首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The Monticchio Lakes Formation MLF is a newly identified carbonatite-melilitite tuff sequence which is exposed in the southwestern sector of the Vulture volcano. It is the youngest example ca. 0.13 m.y. of this type of volcanism in Italy, although other carbonatites of smaller volume, but with similar characteristics, have been discovered recently. This volcanic event occurred in isolation after a 0.35 m.y. period of inactivity at Vulture. The eruption produced two maar-type vents and formed tuff aprons mainly composed of dune beds of lapilli. Depositional features suggest that a dry surge mechanism, possibly triggered by CO2 expansion, was dominant during tuff emplacement. The MLF event involved a mixture of carbonatite and melilitite liquids which were physically separated before the eruption. Abundant mantle xenoliths are direct evidence of the deep-seated origin of the parental magma and its high velocity of propagation towards the surface. Often, these nodules form the core of lapilli composed of concentric shells of melilitite andror porphyritic carbonatite. Coarse-ash beds alternate with lapilli beds and consist of abundant lumps and spherulae of very fine-grained calcite immersed in a welded, highly compacted carbonatite matrix. Porphyritic carbonatite shells of the lapilli and fine-grained spherulae of calcite in the tuff matrix suggest incipient crystallisation of a carbonatite liquid in subvolcanic conditions and eruption of carbonatite-spray droplets. Dark coloured juvenile fragments mainly consist of melilite, phlogopite, calcite, apatite, perovskite, and häuyne crystals in a carbonatite or melilitite matrix. The rocks have an extremely primitive, ultramafic composition with very high Mga) 85. and Cr and Ni content 1500 ppm-. The calcite contains high SrO, BaO and REE of up to 1.5 wt.%. Similar compositions are typical of primary, magmatic carbonates which are found in both intrusive and extrusive carbonatites. The high modal Sr-Ba-REE-rich calcite, the typical mineralogy, and the high amount of Sr-group elements identify the carbonate component as a carbonatite. The very high Mga, mantle debris and C, O, He isotope ratios in the range of mantle values indicate a near-primary character for the carbonatite which is distinctive of a restricted group of extrusive carbonatites only found in continental rift areas.  相似文献   

2.
In this paper we present a model for the growth of a maar-diatreme complex in a shallow marine environment. The Miocene-age Costa Giardini diatreme near Sortino, in the region of the Iblei Mountains of southern Sicily, has an outer tuff ring formed by the accumulation of debris flows and surge deposits during hydromagmatic eruptions. Vesicular lava clasts, accretionary lapilli and bombs in the older ejecta indicate that initial eruptions were of gas-rich magma. Abundant xenoliths in the upper, late-deposited beds of the ring suggest rapid magma ascent, and deepening of the eruptive vent is shown by the change in slope of the country rock. The interior of the diatreme contains nonbedded breccia composed of both volcanic and country rock clasts of variable size and amount. The occurrence of bedded hyaloclastite breccia in an isolated outcrop in the middle-lower part of the diatreme suggests subaqueous effusion at a low rate following the end of explosive activity. Intrusions of nonvesicular magma, forming plugs and dikes, occur on the western side of the diatreme, and at the margins, close to the contact between breccia deposits and country rock; they indicate involvement of volatile-poor magma, possibly during late stages of activity. We propose that initial hydromagmatic explosive activity occurred in a shallow marine environment and the ejecta created a rampart that isolated for a short time the inner crater from the surrounding marine environment. This allowed explosive activity to draw down the water table in the vicinity of the vent and caused deepening of the explosive center. A subsequent decrease in the effusion rate and cessation of explosive eruptions allowed the crater to refill with water, at which time the hyaloclastite was deposited. Emplacement of dikes and plugs occurred nonexplosively while the breccia sediment was mostly still soft and unconsolidated, locally forming peperites. The sheltered, low-energy lagoon filled with marine limestones mixed with volcaniclastic material eroded from the surrounding ramparts. Ultimately, lagoonal sediments accumulated in the crater until subsidence or erosion of the tuff ring caused a return to normal shallow marine conditions.  相似文献   

3.
The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30?Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand <40?m above the surrounding ground and are comparable in size to small monogenetic basaltic volcanoes. Pyroclastic cones consist of diffusely layered pyroclastic fall deposits comprising scoriaceous, pelletal and dense juvenile pyroclasts. Pyroclasts are similar to those documented in many ancient kimberlite pipes, indicating overlap in magma fragmentation dynamics between the Igwisi eruptions and other kimberlite eruptions. Characteristics of the pyroclastic cone deposits, including an absence of ballistic clasts and dominantly poorly vesicular scoria lapillistones and lapilli tuffs, indicate relatively weak explosive activity. Lava flow features indicate unexpectedly high viscosities (estimated at >102 to 106?Pa?s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma).  相似文献   

4.
The Mawson Formation and correlatives in the Transantarctic Mountains and South Africa record an early eruption episode related to the onset of Ferrar-Karoo flood basalt volcanism. Mawson Formation rocks at Coombs Hills comprise mainly (≥80% vol) structureless tuff breccia and coarse lapilli tuff cut by irregular dikes and sills, within a large vent complex (>30 km2). Quenched juvenile fragments of generally low but variable vesicularity, accretionary lapilli and country rock clasts within vent-fill, and pyroclastic density current deposits point to explosive interaction of basalt with groundwater in porous country rock and wet vent filling debris. Metre-scale dikes and pods of coherent basalt in places merge imperceptibly into peperite and then into surrounding breccia. Steeply dipping to sub-vertical depositional contacts juxtapose volcaniclastic rocks of contrasting componentry and grainsize. These sub-vertical tuff breccia zones are inferred to have formed when jets of debris + steam + water passed through unconsolidated vent-filling deposits. These jets of debris may have sometimes breached the surface to form subaerial tephra jets which fed subaerial pyroclastic density currents and fall deposits. Others, however, probably died out within vent fill before reaching the surface, allowing mixing and recycling of clasts which never reached the atmosphere. Most of the ejecta that did escape the debris-filled vents was rapidly recycled as vents broadened via lateral quarrying of country rock and bedded pyroclastic vent-rim deposits, which collapsed along the margins into individual vents. The unstratified, poorly sorted deposits comprising most of the complex are capped by tuff, lapilli tuff and tuff breccia beds inferred to have been deposited on the floor of the vent complex by pyroclastic density currents. Development of the extensive Coombs Hills vent-complex involved interaction of large volumes of magma and water. We infer that recycling of water, as well as recycling of pyroclasts, was important in maintaining water supply for phreatomagmatic interactions even when aquifer rock in the vent walls lay far from eruption sites as a consequence of vent-complex widening. The proportion of recycled water increased with vent-complex size in the same way that the proportion of recycled tephra did. Though water recycling leaves no direct rock record, the volcaniclastic deposits within the vent complex show through their lithofacies/structural architecture, lithofacies characteristics, and particle properties clear evidence for extensive and varied recycling of material as the complex evolved. Editorial responsibility: J. Donnelly-Nolan  相似文献   

5.
The ultramafic Eocene Missouri River Breaks volcanic field (MRBVF, Montana, USA) includes over 50 diatremes emplaced in a mostly soft substrate. The current erosion level is 1.3–1.5 km below the pre-eruptive surface, exposing the deep part of the diatreme structures and some dikes. Five representative diatremes are described here; they are 200-375 m across and have sub-vertical walls. Their infill consists mostly of 55-90 % bedded pyroclastic rocks (fine tuffs to coarse lapilli tuffs) with concave-upward bedding, and 45–10 % non-bedded pyroclastic rocks (medium lapilli tuffs to tuff breccias). The latter zones form steep columns 15–135 m in horizontal dimension, which cross-cut the bedded pyroclastic rocks. Megablocks of the host sedimentary formations are also present in the diatremes, some being found 1 km or more below their sources. The diatreme infill contains abundant lithic clasts and ash-sized particles, indicating efficient fragmentation of magma and country rocks. The spherical to sub-spherical juvenile clasts are non-vesicular. They are accompanied by minor accretionary lapilli and armored lapilli. The deposits of dilute pyroclastic density currents are locally observed. Our main interpretations are as follows: (1) the observations strongly support phreatomagmatic explosions as the energy source for fragmentation and diatreme excavation; (2) the bedded pyroclastic rocks were deposited on the crater floor, and subsided by 1.0–1.3 km to their current location, with subsidence taking place mostly during the eruption; (3) the observed non-bedded pyroclastic columns were created by debris jets that punched through the bedded pyroclastic material; the debris jets did not empty the mature diatreme, occupying only a fraction of its width, and some debris jets probably did not reach the crater floor; (4) the mature diatreme was nearly always filled and buttressed by pyroclastic debris at depth – there was never a 1.3–1.5-km-deep empty hole with sub-vertical walls, otherwise the soft substrate would have collapsed inward, which it only did near the surface, to create the megablocks. We infer that syn-eruptive subsidence shifted down bedded pyroclastic material and shallow sedimentary megablocks by 0.8–1.1 km or more, after which limited post-eruptive subsidence occurred. This makes the MRBVF diatremes an extreme end-member case of syn-eruptive subsidence in the spectrum of possibilities for maar-diatreme volcanoes worldwide.  相似文献   

6.
Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5–20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic stratigraphy, suggesting that the diatreme eruption did not penetrate below the base of the uppermost country rock unit, a sandstone aquifer ∼360 m thick. By comparison, other NVF diatremes several tens of kilometers away were excavated to depths of ∼1,000 m beneath the paleosurface (e.g., Delaney PT. Ship Rock, New Mexico: the vent of a violent volcanic eruption. In: Beus SS (ed) Geological society of America Centennial Field Guide, Rocky Mountain Section 2:411–415 (1987)). This can be accounted for by structurally controlled variations in aquifer thickness beneath different regions of the volcanic field. Variations in accidental clast composition and bedding style around the edifice are indicative of a laterally migrating or widening vent that encountered lateral variations in subsurface geology. We offer reasonable evidence that this subsurface lithology controlled the availability of external water to the magma, which in turn controlled characteristics of deposits and their distribution around the vent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The 14 ka Puketarata eruption of Maroa caldera in Taupo Volcanic Zone was a dome-related event in which the bulk of the 0.25 km3 of eruption products were emplaced as phreatomagmatic fall and surge deposits. A rhyolitic dike encountered shallow groundwater during emplacement along a NE-trending normal fault, leading to shallow-seated explosions characterised by low to moderate water/magma ratios. The eruption products consist of two lava domes, a proximal tuff ring, three phreatic collapse craters, and a widespread fall deposit. The pyroclastic deposits contain dominantly dense juvenile clasts and few foreign lithics, and relate to very shallow-level disruption of the growing dome and its feeder dike with relatively little involvement of country rock. The distal fall deposit, representing 88% of the eruption products is, despite its uniform appearance and apparently subplinian dispersal, a composite feature equivalent to numerous discrete proximal phreatomagmatic lapilli fall layers, each deposited from a short-lived eruption column. The Puketarata products are subdivided into four units related to successive phases of:(A) shallow lava intrusion and initial dome growth; (B) rapid growth and destruction of dome lobes; (C) slower, sustained dome growth and restriction of explosive disruption to the dome margins; and (D) post-dome withdrawal of magma and crater-collapse. Phase D was phreatic, phases A and C had moderate water: magma ratios, and phase B a low water: magma ratio. Dome extrusion was most rapid during phase B, but so was destruction, and hence dome growth was largely accomplished during phase C. The Puketarata eruption illustrates how vent geometry and the presence of groundwater may control the style of silicic volcanism. Early activity was dominated by these external influences and sustained dome growth only followed after effective exclusion of external water from newly emplaced magma.  相似文献   

8.
The lapilli tuff breccias (LTB-1 and LTB-2) of the Archean Hunter Mine Group in the south-central part of the Abitibi greenstone belt are inferred to be the product of subaqueous lava fountaining. Intercalated sub-wave base iron-formations, interstratified turbiditic tuffs, the absence of wave-induced sedimentary structures, and the stratigraphic position of lapilli tuff breccias beneath basaltic komatiites, support this contention. A complete eruptive sequence shows a tripartite division into (a) massive breccia, (b) stratified lapilli tuff, and (c) turbiditic tuff-lapilli tuff division. The massive breccia division is characterized by clusters of isolated and compressed irregular-shaped clasts inferred to be deposited directly from the hot magmatic lava fountain. Abundant vesicular pyroclasts with a vesicle content of up to 60% exhibit locally coalescing vesicles indicating bubble nucleation prior to eruption. The prevalence of irregular to amoeboid clast shapes suggests transport from the vent in a steamy-rich, high-density current to the site under a self-generated steam cupola. Ubiquitous subequant lapilli-size pyroclasts of the stratified lapilli tuff division suggest that significant ingress of water into the fountain changed the prevalent fragmentation process from magmatic to hydrovolcanic. The turbiditic tuff-lapilli tuff division composed of pumice, lithic fragments and vitric ash is envisaged to have formed by gravitational collapse of a subaqueous turbulent eruptive plume. This type of eruptive mechanism constituted a minor but important process of volcanic construction on the ocean floor during the Archean, and possibly during incipient arc and backarc formation in modern day settings.  相似文献   

9.
The pyroclastic deposits of many basaltic volcanic centres show abrupt transitions between contrasting eruptive styles, e.g., Hawaiian versus Strombolian, or `dry' magmatic versus `wet' phreatomagmatic. These transitions are controlled dominantly by variations in degassing patterns, magma ascent rates and degrees of interaction with external water. We use Crater Hill, a 29 ka explosive/effusive monogenetic centre in the Auckland volcanic field, New Zealand, as a case study of the transitions between these end-member eruptive styles. The Crater Hill eruption took place from at least 4 vents spaced along a NNE-trending, 600-m-long fissure that is contained entirely within a tuff ring generated during the earliest eruption phases. Early explosive phases at Crater Hill were characterised by eruption from multiple unstable and short-lived vents; later, dominantly extrusive, volcanism took place from a more stable point source. Most of the Crater Hill pyroclastic deposits were formed in 3 phreatomagmatic (P) and 4 `dry' magmatic (M) episodes, forming in turn the outer tuff ring and maar crater (P1, M1, P2) and scoria cone 1 (M2–M4). This activity was followed by formation of a lava shield and scoria cone 2. Purely `wet' activity is represented by the bulk of P1 and P2, and purely `dry' activity by much of M2–M4. However, M1 and parts of M2 and M4 show evidence for simultaneous eruptions of differing style from adjacent vents and rapid variations in the extent and timing of magma:water interaction at each vent. The nature of the wall-rock lithics, and these rapid variations in inferred water/magma ratios imply interaction was occurring mostly at depths of ≤80 m, and the vesicularity patterns in juvenile clasts from these and the P beds imply that rapid degassing occurred at these shallow levels. We suggest that abrupt transitions between eruptive styles, in time and space, at Crater Hill were linked to changes in the local magma supply rate and patterns and vigour of degassing during the final metres of ascent.  相似文献   

10.
11.
The 3-month long eruption of Asama volcano in 1783 produced andesitic pumice falls, pyroclastic flows, lava flows, and constructed a cone. It is divided into six episodes on the basis of waxing and waning inferred from records made during the eruption. Episodes 1 to 4 were intermittent Vulcanian or Plinian eruptions, which generated several pumice fall deposits. The frequency and intensity of the eruption increased dramatically in episode 5, which started on 2 August, and culminated in a final phase that began on the night of 4 August, lasting for 15 h. This climactic phase is further divided into two subphases. The first subphase is characterized by generation of a pumice fall, whereas the second one is characterized by abundant pyroclastic flows. Stratigraphic relationships suggest that rapid growth of a cone and the generation of lava flows occurred simultaneously with the generation of both pumice falls and pyroclastic flows. The volumes of the ejecta during the first and second subphases are 0.21 km3 (DRE) and 0.27 km3 (DRE), respectively. The proportions of the different eruptive products are lava: cone: pumice fall=84:11:5 in the first subphase and lava: cone: pyroclastic flow=42:2:56 in the second subphase. The lava flows in this eruption consist of three flow units (L1, L2, and L3) and they characteristically possess abundant broken phenocrysts, and show extensive "welding" texture. These features, as well as ghost pyroclastic textures on the surface, indicate that the lava was a fountain-fed clastogenic lava. A high discharge rate for the lava flow (up to 106 kg/s) may also suggest that the lava was initially explosively ejected from the conduit. The petrology of the juvenile materials indicates binary mixing of an andesitic magma and a crystal-rich dacitic magma. The mixing ratio changed with time; the dacitic component is dominant in the pyroclasts of the first subphase of the climactic phase, while the proportion of the andesitic component increases in the pyroclasts of the second subphase. The compositions of the lava flows vary from one flow unit to another; L1 and L3 have almost identical compositions to those of pyroclasts of the first and second subphases, respectively, while L2 has an intermediate composition, suggesting that the pyroclasts of the first and second subphases were the source of the lava flows, and were partly homogenized during flow. The complex features of this eruption can be explained by rapid deposition of coarse pyroclasts near the vent and the subsequent flowage of clastogenic lavas which were accompanied by a high eruption plume generating pumice falls and/or pyroclastic flows.Editorial responsibility: T. Druitt  相似文献   

12.
Tungurahua, one of Ecuador's most active volcanoes, is made up of three volcanic edifices. Tungurahua I was a 14-km-wide andesitic stratocone which experienced at least one sector collapse followed by the extrusion of a dacite lava series. Tungurahua II, mainly composed of acid andesite lava flows younger than 14,000 years BP, was partly destroyed by the last collapse event, 2955±90 years ago, which left a large amphitheater and produced a ∼8-km3 debris deposit. The avalanche collided with the high ridge immediately to the west of the cone and was diverted to the northwest and southwest for ∼15 km. A large lahar formed during this event, which was followed in turn by dacite extrusion. Southwestward, the damming of the Chambo valley by the avalanche deposit resulted in a ∼10-km-long lake, which was subsequently breached, generating another catastrophic debris flow. The eruptive activity of the present volcano (Tungurahua III) has rebuilt the cone to about 50% of its pre-collapse size by the emission of ∼3 km3 of volcanic products. Two periods of construction are recognized in Tungurahua's III history. From ∼2300 to ∼1400 years BP, high rates of lava extrusion and pyroclastic flows occurred. During this period, the magma composition did not evolve significantly, remaining essentially basic andesite. During the last ∼1300 years, eruptive episodes take place roughly once per century and generally begin with lapilli fall and pyroclastic flow activity of varied composition (andesite+dacite), and end with more basic andesite lava flows or crater plugs. This pattern is observed in the three historic eruptions of 1773, 1886 and 1916–1918. Given good age control and volumetric considerations, Tungurahua III growth's rate is estimated at ∼1.5×106 m3/year over the last 2300 years. Although an infrequent event, a sector collapse and associated lahars constitute a strong hazard of this volcano. Given the ∼3000 m relief and steep slopes of the present cone, a future collapse, even of small volume, could cover an area similar to that affected by the ∼3000-year-old avalanche. The more frequent eruptive episodes of each century, characterized by pyroclastic flows, lavas, lahars, as well as tephra falls, directly threaten 25,000 people and the Agoyan hydroelectric dam located at the foot of the volcano.  相似文献   

13.
The ~5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin–medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water–magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a “magmatic horizon” of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW–SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.  相似文献   

14.
The Cana Creek Tuff is one of four rhyolitic ignimbrite members of the Late Carboniferous Currabubula Formation, a volcanogenic conglomeratic braidplain sequence exposed along the western margin of the New England Orogen in northeastern New South Wales. The source is not exposed but was probably located tens of kilometres to the west of existing outcrops. The medial to distal parts of the tuff average about 70 m in thickness, are widespread (minimum present area 1400 km2), and comprise a primary pyroclastic facies (ignimbrite, ash-fall tuff) and a redeposited volcaniclastic facies (sandstone, conglomerate). Both facies are composed of differing proportions of crystal fragments (quartz, plagioclase, K-feldspar), pumiceous clasts (pumice, shards, fine ash), and accidental lithics. The eruption responsible for this unit was explosive and of large magnitude (dense rock equivalent volume about 100 km3). That it was also phreatomagmatic in character is proposed on the basis of: the intimate association of primary and redeposited facies; the presence of accretionary lapilli both in ignimbrite and in ash-fall tuff; the fine grain size of juvenile pyroclasts; the low grade of the ignimbrite; and the close similarity in facies, composition and magnitude to the deposits from the 20,000y. B.P. phreatomagmatic eruption at Taupo, New Zealand (the Wairakei and parts of the Hinuera Formations). The eruption began and ended from a vent with excess water available, possibly submersed in a caldera lake, and generated volcaniclastic sheet floods and debris flows. The emplacement of the primary pyroclastic facies is correlated with an intervening stage when the water:magma mass ratio was lower. The deposits from a large-magnitude, phreatomagmatic eruption are predicted to show systematic lateral variations in facies. Primary pyroclastic facies predominate near the source although the preserved stratigraphy is an incomplete record because of widespread contemporaneous erosion. Volcaniclastic facies, redeposited from proximal sites by floods, dominate at medial and distal locations. In areas hundreds of kilometres from the source, the eruption is registered by thin layers of fine-grained airfall ash.  相似文献   

15.
Magmatism in Kachchh, in the northwestern Deccan continental flood basalt province, is represented not only by typical tholeiitic flows and dikes, but also plug-like bodies, in Mesozoic sandstone, of alkali basalt, basanite, melanephelinite and nephelinite, containing mantle nodules. They form the base of the local Deccan stratigraphy and their volcanological context was poorly understood. Based on new and published field, petrographic and geochemical data, we identify this suite as an eroded monogenetic volcanic field. The plugs are shallow-level intrusions (necks, sills, dikes, sheets, laccoliths); one of them is known to have fed a lava flow. We have found local peperites reflecting mingling between magmas and soft sediment, and the remains of a pyroclastic vent composed of non-bedded lapilli tuff breccia, injected by mafic alkalic dikes. The lapilli tuff matrix contains basaltic fragments, glass shards, and detrital quartz and microcline, with secondary zeolites, and there are abundant lithic blocks of mafic alkalic rocks. We interpret this deposit as a maar-diatreme, formed due to phreatomagmatic explosions and associated wall rock fragmentation and collapse. This is one of few known hydrovolcanic vents in the Deccan Traps. The central Kachchh monogenetic volcanic field has >30 individual structures exposed over an area of ∼1,800 km2 and possibly many more if compositionally identical igneous intrusions in northern Kachchh are proven by future dating work to be contemporaneous. The central Kachchh monogenetic volcanic field implies low-degree mantle melting and limited, periodic magma supply. Regional directed extension was absent or at best insignificant during its formation, in contrast to the contemporaneous significant directed extension and vigorous mantle melting under the main area of the Deccan flood basalts. The central Kachchh field demonstrates regional-scale volcanological, compositional, and tectonic variability within flood basalt provinces, and adds the Deccan Traps to the list of such provinces containing monogenetic- and/or hydrovolcanism, namely the Karoo-Ferrar and Emeishan flood basalts, and plateau basalts in Saudi Arabia, Libya, and Patagonia.  相似文献   

16.
The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (>200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow-layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age.The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows. The inferred eruptive style may be in part related to synchronous disruption of the southern margin of the Fish Canyon magma chamber by block faulting. The Pagosa Peak eruptive sources are apparently buried in the southern La Garita caldera, where northerly extensions of observed syneruptive faults served as fissure vents. Cumulative vent cross-sections were large, leading to relatively low emission velocities for a given discharge rate. Many successive pyroclastic flows accumulated sufficiently rapidly to weld densely as a cooling unit up to 1000 m thick and to retain heat adequately to permit rheomorphic flow. Explosive potential of the magma may have been reduced by degassing during ascent through fissure conduits, leading to fracture-dominated magma fragmentation at low vesicularity. Subsequent collapse of the 75×35 km2 La Garita caldera and eruption of the Fish Canyon Tuff were probably triggered by destabilization of the chamber roof as magma was withdrawn during the Pagosa Peak eruption.  相似文献   

17.
A study of the historic record of activity of Piton de la Fournaise has revealed a cyclic pattern of eruption involving effusion of oceanite lava from major-flank centers every 20–40 years. Calculated volumes of the recent lava flows and pyroclastic ejecta have established an effusion rate of 3.9 m3 s−1 since 1931 and 6.2 m3 s−1 since 1951. Flank eruptions outside the present caldera define a distribution maximum which is expected to correlate with the depth range of a high-level magma reservoir.A model has been constructed which requires replenishment of a high-level magma chamber at a constant rate and regular eruption from summit and minor-flank centers, acting as “safety valves” to the magma chamber; when the magma chamber reaches its maximum expansion, a major-flank outburst of oceanitic lava occurs.The fact that calculated effusion rates are not consistent with radiometric dates implies an increase in effusion volume with time for the volcano.  相似文献   

18.
The 18th historic eruption of Hekla started on 26 February, 2000. It was a short-lived but intense event, emitting basaltic andesitic (55.5 wt% SiO2) pyroclastic fragments and lava. During the course of the eruption, monitoring was done by both instruments and direct observations, together providing unique insight into the current activity of Hekla. During the 12-day eruption, a total of 0.189 km3 DRE of magma was emitted. The eruptive fissure split into five segments. The segments at the highest altitude were active during the first hours, while the segments at lower altitude continued throughout the eruption. The eruption started in a highly explosive manner giving rise to a Subplinian eruptive column and consequent basaltic pyroclastic flows fed by column collapses. After the explosive phase reached its maximum, the eruption went through three more phases, namely fire-fountaining, Strombolian bursts and lava effusion. In this paper, we describe the course of events of the eruption of Hekla and the origin of its magma, and then show that the discharge rate can be linked to different style of eruptive activity, which are controlled by fissure geometry. We also show that the eruption phases observed at Hekla can be linked with inferred magma chamber overpressure prior to the eruption.  相似文献   

19.
Cerro Pinto is a Pleistocene rhyolite tuff ring-dome complex located in the eastern Trans-Mexican Volcanic Belt. The complex is composed of four tuff rings and four domes that were emplaced in three eruptive stages marked by changes in vent location and eruptive character. During Stage I, vent clearing produced a 1.5-km-diameter tuff ring that was then followed by emplacement of two domes of approximately 0.2 km3 each. With no apparent hiatus in activity, Stage II began with the explosive formation of a tuff ring ~2 km in diameter adjacent to and north of the earlier ring. Subsequent Stage II eruptions produced two smaller tuff rings within the northern tuff ring as well as a small dome that was mostly destroyed by explosions during its growth. Stage III involved the emplacement of a 0.04 km3 dome within the southern tuff ring. Cerro Pinto’s eruptive history includes sequences that follow simple rhyolite-dome models, in which a pyroclastic phase is followed immediately by effusive dome emplacement. Some aspects of the eruption, however, such as the explosive reactivation of the system and explosive dome destruction, are more complex. These events are commonly associated with polygenetic structures, such as stratovolcanoes or calderas, in which multiple pulses of magma initiate reactivation. A comparison of major and trace element geochemistry with nearby Pleistocene silicic centers does not show indication of any co-genetic relationship, suggesting that Cerro Pinto was produced by a small, isolated magma chamber. The compositional variation of the erupted material at Cerro Pinto is minimal, suggesting that there were not multiple pulses of magma responsible for the complex behavior of the volcano and that the volcanic system was formed in a short time period. The variety of eruptive style observed at Cerro Pinto reflects the influence of quickly exhaustible water sources on a short-lived eruption. The rising magma encountered small amounts of groundwater that initiated eruption phases. Once a critical magma:water ratio was exceeded, the eruptions became dry and sub-plinian to plinian. The primary characteristic of Cerro Pinto is the predominance of fall deposits, suggesting that the level at which rising magma encountered water was deep enough to allow substantial fragmentation after the water source was exhausted. Isolated rhyolite domes are rare and are not currently viewed as prominent volcanic hazards, but the evolution of Cerro Pinto demonstrates that individual domes may have complex cycles, and such complexity must be taken into account when making hazard risk assessments.  相似文献   

20.
The Scafell caldera-lake volcaniclastic succession is exceptionally well exposed. At the eastern margin of the caldera, a large andesitic explosive eruption (>5 km3) generated a high-mass-flux pyroclastic density current that flowed into the caldera lake for several hours and deposited the extensive Pavey Ark ignimbrite. The ignimbrite comprises a thick (≤125 m), proximal, spatter- and scoria-rich breccia that grades laterally and upwards into massive lapilli-tuff, which, in turn, is gradationally overlain by massive and normal-graded tuff showing evidence of soft-state disruption. The subaqueous pyroclastic current carried juvenile clasts ranging from fine ash to metre-scale blocks and from dense andesite through variably vesicular scoria to pumice (<103 kg m−3). Extreme ignimbrite lithofacies diversity resulted via particle segregation and selective deposition from the current. The lacustrine proximal ignimbrite breccia mainly comprises clast- to matrix-supported blocks and lapilli of vesicular andesite, but includes several layers rich in spatter (≤1.7 m diameter) that was emplaced in a ductile, hot state. In proximal locations, rapid deposition of the large and dense clasts caused displacement of interstitial fluid with elutriation of low-density lapilli and ash upwards, so that these particles were retained in the current and thus overpassed to medial and distal reaches. Medially, the lithofacies architecture records partial blocking, channelling and reflection of the depletive current by substantial basin-floor topography that included a lava dome and developing fault scarps. Diffuse layers reflect surging of the sustained current, and the overall normal grading reflects gradually waning flow with, finally, a transition to suspension sedimentation from an ash-choked water column. Fine to extremely fine tuff overlying the ignimbrite forms ∼25% of the whole and is the water-settled equivalent of co-ignimbrite ash; its great thickness (≤55 m) formed because the suspended ash was trapped within an enclosed basin and could not drift away. The ignimbrite architecture records widespread caldera subsidence during the eruption, involving volcanotectonic faulting of the lake floor. The eruption was partly driven by explosive disruption of a groundwater-hydrothermal system adjacent to the magma reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号