from 100 (night time) to 1,360 m (at 14 LT). During the winter episode, the land breeze dominates the atmospheric diffusion during the day and night time. The maximum UHI intensity, 1.7 °C, is observed at 01 LT. It is spread and remained over the city covering an area of 160 km2, with a vertical extension of 33 m. The UBL reaches 780 m height at 16 LT the following day.  相似文献   

8.
边界层参数化对海南岛海风环流结构模拟的影响   总被引:2,自引:0,他引:2  
利用WRF V3.7详细分析了应用8种边界层参数化方案(YSU、MYNN2.5、MYNN3、ACM2、BouLac、UW、SH、GBM)所模拟的2014年5月25日海南岛海风环流结构的差异,其中YSU、ACM2和SH为非局地闭合方案,MYNN2.5、MYNN3、BouLac、UW和GBM为局地闭合方案。结果表明:对于海风环流水平结构的模拟,15时,YSU、ACM2、BouLac、UW和SH模拟的北部海风较强,SH和GBM的内陆风速偏大。温度与海风发展强度相对应,MYNN2.5与MYNN3模拟的岛屿温度偏低,海陆温差小,海风相对较弱。对于海风环流垂直结构的模拟,09时海风开始,但强度较小,且存在残余陆风,向内陆传播距离较短,YSU、MYNN2.5和SH方案的海风相对较强。12时,海风已呈现出较为清晰的环流结构,YSU和ACM2的海风厚度及向内陆传播距离相对强于其它方案,MYNN3的环流结构则不太明显,且向内陆推进距离短,海风相对较弱。15时,海风发展强盛,MYNN2.5和MYNN3方案模拟的海风垂直强度较小,ACM2方案的海风垂直环流特征最为明显。18时,海风的强度和扰动均有所减弱,ACM2、BouLac和UW的整体海风相对强于其它方案。21时海风已基本转为陆风,BouLac与UW的陆风环流结构最为清晰。位温、水汽及海风垂直环流强度的发展变化与海风的演变过程基本一致。造成ACM2模拟海风偏强的原因是其边界层垂直混合偏强,形成了足够的湍流混合强度所致。对于边界层高度的模拟,ACM2的边界层顶最高,这与此方案所模拟的海风强度偏大相吻合,其它方案的边界层高度与海风强度并不完全一致。   相似文献   

9.
陆海风是由于海陆表面之间的比热容不同而导致的昼夜热量分布差异,从而在海岸附近引发的大气中尺度循环系统.本文利用多普勒风激光雷达Windcube100s首次对黄海西海岸的海陆风的循环结构进行了观测研究.在2018年8月31日至9月28日观测期间发现,海陆风发展高度一般在700 m至1300 m.海陆风转化持续的时间为6小时至8小时.在425m高度,海风水平风速出现最大值,平均为5.6 m s-1.陆风最大水平风速出现在370m,约为4.5 m s-1.最大风切变指数在1300m处,为2.84;在陆风向海风转换过程中,最大风切变指数在700m处,为1.28.在同一高度上,风切变指数在海风盛行和陆风盛行时的差值范围为0.2-3.6,风切变能反映出海陆风的发展高度.  相似文献   

10.
The inland and offshore propagation speeds of a sea breeze circulation cell are simulated using a three-dimensional hydrostatic model within a terrain-following coordinate system. The model includes a third-order semi-Lagrangian advection scheme, which compares well in a one-dimensional stand-alone test with the more complex Bott and Smolarkiewicz advection schemes. Two turbulence schemes are available: a local scheme by Louis (1979) and a modified non-local scheme based on Zhang and Anthes (1982). Both compare well with higher-order closure schemes using the Wangara data set for Day 33–34 (Clark et al., 1971).Two-dimensional cross-sections derived from airborne sea breeze measurements (Finkele et al. 1995) constitute the basis for comparison with two-dimensional numerical model results. The offshore sea breeze propagation speed is defined as the speed at which the seaward extent of the sea breeze grows offshore. On a study day, the offshore sea breeze propagation speed, from both measurements and model, is -3.4 m s-1. The measured inland propagation speed of the sea breeze decreased somewhat during the day. The model results show a fairly uniform inland propagation speed of 1.6 m s-1 which corresponds to the average measured value. The offshore sea breeze propagation speed is about twice the inland propagation speed for this particular case study, from both the model and measurements.The influence of the offshore geostrophic wind on the sea breeze evolution, offshore extent and inland penetration are investigated. For moderate offshore geostrophic winds (-5.0 m s-1), the offshore and inland propagation speeds are non-uniform. The offshore extent in moderate geostrophic wind conditions is similar to the offshore extent in light wind conditions (-2.5 m s-1). The inland extent is greater in light offshore geostrophic winds than in moderate ones. This suggests that the offshore extent of the sea breeze is less sensitive to the offshore geostrophic wind than its inland extent. However, these results hold only if it is possible to define an inland propagation speed. For stronger offshore geostrophic winds (-7.5 m s-1), the sea breeze is completely offshore and the inland propagation speed is ill-defined.  相似文献   

11.
大理苍山—洱海局地环流的数值模拟   总被引:4,自引:2,他引:2  
许鲁君  刘辉志  曹杰 《大气科学》2014,38(6):1198-1210
利用耦合了湖泊模型的WRF_CLM模式模拟了秋季大理苍山—洱海地区的局地环流特征。结果表明:模式对近地面温度、风向、风速的模拟与观测基本一致,模拟结果能较好地再现该地区山谷风和湖陆风相互作用的局地环流特征。在秋季,大理苍山的谷风起止时间为08:00~17:00(北京时,下同),湖风起止时间为09:00~19:00。局地环流受高山地形及洱海湖面影响明显,山谷风形成早于湖陆风1 h,夜间山风、陆风强盛于白天谷风、湖风。白天苍山谷风与洱海湖风的叠加作用会驱动谷风到达2600 m的高度,而傍晚最先形成的苍山山风则会减弱洱海的湖风环流。夜间盆地南部在两侧山风、陆风的共同作用下,形成稳定而持续的气旋式环流。日出以后,对流边界层迅速发展,边界层高度逐渐增高。陆地17:00温度达到最高,边界层高度也达到峰值2000 m,之后逐渐降低。日落后形成稳定边界层,边界层高度在夜间基本保持在100 m。相对于陆地,湖面白天边界层高度低300 m,夜间边界层高度高100 m。  相似文献   

12.
The sea-land breeze circulation (SLBC) occurs regularly at coastal locations and influences the local weather and climate significantly. In this study, based on the observed surface wind in 9 conventional meteorological stations of Hainan Island, the frequency of sea-land breeze (SLB) is studied to depict the diurnal and seasonal variations. The statistics indicated that there is a monthly average of 12.2 SLB days and an occurrence frequency of about 40%, with the maximum frequency (49%) in summer and the minimum frequency (29%) in autumn. SLB frequencies (41%) are comparable in winter and spring. A higher frequency of SLB is present in the southern and central mountains due to the enhancement effect of the mountain-valley breeze. Due to the synoptic wind the number of SLB days in the northern hilly area is less than in other areas. Moreover, the WRF model, adopted to simulate the SLBC over the island for all seasons, performs reasonably well reproducing the phenomenon, evolution and mechanism of SLBC. Chiefly affected by the difference of temperature between sea and land, the SLBC varies in coverage and intensity with the seasons and reaches the greatest intensity in summer. The typical depth is about 2.5 km for sea breeze circulation and about 1.5 km for land breeze circulation. A strong convergence zone with severe ascending motion appears on the line parallel to the major axis of the island, penetrating 60 to 100 km inland. This type of weak sea breeze convergence zone in winter is north-south oriented. The features of SLBC in spring are similar both to that in summer with southerly wind and to that in winter with easterly wind. The coverage and intensity of SLBC in autumn is the weakest and confined to the southwest edge of the central mountainous area. The land breeze is inherently very weak and easily affected by the topography and weather. The coverage and intensity of the land breeze convergence line is significantly less than those of the sea breeze. The orographic forcing of the cen  相似文献   

13.
In this paper,a simulation study is made on the sea breeze process over southwestern Bohai Gulf byuse of the Pielke mesoscale meteorological model.The simulated results show that when a south wind of 8m/s blows over the top of the model,a strong wind zone of 15—25 km wide with a maximum speed more than14 m/s,which is close and nearly parallel to the south shore,will appear at 160 m above the sea surface.When a strong sea breeze penetrates inland,there often appears a thermal internal boundary layer(TIBL)near shore.The inversion above the TIBL can damp the vertical dispersion of atmospheric pollution.Besides,it is also found that,for a three-dimensional sea/land breeze circulation,if the divergence centre inthe return flow departs vertically far from the correspondent convergence centre in the sea breeze,a centre ofstrong descending movement will be formed at the middle and upper levels of the return flow.The resultsin this paper is also applicable to the Laizhou Bay.  相似文献   

14.
Meteorological observation by a helicopter was carried out to investigate the structure of sea breezes over the coastal area of Tosa Bay in Shikoku island, Japan. Several groups of wave trains were found over the sea during a flight made on 25 November 1992. Not only the terrain barrier but the remaining cold air pools formed in valleys hindered further advance of the sea breeze inland, so that the presence of such wave trains may appear to be due to the effect of the secondary flow which supplies moister and cooler air from behind the sea breeze front.  相似文献   

15.
湛江东海岛二月海陆风环流特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
徐峰  王晶  张羽  张书文  黄克鑫 《气象科学》2012,32(4):423-429
利用2011年2月湛江东海岛风廓线雷达资料,系统分析了湛江东海岛2月平均风场特征及海陆风特征,结果表明:2月湛江东海岛150 m高度处以东偏北出现频率最大,在E、ENE和NE三个方位的风向出现频率之和为66.6%,偏西七个方位的风向出现频率之和仅为1%。以SSW方位为界,偏东风与偏西风的出现频率差异明显。各整点的月平均风速1:00—15:00变化较小,均在1 m/s左右波动;15:00—20:00风速及风速波动都较大,最大值出现在16:00时,为2.1 m/s。2011年2月中只有2日与14日两日符合海陆风日条件,两日共同海风时段为13:00—20:00,持续7 h;陆风时段为2:00—7:00,持续5 h。海风平均风速为2.1 m/s,陆风平均风速为0.8 m/s,海风平均风速明显大于陆风风速。海风与陆风环流垂直高度相差甚小,约1.2 km,风速随高度变化趋势均为先增后减;海风最大风速出现在750 m高度处,陆风出现在500 m高度处,500~750 m高度区间海风环流强度明显强于陆风环流。2 km之上为均匀一致的系统性西风环流。  相似文献   

16.
渤海湾西部海陆风的空间结构   总被引:12,自引:1,他引:12  
于恩洪  陈彬  白玉荣 《气象学报》1987,45(3):379-381
海陆风虽然只是距海岸线两侧几十公里的一种中尺度现象,但它对沿海一带的天气有很大的影响。它不仅对大范围的空气运动有作用,而且可以改变局地气候。 研究海陆风,对进一步开发利用沿海风能资源,弄清空气污染规律和中小尺度天气的物理机制,提高短时天气预报准确率都有重要意义。 作者在1983年—1984年间的春、秋、夏、冬分别进行了有关海陆风观测。观测站的分布见图1。  相似文献   

17.
利用WRF-Noah耦合中尺度模式对海南岛2012年7月5日的多云海风个例进行三维高分辨率数值模拟,重点分析多云天气条件下复杂地形区域的海风环流结构及其演变特征。通过观测资料与模拟结果的对比发现,WRF模式能够合理地模拟出岛屿四周的海风演变特征。与少云海风日相似,多云海风日中全岛海风于12时开始形成,15时海风发展最为强盛,影响范围最广,18时全岛海风的辐合程度最强,海风辐合区是主要的潜在降水区域。对比山区与平坦地区的海风环流发现,山区海风环流强盛期为13—18时,而平坦地区海风环流强盛期为15—18时。复杂的山地对海风环流结构有直接和间接的影响:一方面在山地地形动力阻挡和抬升作用下,海风环流变得更加清晰完整,间接延长了海风环流的维持时间;另一方面局地地形热力作用形成的谷风环流与海风几乎同时产生和消亡,两者汇合后,谷风的瞬间加强会引起海风锋锋消,瞬间减弱会引起海风锋锋生;两者同相叠加会使得海风环流结构更加完整。相比之下,平坦地区的海风受到的地形动力和热力作用小,海风水平分布比较规则,海风环流垂直结构的变化主要取决于不同方向海风之间的相互作用。  相似文献   

18.
We present an automated and manual algorithm for identifying past sea breeze episodes in the Bay of Alicante (southeastern coast of the Iberian Peninsula, IP, Spain) for a 6-year study period (2000–2005). The main goal was to provide databases for better understanding the functioning of sea breezes, which have a crucial influence on weather and climate in both coastal and inland areas and therefore affect human life in many ways. The algorithms apply a well-defined set of criteria based on meteorological and sea surface temperature measurements in order to detect past occurrences. The automated and manual identification techniques successfully identified a total of 475 and 1414 sea breeze events, respectively. A large database containing the significant characteristic parameters measured (onset time, cessation time, duration time, maximum wind speed, inland penetration, etc.) for these 475 sea breeze days is presented. We evaluated the accuracy of both selection techniques by means of comparison with independent objective and subjective techniques. Both databases are the major contribution of this paper and have been used in some climatological sea breeze studies and are also presented here for any coastal expert interested in numerical–theoretical, observational–experimental and climatological wind studies.  相似文献   

19.
Two-dimensional mesoscale model results support the claim of evening sea-breeze activity at Daly Waters, 280 km inland from the coast in northern Australia, the site of the Koorin boundary-layer experiment. The sea breeze occurs in conditions of strong onshore and alongshore geostrophic winds, not normally associated with such activity. It manifests itself at Daly Waters and in the model as a cooling in a layer 500–1000 m deep, as an associated surface pressure jump, as strong backing of the wind and, when an offshore low-level wind is present, as a collapse in the inland nocturnal jet.Both observational analysis and model results illustrate the rotational aspects of the deeply penetrating sea breeze; in our analysis this is represented in terms of a surge vector — the vector difference between the post- and pre-frontal low-level winds.There is further evidence to support earlier work that the sea breeze during the afternoon and well into the night — at least for these low-latitude experiments — behaves in many ways as an atmospheric gravity current, and that inland penetrations up to 500 km occur.  相似文献   

20.
A three-dimensional finite-element mesoscale model is used to study the interaction of two different but related mesoscale phenomena in an area having a complex pattern of surface heating. The model simulations have been compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment on the east coast of Florida.Numerical results and observations both show that the meso- scale flow field is significantly modified from the conventional coastal-flow patterns by the smaller meso- scale irregular geographic features in this area. A local river breeze is observed to develop around the Indian River almost the same time as the Atlantic sea breeze. A comparison of the sea and the river breezes shows a large difference in their horizontal circulations but only slight differences in their vertical scales. The sea breeze intensifies more rapidly than the river breeze, so that a lag of 1 to 1.5 h exists between their most developed stages. The river breeze is relatively stationary, whereas the sea breeze propagates inland, with an eventual merger of the two circulations occurring about 6–8 h after their onset.Different synoptic wind regimes create different flow structures. Well-defined sea- and river-breeze circulations become established under calm, weak offshore, and weak alongshore synoptic-wind conditions. Maximum vertical velocities occur in the sea-breeze front (river-breeze front) in the cases of calm (offshore winds). The sea breeze and the river breeze are weaker when the synoptic winds are stronger.Finally, the results from numerical experiments designed to isolate the rivers' effect indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.Journal Paper No. J-14150 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号