首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and inorganic nutrient concentrations were determined in samples from an area encompassing the Northeast Water Polynya from June to August 1993. In June, still ice-covered polynya area surface waters (PySW) had significantly higher (p<0.05) DOC concentrations (110 μM, n=68) than surface water outside the polynya area (96 μM, n=6). Melting ice and ice algae are suggested as DOC sources. DOC concentrations found in this study are consistent with other studies showing higher DOC concentrations in the Arctic than in other ocean areas. As the productive season progressed, DOC concentrations in Polynya surface water (PySW) decreased (p<0.05) from 110 to 105 μM, while DON concentrations increased (p<0.05) from 5.6 to 6.1 μM, causing a significant decrease (p<0.05) in the C : N ratios of DOM from spring (C : N ratio 20) to summer (C : N ratio 17). We found a significant (p<0.05) decrease in the DOM C : N ratio in all water masses within the polynya area as the productive season progressed. DON was the largest fraction of total dissolved nitrogen (TDN) in PySW and surface waters outside the polynya area. TDN was calculated as the sum of DON, nitrate, nitrite and ammonium concentrations. DON increased (p<0.05) from 62% to 73% of TDN in PySW from spring to summer, a result of increasing DON concentrations and decreasing inorganic nitrogen concentrations over the productive season. The seasonal accumulation of DON and the corresponding decrease in nitrate concentrations in waters with primary production indicate that it is important to take the DON pool into account when estimating export production from nitrate concentration decreases in surface waters. PySW TDN concentrations decreased (p<0.05) from 9.1 (n=61) to 8.6 μM (n=60) from spring (May 25 through June 19) to summer (July 1 through July 27). The seasonal decrease in surface water TDN concentrations corresponded to increases in TDN concentrations in deeper water masses within the Polynya. Most of the TDN increase in deep water was in the form of DON. A possible explanation is that PON was dissolved (partially remineralized) in the water column at mid depths, causing increases in the DON concentration. Transfer of N from PySW (with a short residence time in the polynya area) to Polynya Intermediate Water and deep waters of the Norske and Westwind Trough with multi-year residence times keeps N from leaving the polynya area. In spring, nutrients from degradation of OM in PyIW could support primary production. The role of PyIW as an OM trap could be important in supporting primary production in the polynya area.  相似文献   

2.
Dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) measured in deep profiles in the N-E Atlantic and in the N-W Mediterranean in the period 1984–2002 are described. After accurate validation, they show close agreement with those previously published.Classic profiles were obtained, with concentrations decreasing in deep waters. In the Mediterranean and in the Atlantic comparable concentrations were found in the 1500–2000 m waters, 44–46 μmol l−1 DOC, 2.6–2.8 μmol l−1 DON and 0.02–0.03 μmol l−1 DOP. In the surface layers, DOC concentrations were higher, but DON and DOP concentrations lower, in the Mediterranean than in the Atlantic, leading to higher element ratios in the Mediterranean. In autumn, values were, respectively, DOC:DON 17 vs. 14, DOC:DOP 950 vs. 500 and DON:DOP 55 vs. 35. The data suggest an increase in DOC and DON in the North Atlantic Central Water over 15 years, which may be linked to the North Atlantic climatic oscillations.Refractory DOM found in the 1500–2000 m layer exhibited C:N:P ratios of 1570:100:1. The labile+semi-labile (=non-refractory) DOM (nrDOM) pool was computed as DOM in excess of the refractory pool. Its contribution to total DOM above the thermocline in the open sea amounted to 25–35% of DOC, 30–35% of DON, and 60–80% of DOP. Element ratios of the nrDOM varied among stations and were lower than those of refractory DOM, except for C:N in the Mediterranean: nrDOC:nrDON 10–19, nrDOC:nrDOP 160–530 and nrDON:nrDOP 15–38. The specific stoichiometry of DOM in the Mediterranean led us to postulate that overconsumption of carbon is probably a main process in that oligotrophic sea.By coupling non-refractory DOM stoichiometry and relationships between the main DOM elements in the water column, the relative mineralization of C, N and P from DOM was studied. Below the thermocline, the preferential removal of phosphorus with regard to carbon from the semi-labile DOM can be confirmed, but not the preferential removal of nitrogen. In the ocean surface layers, processes depend on the oceanic area and can differ from deep waters, so preferential carbon removal seems more frequent. Bacterial growth efficiency data indicate that bacteria are directly responsible for mineralization of a high proportion of DON and DOP in the deep water.  相似文献   

3.
The objectives of this study were to investigate the seasonality, abundance, sources and bioreactivity of organic matter in the water column of the western Arctic Ocean. The concentrations of particulate and dissolved amino acids and amino sugars, as well as bulk properties of particulate and dissolved organic matter (DOM), were measured in shelf, slope and basin waters collected during the spring and summer of 2002. Particulate organic matter concentrations in shelf waters increased by a factor of 10 between spring and summer. Dissolved organic carbon (DOC) and nitrogen (DON) concentrations exhibited only minor seasonal variations, whereas dissolved amino acid concentrations doubled between spring and summer, and dissolved amino sugars increased by 31% in shelf waters of the Chukchi and Beaufort Seas. Concentrations of DOC did not exhibit a significant seasonal change in surface waters of the Canada Basin, but dissolved amino acid concentrations increased by 45% between spring and summer. No significant seasonal differences were detected in the concentration or composition of DOM in waters below 100 m in depth. Concentrations of particulate and dissolved amino acids and amino sugars were strongly correlated with chlorophyll-a, indicating a plankton source of freshly produced organic matter. The amino acid and amino sugar compositions of freshly produced DOM indicated that a large portion of this material is bioavailable. While freshly produced DOM was found to be relatively bioreactive, preformed DOM in the Arctic appears to be less bioreactive but similar in degradation state to average DOM in the Atlantic and Pacific. These data demonstrate substantial summer production of POM and DOM on the Chukchi and Beaufort shelves that is available for utilization in shelf waters and export to the Canada Basin.  相似文献   

4.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

5.
Dissolved organic matter (DOM) composition and dynamics in temperate shallow coastal bays are not well described although these bays may be important as local sources of organic carbon to ocean waters and are often sites of economically-important fisheries and aquaculture. In this study surface water samples were collected on a monthly to bi-monthly basis over two years from a mid-Atlantic coastal bay (Chincoteague Bay, Virginia and Maryland, USA). Dissolved organic carbon (DOC) concentrations and light absorbance characteristics were measured on sterile-filtered water, and high-molecular weight (> 1 kDa) dissolved OM (DOM) was isolated to determine stable isotope composition and molecular-level characteristics. Our time series encompassed both a drought year (2002) and a year of above-average rainfall (2003). During the dry year, one of our sites developed a very intense bloom of the brown tide organism Aureococcus anophagefferens while during the wet year there were brown tide bloom events at both of our sampling sites. During early spring of the wet year, there were higher concentrations of > 1 kDa DOC; this fraction represented a larger proportion of overall DOC and appeared considerably more allochthonous. Based upon colored dissolved organic matter (CDOM) and high-molecular weight DOM analyses, the development of extensive phytoplankton blooms during our sampling period significantly altered the quality of the DOM. Throughout both years Chincoteague Bay had high DOC concentrations relative to values reported for the coastal ocean. This observation, in conjunction with the observed effects of phytoplankton blooms on DOM composition, indicates that Chincoteague Bay may be a significant local source of “recently-fixed” organic carbon to shelf waters. Estimating inputs of DOC from Chincoteague Bay to the Mid-Atlantic Bight suggests that shallow productive bays should be considered in studies of organic carbon on continental shelves.  相似文献   

6.
At four stations in Tokyo Bay, pore water profiles of dissolved organic carbon (DOC), nitrogen (DON), phosphorus (DOP), and inorganic nutrients were determined at 3-month intervals over 6 years. Concentrations of dissolved organic matter (DOM) and nutrients were significantly higher in pore waters than in the overlying waters. Pore water DOC, DON, and DOP concentrations in the upper most sediment layer (0–1 cm) ranged from 246 to 888 μM, from 14.6 to 75.9 μM, and from 0.02 to 9.83 μM, respectively. Concentrations of DOM and nutrients in pore waters occasionally showed clear seasonal trends and were highest in the summer and lowest in the winter. The seasonal trends in the pore water DOM concentrations were coupled with trends in the overlying water temperature and dissolved oxygen concentration. Benthic effluxes of DON and DOP were low compared with those of inorganic nutrients, accounting for only 1.0 and 1.5 % of the total benthic effluxes of nitrogen and phosphorus, respectively; thus benthic DOM fluxes were quantitatively insignificant to the inorganic nutrient fluxes in Tokyo Bay. The DOM fluxes represented about 7, 3, and 10 % of the riverine discharge of DOC, DON, and DOP to Tokyo Bay, respectively.  相似文献   

7.
Cross-flow ultrafiltration (CFF) is often used to obtain separation and concentration of colloids from bulk natural water samples. Application of the ultrafiltration permeation model allows the quantitative determination of the low molecular weight material (LMW, < 1 kDa) and colloids in bulk dissolved organic matter (DOM) from measurements of time series permeate samples obtained from CFF. Detailed analysis of a Yukon River water sample shows that DOM absorption coefficient and fluorescence follow the permeation model and that the complex spectral optical properties of LMW DOM can be reconstructed from CFF data. A combination of measured and modeled data indicates that the LMW contribution to bulk DOM optical properties obtained from CFF can be grossly underestimated by the use of a low concentration factor (CF, the ratio of initial sample volume to retentate volume). Even at a relatively high CF of 19, optical properties of LMW DOM calculated from measurements of the retentate or integrated permeate would underestimate true values by 5–36%. In the Yukon River sample, LMW dissolved organic carbon represented 26% of the bulk concentration, but only 3–14% of the colored DOM was in the LMW fraction while 31–33% of bulk DOM florescence was due to LMW DOM. The contrasting optical properties of LMW and colloidal DOM support the concept that analysis of bulk DOM absorption and fluorescence properties reveals information about DOM molecular weight.  相似文献   

8.
The bioavailability and bacterial degradation rates of dissolved organic matter (DOM) were determined over a seasonal cycle in Loch Creran (Scotland) by measuring the decrease in dissolved organic carbon (DOC), nitrogen (DON) and phosphorous (DOP) concentrations during long-term laboratory incubations (150 days) at a constant temperature of 14 °C. The experiments showed that bioavailable DOC (BDOC) accounted for 29 ± 11% of DOC (average ± SD), bioavailable DON (BDON) for 52 ± 11% of DON and bioavailable DOP (BDOP) for 88 ± 8% of DOP. The seasonal variations in DOM concentrations were mainly due to the bioavailable fraction. BDOP was degraded at a rate of 12 ± 4% d– 1 (average ± SD) while the degradation rates of BDOC and BDON were 7 ± 2% d– 1 and 9 ± 2% d– 1 respectively, indicating a preferential mineralization of DOP relative to DON and of DON relative to DOC. Positive correlations between concentration and degradation rate of DOM suggested that the higher the concentration the faster DOM would be degraded. On average, 77 ± 9% of BDOP, 62 ± 14% of BDON and 49 ± 19% of BDOC were mineralized during the residence time of water in Loch Creran, showing that this coastal area exported C-rich DOM to the adjacent Firth of Lorne. Four additional degradation experiments testing the effect of varying temperature on bioavailability and degradation rates of DOM were also conducted throughout the seasonal cycle (summer, autumn, winter and spring). Apart from the standard incubations at 14 °C, additional studies at 8 °C and 18 °C were also conducted. Bioavailability did not change with temperature, but degradation rates were stimulated by increased temperature, with a Q10 of 2.6 ± 1.1 for DOC and 2.5 ± 0.7 for DON (average ± SD).  相似文献   

9.
Microbial availability and degradation rates of dissolved organic carbon (DOC) and nitrogen (DON) were estimated at two coastal stations (Horsens Fjord and Darss Sill) in Denmark, by measuring the decrease in DOC and DON concentrations during long-term laboratory incubations (150 days). The experiments used two different treatments: one only receiving a microbial inoculum and another additionally to the inoculum, carbon and phosphate to ensure nitrogen limitation. The additions of carbon and phosphate led to increased DON bioavailability in all experiments. The incubations showed that bioavailable DOC (BDOC) accounted for 22 ± 13% of total DOC in Horsens Fjord and 14 ± 5% at Darss Sill. Bioavailable DON (BDON) accounted for 43 ± 10% (Horsens Fjord) and 28 ± 12% of DON (Darss Sill). The linear relations between BDOM and DOM suggested that the DOC variations in Horsens Fjord were controlled by the available fraction, while this was only partly the case for DOC at Darss Sill and DON (both stations), showing that the refractory pool to some degree controlled the seasonal variations in DOM at these coastal stations. Additionally we found that DOC and DON were cycled at approximately the same speed, probably due to a high carbon demand of the microbial community. Calculating the amounts of DON degraded within the two areas using the obtained decay rates showed that compared with the ambient inorganic nitrogen levels BDON contained a large proportion (52 ± 37%, Horsens Fjord and 74 ± 19%, Darss Sill) of the bioavailable nitrogen (BDON + DIN). These calculations further suggested that bioavailable DOM was washed out of the respective areas and could contribute to heterotrophic growth in adjacent waters.  相似文献   

10.
We developed a simple and reliable method which allows simultaneous determination of organic forms of carbon (DOC), nitrogen (DON) and phosphorus (DOP) dissolved in seawater. Conversion of dissolved organic matter (DOM) to inorganic products (carbon dioxide, nitrate+nitrite and soluble reactive phosphate) is performed by a persulfate wet-oxidation in low alkaline condition. After oxidation, the concentration of the inorganic products dissolved in the sample was measured automatically by colorimetry using a 3-channel Technicon AutoAnalyzer system. A number of pure organic compounds were tested in the concentration range encountered in coastal and open ocean, indicating a high efficiency of the digestion procedure. The recovery range is similar to that obtained by other wet-oxidation procedures and by high-temperature catalytic oxidation techniques. Direct comparisons with usual methods used for separate determination of DOC, DON and DOP indicated a high efficiency of the procedure. Reproducibility tests demonstrated a very good precision (around 5%) for lagoonal and coastal waters, while precision was sometimes around 10–25% in oligotrophic oceanic waters, especially for DOP where values approached limits of detection for measuring phosphate. This method is highly suitable for routine analysis and especially appropriate for shipboard work.  相似文献   

11.
The variation of dissolved organic matter (DOM) and fluorescence characteristics during the phytoplankton bloom were investigated in Yashima Bay, at the eastern part of the Seto Inland Sea, Japan. We found significant accumulations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), chromophoric dissolved organic matter (CDOM) fluorescence, and UV260 during the phytoplankton bloom period in 2005, although lower accumulations of DOC and DON and only increases of CDOM fluorescence were observed during the bloom period in 2006. Little or no correlation between DOM and phytoplankton abundance might be due to the composition of DOM, which is a complex mixture of organic materials. The 3D-EEM results revealed that the DOM produced around the phytoplankton bloom period contained tyrosine, tryptophan, and humic-like substances. Our results showed that the occurrence of phytoplankton bloom contributed to the production of DOM in coastal water but the DOM accumulation depended on the type of phytoplankton bloom, the phytoplankton species in particular. From our results, we concluded that phytoplankton have a great role in the dynamics of DOM as a producer in a coastal environment.  相似文献   

12.
Tangential-flow ultrafiltration was used to isolate particulate and high-molecular-weight dissolved material from seawater collected at various depths and geographic regions of the Pacific and Atlantic Oceans. Ultrafiltration proved to be a relatively fast and efficient method for the isolation of hundreds of milligrams of material. Optical and electron microscopy of the isolated materials revealed that relatively fragile materials were recovered intact. Depth-weighted results of the size distribution of organic matter in seawater indicated that ˜ 75% of marine organic carbon was low-molecular-weight (LMW) dissolved organic carbon (< 1 nm), ˜ 24% was high-molecular-weight (HMW) dissolved organic carbon (1–100 nm), and ˜ 1% was particulate organic carbon (> 100 nm). The distribution of carbon in surface water was shifted to greater relative abundances of larger size fractions, suggesting a diagenetic sequence from macromolecular material to small refractory molecules. The average C:N ratios of particulate organic matter (POM) and HMW dissolved organic matter (DOM) were 7.7 and 16.7, respectively. Differences in C:N ratios between POM and HMW DOM were large and invariant with depth and geographic region, indicating that the aggregation of HMW DOM to form POM must be of minor significance to overall carbon dynamics. The stable carbon isotope composition (δ13C) of POM averaged −22.7%. in surface water and −25.2%. in subsurface water. Several possible explanations for the observed isotopic shift with depth were explored, but we were unable to discern the cause. The δ13C of HMW DOM samples was relatively constant and averaged −21.7%., indicating a predominantly marine origin for this material. The δ15N values of POM were highly variable (5.8–15.4%.), and the availability of nitrate in surface waters appeared to be the major factor influencing δ15N values in the equatorial Pacific. In the upwelling region nitrate concentrations were relatively high and δ15N values of POM were low, whereas to the north and south of the upwelling nitrate concentrations were low and δ15N values were high. The δ15N values of HMW DOM reflected the same trends observed in the POM fraction and provided the first such evidence for biological cycling of dissolved organic nitrogen (DON). Using the observed δ15N values and an estimate of meridional advection velocity, we estimated a turnover time of 0.3 to 0.5% day−1 for HMW DON. These results suggest a major role for DON in the upper ocean nitrogen cycle.  相似文献   

13.
海草凋落叶的溶解有机物的释放及其生物地球化学意义   总被引:1,自引:0,他引:1  
Dissolved organic matter(DOM) represents a significant source of nutrients that supports the microbial-based food web in seagrass ecosystems. However, there is little information on how the various fractions of DOM from seagrass leaves contributed to the coastal biogeochemical cycles. To address this gap, we carried out a 30-day laboratory chamber experiment on tropical seagrasses Thalassia hemprichii and Enhalus acoroides. After 30 days of incubation, on average 22% carbon(C), 70% nitrogen(N) and 38% phosphorus(P) of these two species of seagrass leaf litter was released. The average leached dissolved organic carbon(DOC), dissolved organic nitrogen(DON) and dissolved organic phosphorus(DOP) of these two species of seagrass leaf litter accounted for 55%, 95% and 65% of the total C, N and P lost, respectively. In the absence of microbes, about 75% of the total amount of DOC, monosaccharides(MCHO), DON and DOP were quickly released via leaching from both seagrass species in the first 9 days. Subsequently, little DOM was released during the remainder of the experiment. The leaching rates of DOC, DON and DOP were approximately 110, 40 and 0.70 μmol/(g·d). Leaching rates of DOM were attributed to the nonstructural carbohydrates and other labile organic matter within the seagrass leaf. Thalassia hemprichii leached more DOC, DOP and MCHO than E. acoroides. In contrast, E. acoroides leached higher concentrations of DON than T. hemprichii, with the overall leachate also having a higher DON: DOP ratio. These results indicate that there is an overall higher amount of DOM leachate from T. hemprichii than that of E. acoroides that is available to the seagrass ecosystem. According to the logarithmic model for DOM release and the in situ leaf litter production(the Xincun Bay, South China Sea), the seagrass leaf litter of these two seagrass species could release approximately 4×10~3 mol/d DOC, 1.4×10~3 mol/d DON and 25 mol/d DOP into the seawater. In addition to providing readily available nutrients for the microbial food web, the remaining particulate organic matter(POM)from the litter would also enter microbial remineralization processes. What is not remineralized from either DOM or POM fractions has potential to contribute to the permanent carbon stocks.  相似文献   

14.
依据2017年8—9月对黄海海域溶解有机物(DOM)的调查,探讨了夏季黄海海水中溶解有机碳(DOC)和有色溶解有机物(CDOM)的空间分布特征。在表层海水中,受陆源影响较大的近岸海域CDOM含量相对较高,北黄海冷水团区域由于水产养殖的饵料引起DOC浓度升高,且该部分DOC以无色为主。DOC浓度随深度逐渐降低,而CDOM逐渐升高,该特征在冷水团区域更为显著,因此DOC和CDOM在冷水团区域的表底差异远大于浅水区的非冷水团区域。陆源输入和初级生产是引起表层DOC升高的主要原因,而光漂白则引起CDOM降低,同时光漂白还导致表层水体中CDOM分子量和芳香性低于底层。底层溶解氧饱和度在冷水团为80%~93%,均表现为弱不饱和状态。层化不仅阻碍了O2向底层水体输送,还抑制了DOC和CDOM的垂向混合,这是引起冷水团区域表底层DOC和CDOM差异较大的主要原因。  相似文献   

15.
The stable isotopes of dissolved organic carbon (DOC) are a powerful tool for distinguishing sources and inputs of organic matter in aquatic systems. While several methods exist to perform these analyses, no labs routinely utilize a high temperature combustion (HTC) instrument. Advantages of HTC instruments include rapid analysis, small sample volumes and minimal sample preparation, making them the favored devices for most routine oceanic DOC concentration measurements. We developed a stable carbon DOC method based around an HTC system. This method has the benefit of a simple setup, requiring neither vacuum nor high pressures. The main drawback of the method is a significant blank, requiring careful accounting of all blank sources for accurate isotopic and concentration values. We present here a series of experiments to determine the magnitude, source and isotopic composition of the HTC blank. Over time, the blank is very stable at  20 ng of carbon with a δ13C of − 18.1‰ vs. VPDB. The similarity of the isotopic composition of the blank and seawater samples makes corrections relatively minor. The precision of the method was determined by oxidizing organic standards with a wide isotopic and concentration range (− 9‰ to − 39‰; 18 μM to 124 μM). Analysis of seawater samples demonstrates the accuracy for low concentration, high salinity samples. The overall error on the measurement is approximately ± 0.8‰.  相似文献   

16.
Production of dissolved organic matter (DOM) by heterotrophic microbial communities isolated from Loch Creran (Scotland) was studied in time course incubations in which cells were re-suspended in artificial seawater amended with variable proportions of glucose, ammonium and phosphate. The incubation experiments demonstrated that microheterotrophs released part of the substrate as new DOM, with a production efficiency of 11 ± 1% for DOC, 18 ± 2% for DON and 17 ± 2% for DOP. Estimating the impact of this production in Loch Creran, showed that from 3 ± 1% (DOC) to 72 ± 16% (DOP) of DOM could originate from the heterotrophic microbial community. The produced DOM (PDOM) was both bioavailable (BDOM) and refractory (RDOM). Bioavailability as assessed by the difference between the maximum and the end DOM concentration, was generally higher than found in natural systems, with DOP (73 ± 15%, average ± SD) more bioavailable than DON (70 ± 15%), and DON than DOC (34 ± 13%).The stoichiometry of PDOM was linked to both nutrient uptake and BDOM ratios. Absorption and fluorescence of DOM increased significantly during the incubation time, indicating that microheterotrophs were also a source of coloured DOM (CDOM) and that they produce both bioavailable protein-like and refractory humic-like fluorophores.  相似文献   

17.
Dissolved Organic Matter in Oceanic Waters   总被引:13,自引:0,他引:13  
The amount of information on oceanic dissolved organic matter (DOM) has increased dramatically in the last decade thanks to the advances in chemical characterization. This information has supported the development of some novel and important ideas for DOM dynamics in the ocean. Consequently, we have a better understanding of the importance of DOM in oceanic biogeochemical cycles. Here we review studies published mainly during 1995–2001, synthesize them and discuss unsolved problems and future challenges. The measurement, distribution and turnover of dissolved organic carbon (DOC) are presented as the bulk dynamics of the oceanic DOM. The size spectrum, elemental composition, and chemical compositions at molecular and functional group levels are described. The mechanisms proposed for the survival of biomolecules in DOM are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In the eastern North Water, most of the estimated annual new and net production of carbon (C) occurred during the main diatom bloom in 1998. During the bloom, at least 30% of total and new phytoplankton production occurred as dissolved organic carbon (DOC) and was unavailable for short-term assimilation into the herbivorous food web or sinking export. Based on particle interceptor traps and 234Th deficits, 27% of the particulate primary production (PP) sank out of the upper 50 m, with only 7% and 1% of PP reaching the benthos at shallow (≈200 m) and deep (≈500 m) sites, respectively. Mass balance calculations and grazing estimates agree that ≈79% of PP was ingested by pelagic consumers between April and July. During this period, the vertical flux of biogenic silica (BioSi) at 50 m was equivalent to the total BioSi produced, indicating that all of the diatom production was removed from the euphotic zone as intact cells (direct sinking) or empty frustules (grazing or lysis). The estimated flux of empty frustules was consistent with rates of herbivory by the large, dominant copepods and appendicularians during incubations. Since the carbon demand of the dominant planktivorous bird, Alle alle, amounted to ≈2% of the biomass synthesized by its main prey, the large copepod Calanus hyperboreus, most of the secondary carbon production was available to pelagic carnivores. Stable isotopes indicated that the biomass of predatory amphipods, polar cod and marine mammals was derived from these herbivores, but corresponding carbon fluxes were not quantified. Our analysis shows that a large fraction of PP in the eastern North Water was ingested by consumers in the upper 50 m, leading to substantial carbon respiration and DOC accumulation in surface waters. An increasingly early and prolonged opening of the Artic Ocean is likely to promote the productivity of the herbivorous food web, but not the short-term efficiency of the particulate, biological CO2 pump.  相似文献   

19.
The distribution of dissolved organic carbon (DOC) and nitrogen (DON) and particulate organic carbon (POC) and nitrogen (PON) was studied on a transect perpendicular to the Catalan coast in the NW Mediterranean in June 1995. The transect covered a hydrographically diverse zone, including coastal waters and two frontal structures (the Catalan and the Balear fronts). The cruise was conducted during the stratified period, characterized by inorganic nutrient depletion in the photic zone and a well established deep chlorophyll a maximum. DOC concentrations were measured using a high-temperature catalytic oxidation method, and DON was determined directly, with an update of the Kjeldahl method, after removal of inorganic nitrogen.The ranges of DOC and DON concentrations were 44–95 μM-C and 2.8–6.2 μM-N. The particulate organic matter ranged between 0.9 and 14.9 μM-C and from 0.1 to 1.7 μM-N. The DOC : DON molar ratio averaged 15.5±0.4, and the mean POC : PON ratio was 8.6±0.6. The distribution of dissolved organic matter (DOM) was inverse to that of the salinity. The highest concentrations of DOM were found in coastal waters and in the stations affected by the Catalan front, located at the continental shelf break.It was estimated that recalcitrant DOM constituted 67% of the DOM pool in the upper 50 m. The data suggest that accumulation of DOC due to the decoupling of production and consumption may occur in the NW Mediterranean during stratification and that the organic matter exported from the photic layer is dominated by C-rich material.  相似文献   

20.
鲍红艳  吴莹  张经 《海洋学报》2013,35(3):147-154
红树林输送的溶解态陆源有机质是海洋中陆源有机质的主要来源之一,对其光降解和生物降解过程的研究有助于进一步了解红树林生态系统输出的有机质在近岸的归宿以及对近岸水体生物地球化学过程的影响,因此于2010年4月在海南省清澜港红树林采集间隙水,并进行了光降解和生物降解培养实验。分析了光培养(光降解)和暗培养过程(生物降解)中溶解态有机碳(DOC)、细菌以及溶解态木质素等的变化。结果显示经历128 d的暗培养后,DOC由初始的2 216 μmol/L下降至718 μmol/L,表明红树林间隙水的生物可利用性约为70%左右;经历11 d的自然光照后,DOC下降至800 μmol/L。木质素在光降解过程中的移除速率(-0.132 d-1)远高于生物降解过程(-0.008 d-1)。光培养中,木质素的下降速率高于总体DOC。不同系列溶解态木质素的下降速率不同,随着培养的进行,紫丁香基酚类(S)与香草基酚类(V)的比值(S/V)呈下降趋势,而V系列的酸醛比值((Ad/Al)v)呈上升的趋势。对比光培养和暗培养过程中DOC和木质素的变化可以得出生物消耗是引起红树林间隙水DOC从水体中移除的主要因素;而光照则是陆源有机质从水体中移除的主要因素;光培养和暗培养过程中细菌变化的差异表明光照可以促进细菌对溶解态有机碳的利用。与其他地区比较发现,海南红树林间隙水的光降解速率与热带河流(刚果河)相近,高于温带密西西比河流,降解过程中各参数的变化[S/V和(Ad/Al)v]与其他区域接近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号