首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 751 毫秒
1.
In recent years, the bivariate frequency analysis of drought duration and severity using independent drought events and copula functions has been under extensive application. Meanwhile, emphasis on the procedure of independent drought data collection leads to the omission of the actual potential of short-term extreme droughts within a long-term independent drought. However, a long-term individual continuous drought as an Unconnected Drought Runs can be considered as a combination of short-term Connected Drought Runs. Thus, an advanced and new procedure of data collection in the bivariate drought characteristics analysis has been developed in this study. The results indicated a high relative advantage of the new proposed procedure in analysing bivariate drought characteristics (i.e., drought duration and severity frequency analysis). This advantage has been reflected in the more appropriate determination of the best copula and significant reduction in the uncertainty of bivariate drought frequency analysis.  相似文献   

2.
In recent decades, copula functions have been applied in bivariate drought duration and severity frequency analysis. Among several potential copulas, Clayton has been mostly used in drought analysis. In this research, we studied the influence of the tail shape of various copula functions (i.e. Gumbel, Frank, Clayton and Gaussian) on drought bivariate frequency analysis. The appropriateness of Clayton copula for the characterization of drought characteristics is also investigated. Drought data are extracted from standardized precipitation index time series for four stations in Canada (La Tuque and Grande Prairie) and Iran (Anzali and Zahedan). Both duration and severity data sets are positively skewed. Different marginal distributions were first fitted to drought duration and severity data. The gamma and exponential distributions were selected for drought duration and severity, respectively, according to the positive skewness and Kolmogorov–Smirnov test. The results of copula modelling show that the Clayton copula function is not an appropriate choice for the used data sets in the current study and does not give more drought risk information than an independent model for which the duration and severity dependence is not significant. The reason is that the dependence of two variables in the upper tail of Clayton copula is very weak and similar to the independent case, whereas the observed data in the transformed domain of cumulative density function show high association in the upper tail. Instead, the Frank and Gumbel copula functions show better performance than Clayton function for drought bivariate frequency analysis. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Bivariate distributions have been recently employed in hydrologic frequency analysis to analyze the joint probabilistic characteristics of multivariate storm events. This study aims to derive practical solutions of application for the bivariate distribution to estimate design rainfalls corresponding to the desired return periods. Using the Gumbel mixed model, this study constructed rainfall–frequency curves at sample stations in Korea which provide joint relationships between amount, duration, and frequency of storm events. Based on comparisons and analyses of the rainfall–frequency curves derived from univariate and bivariate storm frequency analyses, this study found that conditional frequency analysis provides more appropriate estimates of design rainfalls as it more accurately represents the natural relationship between storm properties than the conventional univariate storm frequency analysis.  相似文献   

4.
This study presents copula‐based multivariate probabilistic approach to model severity–duration–frequency (S‐D‐F) relationship of drought events in western Rajasthan, India. Drought occurrences are analysed using standardized precipitation index computed on monthly mean areal precipitation, aggregated at a time scale of 6 months. After testing with a series of probability density functions, the drought variable severity is found to be better represented with log‐normal distribution, whereas duration is well fitted with exponential distribution. Four different classes of bivariate copulas – Archimedean, extreme value, Plackett, and elliptical families are evaluated for modelling joint distribution of drought characteristics. It is observed that the extreme value copula – Gumbel–Hougaard copula – performed better as compared with other classes of copulas, based on results of various statistical tests and upper tail dependence coefficient. The joint distribution obtained from best performing copula is then employed to determine conditional return period and to derive drought severity‐duration‐frequency (S‐D‐F) curves for the study region. The results of the study suggests that the copula method can be used effectively to derive the drought S‐D‐F curves, which can be helpful in planning and adopting suitable drought mitigation strategies in drought‐prone areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Multivariate modeling of droughts using copulas and meta-heuristic methods   总被引:3,自引:3,他引:0  
This study investigated the utility of two meta-heuristic algorithms to estimate parameters of copula models and for derivation of drought severity–duration–frequency (S–D–F) curves. Drought is a natural event, which has huge impact on both the society and the natural environment. Drought events are mainly characterized by their severity, duration and intensity. The study adopts standardized precipitation index for drought characterization, and copula method for multivariate risk analysis of droughts. For accurate estimation of copula model parameters, two meta-heuristic methods namely genetic algorithm and particle swarm optimization are applied. The proposed methodology is applied to a case study in Trans Pecos, an arid region in Texas, USA. First, drought severity and duration are separately modeled by various probability distribution functions and then the best fitted models are selected for copula modeling. For modeling the joint dependence of drought variables, different classes of copulas, namely, extreme value copulas, Plackett and Student’s t copulas are employed and their performance is evaluated using standard performance measures. It is found that for the study region, the Gumbel–Hougaard copula is the best fitted copula model as compared to the others and is used for the development of drought S–D–F curves. Results of the study suggest that the meta-heuristic methods have greater utility in copula-based multivariate risk assessment of droughts.  相似文献   

6.
This study presents spatio-temporal analysis of droughts in one of the most drought prone region in India–western Rajasthan and develops drought intensity-area-frequency curves for the region. The meteorological drought conditions are analyzed using 6-month standardized precipitation index (SPI-6) estimated at spatial resolution of 0.5° × 0.5°. Spatio-temporal analysis of SPI-6 indicates increase in frequency of droughts at the central part of the region. The non-parametric Mann–Kendall test for seasonal trend analysis showed increase in number of grids under drought during the study period. Further, bivariate frequency analysis of drought characteristics—intensity and areal extent is carried out using copula methods. For modeling joint dependence between drought variables, three copula families namely Gumbel-Hougaard, Frank and Plackett copulas are evaluated. Based on goodness-of-fit as well as upper tail dependence tests, it is found that the Gumbel-Hougaard copula best represents the drought properties. The copula-based joint distribution is used to compute conditional return periods and drought intensity–area–frequency (I–A–F) curves. The I–A–F curves could be helpful in risk evaluation of droughts in the region.  相似文献   

7.
Information on regional drought characteristics provides critical information for adequate water resource management. This study introduces a method to calculate the probability of a specific area to be affected by a drought of a given severity and demonstrates its potential for calculating both meteorological and hydrological drought characteristics. The method is demonstrated using Denmark as a case study. The calculation procedure was applied to monthly precipitation and streamflow series separately, which were linearly transformed by the Empirical Orthogonal Functions (EOF) method. Denmark was divided into 260 grid-cells of 14×17 km, and the monthly mean and the EOF-weight coefficients were interpolated by kriging. The frequency distributions of the first two (streamflow) or three (precipitation) amplitude functions were then derived. By performing Monte Carlo simulations, amplitude functions corresponding to 1000 years of data were generated. Based on these simulated functions as well as interpolated mean and weight coefficients, long time series of precipitation and streamflow were simulated for each grid-cell. The probability distribution functions of the area covered by a drought and the drought deficit volumes were then derived and combined to produce drought severity-area-frequency curves. These curves allowed an estimation of the probability of an area of a certain extent to have a drought of a given severity, and thereby return periods could be assigned to historical drought events. A comparison of drought characteristics showed that streamflow droughts are less homogeneous over the region, less frequent and last for longer time periods than precipitation droughts.  相似文献   

8.
This study aims to model the joint probability distribution of drought duration, severity and inter-arrival time using a trivariate Plackett copula. The drought duration and inter-arrival time each follow the Weibull distribution and the drought severity follows the gamma distribution. Parameters of these univariate distributions are estimated using the method of moments (MOM), maximum likelihood method (MLM), probability weighted moments (PWM), and a genetic algorithm (GA); whereas parameters of the bivariate and trivariate Plackett copulas are estimated using the log-pseudolikelihood function method (LPLF) and GA. Streamflow data from three gaging stations, Zhuangtou, Taian and Tianyang, located in the Wei River basin, China, are employed to test the trivariate Plackett copula. The results show that the Plackett copula is capable of yielding bivariate and trivariate probability distributions of correlated drought variables.  相似文献   

9.
Drought hotspot identification requires continuous drought monitoring and spatial risk assessment. The present study analysed drought events in the agriculture‐dominated mid‐Mahanadi River Basin in Odisha, India, using crop water stress as a drought indicator. This drought index incorporated different factors that affect crop water deficit such as the cropping pattern, soil characteristics, and surface soil moisture. The drought monitoring framework utilized a relevance vector machine model‐based classification that provided the uncertainty associated with drought categorization. Using the proposed framework, drought hotspots are identified in the study region and compared with indices based on precipitation and soil moisture. Further, a bivariate copula is employed to model the agricultural drought characteristics and develop the drought severity–duration–frequency (S–D–F) relationships. The drought hotspot maps and S–D–F curves are developed for different locations in the region. These provided useful information on the site‐specific drought patterns and the characteristics of the devastating droughts of 2002 and 2012, characterized by an average drought duration of 7 months at several locations. The site‐specific risk of short‐ and long‐term agricultural droughts are then investigated using the conditional copula. The results suggest that the conditional return periods and the S–D–F curves are valuable tools to assess the spatial variability of drought risk in the region.  相似文献   

10.
Regional bivariate modeling of droughts using L-comoments and copulas   总被引:1,自引:0,他引:1  
The regional bivariate modeling of drought characteristics using the copulas provides valuable information for water resources management and drought risk assessment. The regional frequency analysis (RFA) can specify the similar sites within a region using L-comoments approach. One of the important steps in the RFA is estimating regional parameters of the copula function. In the present study, an optimization-based method along with the adjusted charged system search are introduced and applied to estimate the regional parameters of the copula models. The capability of the proposed methodology is illustrated by copula functions on drought events. Three commonly used copulas containing Clayton, Frank and Gumbel are employed to derive the joint distribution of drought severity and duration. The result of the new method are compared to the method of moments and after applying several goodness-of-fit tests, the results indicate that the new method provides higher accuracy than the classic one. Furthermore, the results of the upper tail dependence coefficient indicate that the Gumbel copula is the best-fitted copula among the other ones for modeling drought characteristics.  相似文献   

11.
A bivariate pareto model for drought   总被引:2,自引:2,他引:0  
Univariate Pareto distributions have been so widely used in hydrology. It seems however that bivariate or multivariate Pareto distributions have not yet found applications in hydrology, especially with respect to drought. In this note, a drought application is described by assuming a bivariate Pareto model for the joint distribution drought durations and drought severity in the State of Nebraska. Based on this model, exact distributions are derived for the inter arrival time, magnitude and the proportion of droughts. Estimates of 2, 5, 10, 20, 50 and 100 year return periods are derived for the three variables, drought duration, drought severity and the pairwise combinations: (drought duration, drought severity), (inter arrival time of drought, proportion of drought) and (drought duration, drought magnitude). These return period estimates could have an important role in hydrology, for example, with respect to measures of vegetation water stress for plants in water-controlled ecosystems.  相似文献   

12.
Droughts are one of the normal and recurrent climatic phenomena on Earth. However, recurring prolonged droughts have caused far‐reaching and diverse impacts because of water deficits. This study aims to investigate the hydrological droughts of the Yellow River in northern China. Since drought duration and drought severity exhibit significant correlation, a bivariate distribution is used to model the drought duration and severity jointly. However, drought duration and drought severity are often modelled by different distributions; the commonly used bivariate distributions cannot be applied. In this study, a copula is employed to construct the bivariate drought distribution. The copula is a function that links the univariate marginal distributions to form the bivariate distribution. The bivariate return periods are also established to explore the drought characteristics of the historically noticeable droughts. The results show that the return period of the drought that occurred in late 1920s to early 1930s is 105 years. The significant 1997 dry‐up phenomenon that occurred in the downstream Yellow River (resulting from the 1997–1998 drought) only has a return period of 4·4 years and is probably induced by two successive droughts and deteriorated by other factors, such as human activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A new bivariate pseudo Pareto distribution is proposed, and its distributional characteristics are investigated. The parameters of this distribution are estimated by the moment-, the maximum likelihood- and the Bayesian method. Point estimators of the parameters are presented for different sample sizes. Asymptotic confidence intervals are constructed and the parameter modeling the dependency between two variables is checked. The performance of the different estimation methods is investigated by using the bootstrap method. A Markov Chain Monte Carlo simulation is conducted to estimate the Bayesian posterior distribution for different sample sizes. For illustrative purposes, a real set of drought data is investigated.  相似文献   

14.
Frequency analysis of streamflow provides an essential ingredient in our understanding of hydrologic events and provides needed guidance in the design and management of water resources infrastructure. However, traditional hydrologic approaches often fail to include important external effects that can result in unpredictable or unforeseen changes in streamflow. Moreover, previous studies investigating multiple characteristics of streamflow do not address a nonstationary approach. This study explores nonstationary frequency analysis of bivariate characteristics, including occurrence and severity, of annual low flow in the Connecticut River Basin, United States. To investigate bivariate low flow frequency, copulas and their marginal distributions are constructed by using stationary and nonstationary approaches. Our study results indicate that streamflow used in this study demonstrate significant nonstationarity. Over time, the occurrence and severity of low flows are shown to be lower with the same probability based on the results of nonstationary copulas. Bivariate low flow frequencies in the years 1970, 2000, and 2030, and their joint return periods are estimated under the nonstationary copulas. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The important elements of a drought phenomenon are the longest duration and the largest severity for a desired return period. These elements form a basis for designing water storage systems to cope with droughts. At times, a third element, drought intensity, is also used and is defined as the ratio of severity to duration. The commonly available statistics for the causative drought variables such as annual rainfall or runoff sequences are the mean, the coefficient of variation and the lag one serial correlation coefficient, and occasionally some indication of the probability distribution function (pdf) of the sequences. The extremal values of the duration and severity are modelled in the present paper using information on the aforesaid parameters at the truncation level equal to the mean of the drought sequence, which is generally taken as the truncation level in the analysis of droughts. The drought severity has been modelled as the product of the duration and intensity with the assumption of independence between them. An estimate of drought intensity has been realized from the concept of the truncated normal distribution of the standardized form of the drought sequences in the normalized domain. A formula in terms of the extremal severity and the T-year return period has been suggested similar to the flood frequency formulae, commonly cited in hydrological texts.  相似文献   

16.
This study aims to investigate the changing properties of drought events in Weihe River basin, China, by modeling the multivariate joint distribution of drought duration, severity and peak using trivariate Gaussian and Student t copulas. Monthly precipitations of Xi'an gauge are used to illustrate the meta‐elliptical copula‐based methodology for a single‐station application. Gaussian and Student t copulas are found to produce a better fit comparing with other six symmetrical and asymmetrical Archimedean copulas, and, checked by the goodness‐of‐fit tests based on a modified bootstrap version of Rosenblatt's transformation, both of them are acceptable to model the multivariate joint distribution of drought variables. Gaussian copula, the best fitting, is employed to construct the dependence structures of positively associated drought variables so as to obtain the multivariate joint and conditional probabilities of droughts. A Kendall's return period (KRP) introduced by Salvadori and De Michele (2010) is then adopted to assess the multivariate recurrent properties of drought events, and its spatial distributions indicate that prolonged droughts are likely to break out with rather short recurrence intervals in the whole region, while drought status in the southeast seems to be severer than the northwest. The study is of some merits in terms of multivariate drought modeling using a preferable copula‐based method, the results of which could serve as a reference for regional drought defense and water resources management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrological drought analysis is very important in the design of hydrotechnical projects and water resources management and planning. In this study, a methodology is proposed for the analysis of streamflow droughts using the threshold level approach. The method has been applied to Yermasoyia semiarid basin in Cyprus based on 30‐year daily discharge data. Severity was defined as the accumulated water deficit volume occurring during a drought event, in respect with a target threshold. Fixed and variable thresholds (seasonal, monthly, and daily) were employed to derive the drought characteristics. The threshold levels were determined based on the Q50 percentiles of flow extracted from the corresponding flow duration curves for each threshold. The aim is to investigate the sensitivity of these thresholds in the estimation of maximum drought severities for various return periods and the derivation of severity–duration–frequency curves. The block maxima and the peaks over threshold approaches were used to perform the extreme value analysis. Three pooling procedures (moving average, interevent time criterion, and interevent time and volume criterion) were employed to remove the dependent and minor droughts. The application showed that the interevent time and volume criterion is the most unbiased pooling method. Therefore, it was selected to estimate the drought characteristics. The results of this study indicate that monthly and daily variable thresholds are able to capture abnormal drought events that occur during the whole hydrological year whereas the other two, only the severe ones. They are also more sensitive in the estimation of maximum drought severities and the derivation of the curves because they incorporate better the effect of drought durations.  相似文献   

18.
Since water supply failure is one of the primary impacts of drought, drought risk should be quantified in the context of a lack of available water. To assess the drought risk, water supply system performance indices such as reliability, resiliency, and vulnerability are usually introduced as they correspond to primary drought characteristics, i.e., frequency, duration, and magnitude. In this study, we developed a drought risk index (DRI) through weighted averaging the performance indices derived using bivariate drought frequency analysis. We suggested two types of DRI: observed DRI (DRI_O) and designed DRI (DRI_D). DRI_O was calculated using an observed (or synthesized) time series of water shortages. DRI_D was estimated from the bivariate drought frequency curves, which are the probabilistic magnitudes of water shortages corresponding to a particular duration. The historical maximum drought event that represents the maximum DRI_O has generally been used as the target security level. However, we could establish a practically applicable target security level considering that the future water supply failure risk is represented by DRI_D. We defined regional drought safety criteria in this study by comparing DRI_O and DRI_D. Application of the criteria to the Nakdong river basin in South Korea showed that W1 (Byeongseongcheon) and W4 (Hyeongsangang) had the lowest and highest drought risk, respectively, and the drought safety criteria showed an average range of 5–20 years.  相似文献   

19.
20.
With climate change and the rapid increase in water demand, droughts, whose intensity, duration and frequency have shown an increasing trend in China over the past decades, are increasingly becoming a critical constraint to China’s sustainable socio-economic development, especially in Northern China, even more so. Therefore, it is essential to develop an appropriate drought assessment approach in China. To propose a suitable drought index for drought assessment, the Luanhe river basin in the northern China was selected as a case study site. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by using the Variable Infiltration Capacity land surface macro-scale hydrology model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. To test the applicability of the newly developed index, the MDI, the standardized precipitation index (SPI) and the palmer drought severity index (PDSI) time series on a monthly scale were computed and compared during 1962–1963, 1968 and 1972 drought events. The results show that the MDI exhibited certain advantages over the PDSI and the SPI, i.e. better assessing drought severity and better reflecting drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号