首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multivariate modeling of droughts using copulas and meta-heuristic methods   总被引:3,自引:3,他引:0  
This study investigated the utility of two meta-heuristic algorithms to estimate parameters of copula models and for derivation of drought severity–duration–frequency (S–D–F) curves. Drought is a natural event, which has huge impact on both the society and the natural environment. Drought events are mainly characterized by their severity, duration and intensity. The study adopts standardized precipitation index for drought characterization, and copula method for multivariate risk analysis of droughts. For accurate estimation of copula model parameters, two meta-heuristic methods namely genetic algorithm and particle swarm optimization are applied. The proposed methodology is applied to a case study in Trans Pecos, an arid region in Texas, USA. First, drought severity and duration are separately modeled by various probability distribution functions and then the best fitted models are selected for copula modeling. For modeling the joint dependence of drought variables, different classes of copulas, namely, extreme value copulas, Plackett and Student’s t copulas are employed and their performance is evaluated using standard performance measures. It is found that for the study region, the Gumbel–Hougaard copula is the best fitted copula model as compared to the others and is used for the development of drought S–D–F curves. Results of the study suggest that the meta-heuristic methods have greater utility in copula-based multivariate risk assessment of droughts.  相似文献   

2.
Drought hotspot identification requires continuous drought monitoring and spatial risk assessment. The present study analysed drought events in the agriculture‐dominated mid‐Mahanadi River Basin in Odisha, India, using crop water stress as a drought indicator. This drought index incorporated different factors that affect crop water deficit such as the cropping pattern, soil characteristics, and surface soil moisture. The drought monitoring framework utilized a relevance vector machine model‐based classification that provided the uncertainty associated with drought categorization. Using the proposed framework, drought hotspots are identified in the study region and compared with indices based on precipitation and soil moisture. Further, a bivariate copula is employed to model the agricultural drought characteristics and develop the drought severity–duration–frequency (S–D–F) relationships. The drought hotspot maps and S–D–F curves are developed for different locations in the region. These provided useful information on the site‐specific drought patterns and the characteristics of the devastating droughts of 2002 and 2012, characterized by an average drought duration of 7 months at several locations. The site‐specific risk of short‐ and long‐term agricultural droughts are then investigated using the conditional copula. The results suggest that the conditional return periods and the S–D–F curves are valuable tools to assess the spatial variability of drought risk in the region.  相似文献   

3.
This study presents spatio-temporal analysis of droughts in one of the most drought prone region in India–western Rajasthan and develops drought intensity-area-frequency curves for the region. The meteorological drought conditions are analyzed using 6-month standardized precipitation index (SPI-6) estimated at spatial resolution of 0.5° × 0.5°. Spatio-temporal analysis of SPI-6 indicates increase in frequency of droughts at the central part of the region. The non-parametric Mann–Kendall test for seasonal trend analysis showed increase in number of grids under drought during the study period. Further, bivariate frequency analysis of drought characteristics—intensity and areal extent is carried out using copula methods. For modeling joint dependence between drought variables, three copula families namely Gumbel-Hougaard, Frank and Plackett copulas are evaluated. Based on goodness-of-fit as well as upper tail dependence tests, it is found that the Gumbel-Hougaard copula best represents the drought properties. The copula-based joint distribution is used to compute conditional return periods and drought intensity–area–frequency (I–A–F) curves. The I–A–F curves could be helpful in risk evaluation of droughts in the region.  相似文献   

4.
This study aims to investigate the changing properties of drought events in Weihe River basin, China, by modeling the multivariate joint distribution of drought duration, severity and peak using trivariate Gaussian and Student t copulas. Monthly precipitations of Xi'an gauge are used to illustrate the meta‐elliptical copula‐based methodology for a single‐station application. Gaussian and Student t copulas are found to produce a better fit comparing with other six symmetrical and asymmetrical Archimedean copulas, and, checked by the goodness‐of‐fit tests based on a modified bootstrap version of Rosenblatt's transformation, both of them are acceptable to model the multivariate joint distribution of drought variables. Gaussian copula, the best fitting, is employed to construct the dependence structures of positively associated drought variables so as to obtain the multivariate joint and conditional probabilities of droughts. A Kendall's return period (KRP) introduced by Salvadori and De Michele (2010) is then adopted to assess the multivariate recurrent properties of drought events, and its spatial distributions indicate that prolonged droughts are likely to break out with rather short recurrence intervals in the whole region, while drought status in the southeast seems to be severer than the northwest. The study is of some merits in terms of multivariate drought modeling using a preferable copula‐based method, the results of which could serve as a reference for regional drought defense and water resources management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Regional bivariate modeling of droughts using L-comoments and copulas   总被引:1,自引:0,他引:1  
The regional bivariate modeling of drought characteristics using the copulas provides valuable information for water resources management and drought risk assessment. The regional frequency analysis (RFA) can specify the similar sites within a region using L-comoments approach. One of the important steps in the RFA is estimating regional parameters of the copula function. In the present study, an optimization-based method along with the adjusted charged system search are introduced and applied to estimate the regional parameters of the copula models. The capability of the proposed methodology is illustrated by copula functions on drought events. Three commonly used copulas containing Clayton, Frank and Gumbel are employed to derive the joint distribution of drought severity and duration. The result of the new method are compared to the method of moments and after applying several goodness-of-fit tests, the results indicate that the new method provides higher accuracy than the classic one. Furthermore, the results of the upper tail dependence coefficient indicate that the Gumbel copula is the best-fitted copula among the other ones for modeling drought characteristics.  相似文献   

6.
In recent decades, copula functions have been applied in bivariate drought duration and severity frequency analysis. Among several potential copulas, Clayton has been mostly used in drought analysis. In this research, we studied the influence of the tail shape of various copula functions (i.e. Gumbel, Frank, Clayton and Gaussian) on drought bivariate frequency analysis. The appropriateness of Clayton copula for the characterization of drought characteristics is also investigated. Drought data are extracted from standardized precipitation index time series for four stations in Canada (La Tuque and Grande Prairie) and Iran (Anzali and Zahedan). Both duration and severity data sets are positively skewed. Different marginal distributions were first fitted to drought duration and severity data. The gamma and exponential distributions were selected for drought duration and severity, respectively, according to the positive skewness and Kolmogorov–Smirnov test. The results of copula modelling show that the Clayton copula function is not an appropriate choice for the used data sets in the current study and does not give more drought risk information than an independent model for which the duration and severity dependence is not significant. The reason is that the dependence of two variables in the upper tail of Clayton copula is very weak and similar to the independent case, whereas the observed data in the transformed domain of cumulative density function show high association in the upper tail. Instead, the Frank and Gumbel copula functions show better performance than Clayton function for drought bivariate frequency analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This study aims to model the joint probability distribution of drought duration, severity and inter-arrival time using a trivariate Plackett copula. The drought duration and inter-arrival time each follow the Weibull distribution and the drought severity follows the gamma distribution. Parameters of these univariate distributions are estimated using the method of moments (MOM), maximum likelihood method (MLM), probability weighted moments (PWM), and a genetic algorithm (GA); whereas parameters of the bivariate and trivariate Plackett copulas are estimated using the log-pseudolikelihood function method (LPLF) and GA. Streamflow data from three gaging stations, Zhuangtou, Taian and Tianyang, located in the Wei River basin, China, are employed to test the trivariate Plackett copula. The results show that the Plackett copula is capable of yielding bivariate and trivariate probability distributions of correlated drought variables.  相似文献   

8.
In this study, the patterns of past and future drought occurrences in the Seoul region were analysed using observed historical data from the Seoul weather station located in the Korean Peninsula and four different types of general circulation models (GCMs), namely, GFDL:CM2_1, CONS:ECHO‐G, MRI:CGCM2_3_2 and UKMO:HADGEM1. To analyse statistical properties such as drought frequency duration and return period, the Standardized Precipitation Index was used to derive the severity–duration–frequency (SDF) curve from the drought frequency analysis. In addition, a drought spell analysis was conducted to estimate the frequency and change of drought duration for each drought classification. The results of the analysis suggested a decrease in the frequency of mild droughts and an increase in the frequency of severe and extreme droughts in the future. Furthermore, the average duration of droughts is expected to increase. A comparison of the SDF relationship derived from the observed data with that derived via the GCMs indicated that the drought severity for each return period was reduced as drought duration increased and that the drought severity derived from the GCMs was severer than the severity obtained using the observed data for the same duration and return period. Furthermore, among the four types of GCMs used in this study, the MRI model predicted the most severe future drought for the Seoul region, and the SDF curve derived using the MRI model also resulted in the highest degree of drought severity compared with the other GCMs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Uncertainty and variability in bivariate modeling of hydrological droughts   总被引:2,自引:1,他引:1  
There are two kinds of uncertainty factors in modeling the bivariate distribution of hydrological droughts: the alteration of predefined critical ratios for pooling droughts and excluding minor droughts and the temporal variability of univariate and/or bivariate characteristics of droughts due to the impact of human activities. Daily flow data covering a period of 56 hydrological years from two gauging stations from a humid region in South China are used. The influences of alterations of threshold values of flow and critical ratios of pooling droughts and excluding minor droughts on drought properties are analyzed. Six conventional univariate models and three Archimedean copulas are employed to fit the marginal and joint distributions of drought properties, the Kolmogorov–Smirnov and Anderson–Darling methods are used for testing the goodness-of-fit of the univariate model, and the Cramer-von Mises method based on Rosenblatt’s transform is applied for the test of the bivariate model. The change point analysis of the copula parameter of bivariate distribution of droughts is first made. Results demonstrate that both the statistical characteristics of each drought property and their bivariate joint distributions are sensitive to the critical ratio of excluding minor droughts. A model can be selected to fit the marginal distribution for drought deficit volume or maximum deficit, but it is not determined for drought duration with the lower ratios of the pooling and excluding droughts. The statistical uncertainty of drought duration makes the modeling of bivariate joint distribution of drought duration and deficit volume or of drought duration and maximum deficit undermined. Change points significantly occurred in the period from the late 1970s to the middle 1980s for a single drought property and the copula parameter of their joint distribution due to the impact of human activities. The difference between two subseries separated by the change point is remarkable in the magnitudes of drought properties and the joint return periods. A copula function can be selected to optimally fit the bivariate distribution, provided that the critical ratios of pooling and excluding droughts are great enough such as the optimal value of 0.4 in the case study. It is valuable that the modeling and designing of the bivariate joint correlation and distribution of drought properties can be performed on the subseries separated by the change point of the copula parameter.  相似文献   

10.
A new method of parameter estimation in data scarce regions is valuable for bivariate hydrological extreme frequency analysis. This paper proposes a new method of parameter estimation (maximum entropy estimation, MEE) for both Gumbel and Gumbel–Hougaard copula in situations when insufficient data are available. MEE requires only the lower and upper bounds of two hydrological variables. To test our new method, two experiments to model the joint distribution of the maximum daily precipitation at two pairs of stations on the tributaries of Heihe and Jinghe River, respectively, were performed and compared with the method of moments, correlation index estimation, and maximum likelihood estimation, which require a large amount of data. Both experiments show that for the Ye Niugou and Qilian stations, the performance of MEE is nearly identical to those of the conventional methods. For the Xifeng and Huanxian stations, MEE can capture information indicating that the maximum daily precipitation at the Xifeng and Huanxian stations has an upper tail dependence, whereas the results generated by correlation index estimation and maximum likelihood estimation are unreasonable. Moreover, MEE is proved to be generally reliable and robust by many simulations under three different situations. The Gumbel–Hougaard copula with MEE can also be applied to the bivariate frequency analysis of other extreme events in data‐scarce regions.  相似文献   

11.
The impact of climate change on the behaviour of intensity–duration–frequency curves is critical to the estimation of design storms, and thus to the safe design of drainage infrastructure. The present study develops a regional time trend methodology that detects the impact of climate change on extreme precipitation from 1960 to 2010. The regional time trend linear regression method is fitted to different durations of annual maximum precipitation intensities derived from multiple sites in Ontario, Canada. The results show the relationship between climate change and increased extreme precipitation in this province. The regional trend analysis demonstrates, under nonstationary conditions arising from climate change, that the intensity of extreme precipitation increased decennially between 1.25% for the 30‐min storm and 1.82% for the 24‐h storm. A comparison of the results with a regional Mann–Kendall test validates the found regional time‐trend results. The results are employed to extrapolate the intensity–duration–frequency curves temporally and spatially for future decades across the province. The results of the regional time trend assessment help with the establishment of new safety margins for infrastructure design in Ontario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In recent years, the bivariate frequency analysis of drought duration and severity using independent drought events and copula functions has been under extensive application. Meanwhile, emphasis on the procedure of independent drought data collection leads to the omission of the actual potential of short-term extreme droughts within a long-term independent drought. However, a long-term individual continuous drought as an Unconnected Drought Runs can be considered as a combination of short-term Connected Drought Runs. Thus, an advanced and new procedure of data collection in the bivariate drought characteristics analysis has been developed in this study. The results indicated a high relative advantage of the new proposed procedure in analysing bivariate drought characteristics (i.e., drought duration and severity frequency analysis). This advantage has been reflected in the more appropriate determination of the best copula and significant reduction in the uncertainty of bivariate drought frequency analysis.  相似文献   

13.
Droughts are one of the normal and recurrent climatic phenomena on Earth. However, recurring prolonged droughts have caused far‐reaching and diverse impacts because of water deficits. This study aims to investigate the hydrological droughts of the Yellow River in northern China. Since drought duration and drought severity exhibit significant correlation, a bivariate distribution is used to model the drought duration and severity jointly. However, drought duration and drought severity are often modelled by different distributions; the commonly used bivariate distributions cannot be applied. In this study, a copula is employed to construct the bivariate drought distribution. The copula is a function that links the univariate marginal distributions to form the bivariate distribution. The bivariate return periods are also established to explore the drought characteristics of the historically noticeable droughts. The results show that the return period of the drought that occurred in late 1920s to early 1930s is 105 years. The significant 1997 dry‐up phenomenon that occurred in the downstream Yellow River (resulting from the 1997–1998 drought) only has a return period of 4·4 years and is probably induced by two successive droughts and deteriorated by other factors, such as human activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, the climate teleconnections with meteorological droughts are analysed and used to develop ensemble drought prediction models using a support vector machine (SVM)–copula approach over Western Rajasthan (India). The meteorological droughts are identified using the Standardized Precipitation Index (SPI). In the analysis of large‐scale climate forcing represented by climate indices such as El Niño Southern Oscillation, Indian Ocean Dipole Mode and Atlantic Multidecadal Oscillation on regional droughts, it is found that regional droughts exhibits interannual as well as interdecadal variability. On the basis of potential teleconnections between regional droughts and climate indices, SPI‐based drought forecasting models are developed with up to 3 months' lead time. As traditional statistical forecast models are unable to capture nonlinearity and nonstationarity associated with drought forecasts, a machine learning technique, namely, support vector regression (SVR), is adopted to forecast the drought index, and the copula method is used to model the joint distribution of observed and predicted drought index. The copula‐based conditional distribution of an observed drought index conditioned on predicted drought index is utilized to simulate ensembles of drought forecasts. Two variants of drought forecast models are developed, namely a single model for all the periods in a year and separate models for each of the four seasons in a year. The performance of developed models is validated for predicting drought time series for 10 years' data. Improvement in ensemble prediction of drought indices is observed for combined seasonal model over the single model without seasonal partitions. The results show that the proposed SVM–copula approach improves the drought prediction capability and provides estimation of uncertainty associated with drought predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
As an alternative to the commonly used univariate flood frequency analysis, copula frequency analysis can be used. In this study, 58 flood events at the Litija gauging station on the Sava River in Slovenia were analysed, selected based on annual maximum discharge values. Corresponding hydrograph volumes and durations were considered. Different bivariate copulas from three families were applied and compared using different statistical, graphical and upper tail dependence tests. The parameters of the copulas were estimated using the method of moments with the inversion of Kendall's tau. The Gumbel–Hougaard copula was selected as the most appropriate for the pair of peak discharge and hydrograph volume (Q‐V). The same copula was also selected for the pair hydrograph volume and duration (V‐D), and the Student‐t copula was selected for the pair of peak discharge and hydrograph duration (Q‐D). The differences among most of the applied copulas were not significant. Different primary, secondary and conditional return periods were calculated and compared, and some relationships among them were obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This study aims to model the joint probability distribution of periodic hydrologic data using meta-elliptical copulas. Monthly precipitation data from a gauging station (410120) in Texas, US, was used to illustrate parameter estimation and goodness-of-fit for univariate drought distributions using chi-square test, Kolmogorov–Smirnov test, Cramer-von Mises statistic, Anderson-Darling statistic, modified weighted Watson statistic, and Liao and Shimokawa statistic. Pearson’s classical correlation coefficient r n , Spearman’s ρ n, Kendall’s τ, Chi-Plots, and K-Plots were employed to assess the dependence of drought variables. Several meta-elliptical copulas and Gumbel-Hougaard, Ali-Mikhail-Haq, Frank and Clayton copulas were tested to determine the best-fit copula. Based on the root mean square error and the Akaike information criterion, meta-Gaussian and t copulas gave a better fit. A bootstrap version based on Rosenblatt’s transformation was employed to test the goodness-of-fit for meta-Gaussian and t copulas. It was found that none of meta-Gaussian and t copulas considered could be rejected at the given significance level. The meta-Gaussian copula was employed to model the dependence, and these results were found satisfactory.  相似文献   

17.
18.
Hydrological drought analysis is very important in the design of hydrotechnical projects and water resources management and planning. In this study, a methodology is proposed for the analysis of streamflow droughts using the threshold level approach. The method has been applied to Yermasoyia semiarid basin in Cyprus based on 30‐year daily discharge data. Severity was defined as the accumulated water deficit volume occurring during a drought event, in respect with a target threshold. Fixed and variable thresholds (seasonal, monthly, and daily) were employed to derive the drought characteristics. The threshold levels were determined based on the Q50 percentiles of flow extracted from the corresponding flow duration curves for each threshold. The aim is to investigate the sensitivity of these thresholds in the estimation of maximum drought severities for various return periods and the derivation of severity–duration–frequency curves. The block maxima and the peaks over threshold approaches were used to perform the extreme value analysis. Three pooling procedures (moving average, interevent time criterion, and interevent time and volume criterion) were employed to remove the dependent and minor droughts. The application showed that the interevent time and volume criterion is the most unbiased pooling method. Therefore, it was selected to estimate the drought characteristics. The results of this study indicate that monthly and daily variable thresholds are able to capture abnormal drought events that occur during the whole hydrological year whereas the other two, only the severe ones. They are also more sensitive in the estimation of maximum drought severities and the derivation of the curves because they incorporate better the effect of drought durations.  相似文献   

19.
Although water resources management practices recently use bivariate distribution functions to assess drought severity and its frequency, the lack of systematic measurements is the major hindrance in achieving quantitative results. This study aims to suggest a statistical scheme for the bivariate drought frequency analysis to provide comprehensive and consistent drought severities using observed rainfalls and their uncertainty using synthesized rainfalls. First, this study developed a multi-variate regression model to generate synthetic monthly rainfalls using climate variables as causative variables. The causative variables were generated to preserve their correlations using copula functions. This study then focused on constructing bivariate drought frequency curves using bivariate kernel functions and estimating their confidence intervals from 1,000 likely replica sets of drought frequency curves. The confidence intervals achieved in this study may be useful for making a comprehensive drought management plan through providing feasible ranges of drought severity.  相似文献   

20.
陈子燊  刘占明  黄强 《湖泊科学》2013,25(4):576-582
利用西江下游马口水文站1959 2009年月径流量数据计算径流干旱指数,经游程理论提取了水文干旱特征值.应用Copula函数分析水文干旱强度和历时之间的联合概率分布.对构建的干旱历时和强度联合分布模式进行分析,结果表明:(1)径流干旱历时和强度之间具有高关联性,秩相关系数达0.617;(2)三参数Weibull分布较好地描述了干旱历时和强度的边缘分布特征;(3)经拟合优度检验结果优选的干旱历时和强度之间的较优连接函数为Archimedean类的Gumbel-Hougaard Copula函数;(4)5~10年重现期和20年重现期的水文干旱分别达到了重旱级别和特旱级别;(5)干旱历时和强度之间的遭遇概率可为特定干旱历时与水文干旱级别或特定干旱强度与干旱历时之间的对应关系提供概率意义上的干旱特征诊断与预测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号