首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The late Pleistocene San Venanzo maar and nearby Pian di Celle tuff ring in the San Venanzo area of Umbria, central Italy, appear to represent different aspects of an eruptive cycle accompanied by diatreme formation. Approximately 6x106 m3 of mostly lapillisized, juvenile ejecta with lesser amounts of lithics and 1x106 m3 of lava were erupted. The stratigraphy indicates intense explosive activity followed by lava flows and subvolcanic intrusions. The pyroclastic material includes lithic breccia derived from vent and diatreme wall erosion, roughly stratified lapilli tuff deposited by concentrated pyroclastic surge, chaotic scoriaceous pyroclastic flow and inverse graded grain-flow deposits. The key feature of the pyroclastics is the presence of concentric-shelled lapilli generated by accretion around the lithics during magma ascent in the diatreme conduits. The rock types range from kalsilite leucite olivine melilitite lavas and subvolcanic intrusions to carbonatite, phonolite and calcitic melilitite pyroclasts. Juvenile ejecta contain essential calcite whose composition and texture indicate a magmatic origin. Pyroclastic carbonatite activity is also indicated by the presence of carbonatite ash beds. The San Venanzo maar-forming event is believed to have been trigered by fluid-rich carbonatite-phonolite magma. The eruptive centre the moved to the Pian di Celle tuff ring, where the eruption of degassed olivine melilititic magma and late intrusions ended magmatic activity in the area. In both volcanoes the absence of phreatomagmatic features together with the presence of large amounts of primary calcite suggests carbonatite segregation and violent exsolution of CO2 which, flowing through the diatremes, produced the peculiar intrusive pyroclastic facies and triggered explosions.  相似文献   

2.
Detailed mapping of Tok Island, located in the middle of the East Sea (Sea of Japan), along with lithofacies analysis and K-Ar age determinations reveal that the island is of early to late Pliocene age and comprises eight rock units: Trachyte I, Unit P-I, Unit P-II, Trachyandesite (2.7±0.1 Ma), Unit P-III, Trachyte II (2.7±0.1 Ma), Trachyte III (2.5±0.1 Ma) and dikes in ascending stratigraphic order. Trachyte I is a mixture of coherent trachytic lavas and breccias that are interpreted to be subaqueous lavas and related hyaloclastites. Unit P-I comprises massive and inversely graded basaltic breccias which resulted from subaerial gain flows and subaqueous debris flows. A basalt clast from the unit, derived from below Trachyte I, has an age of 4.6±0.4 Ma. Unit P-II is composed of graded and stratified lapilli tuffs with the characteristics of proximal pyroclastic surge deposits. The Trachyandesite is a massive subaerial lava ponded in a volcano-tectonic depression, probably a summit crater. A pyroclastic sequence containing flattened scoria clasts (Unit P-III) and a small volume subaerial lava (Trachyte II) occur above the Trachyandesite, suggesting resumption of pyroclastic activity and lava effusion. Afterwards, shallow intrusion of magma occurred, producing Trachyte III and trachyte dikes.The eight rock units provide an example of the changing eruptive and depositional processes and resultant succession of lithofacies as a seamount builds up above sea level to form an island volcano: Trachyte I represents a wholly subaqueous and effusive stage; Units P-I and P-II represent Surtseyan and Taalian eruptive phases during an explosive transitional (subaqueous to emergent) stage; and the other rock units represent later subaerial effusive and explosive stages. Reconstruction of volcano morphology suggests that the island is a remnant of the south-western crater rim of a volcano the vent of which lies several hundred meters to the north-east.  相似文献   

3.
Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial.The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base.In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils.The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.  相似文献   

4.
The Golan Heights is a Plio-Pleistocene volcanic plateau. Cinder cones of Late Pleistocene age are very common in the eastern and northern Golan, while phreatomagmatic deposits are relatively rare and occur just in two structures — the maar of Birket Ram and the tuff ring of Mt. Avital. The complex of Mt. Avital includes two large cinder cones, a tuff ring with an elongated central depression and several basaltic flows, some of them breach the cinder cones. The (exposed) eruptive history of the complex includes (1) an early stage of basaltic lava flows, (2) strombolian activity and the buildup of the southern cinder cone, (3) a second stage of basaltic flows and the buildup of the northern cinder cone, and then a transition to (4) phreatomagmatic explosions. The phreatomagmatic deposits include surges, lapilli fallout deposits and coarse-grained lithic tuff breccias, which were found up to 200 m above the central depression. Basaltic and scoriaceous clasts are the main component of all deposits, while juvenile material is usually a minor component, almost absent in the lapilli deposits.It is suggested that the phreatomagmatic events in Mt. Avital were induced by the infiltration of water from a lake that existed in a nearby topographic low (Quneitra Valley). The lake was formed or significantly expanded at about 300 ka due to a lava flow that blocked the drainage of the valley to the west. The interlayering of tuff and scoria at the top of the northern cinder cone and the good preservation of a lava flow top breccia under the surges imply that the phreatomagmatic activity immediately followed and even coincided with the last stages of strombolian activity. It is suggested that the dry–wet transition was triggered by the effusion of the second stage lavas and the buildup of the northern cinder cone, which probably caused a reduction of pressure in the magmatic system and allowed the lake water an access to the magmatic system. The minimum age of the phreatomagmatic events is determined by a 54 ka Musterian site which lies directly on top of the tuff in the Quneitra Valley.  相似文献   

5.
At Bear Lake, in the Flin Flon-Snow Lake greenstone belt of Manitoba, 400+ m of thick-to very thick-bedded, generally ungraded, basaltic andesite tuff-breccia, breccia, and lapilli-tuff are intercalated with pillowed lava flows in the upper part of an early Proterozoic submarine basaltic andesite shield volcano. The fragmental rocks comprise angular, amygdaloidal blocks and lapilli, many with partial chilled selvages, in a matrix of blocky, non-amygdaloidal to highly amygdaloidal vitric basaltic andesite ash and small lapilli. Minor thin-to medium-bedded, commonly normally graded tuff occurs in the upper part of the sequence. Clasts in fragmental beds consistently have higher amygdule contents than intercalated lava flows. Although similar to pillow-fragment breccias, the Bear Lake fragmental rocks were produced by extended surtseyan-type, phreatomagmatic eruptions, with associated fire fountain activity, at a progressively subsiding, shallow water vent. Periodic tephra slumping generated debris flows that transported particles down the uppe, gentle slope of the volcano to a depositional site at a water depth of less than 1 km. Turbidity currents probably carried much fine tephra to deeper water; tuff was deposited in the preserved section only after explosive volcanism ceased.  相似文献   

6.
Narcondam Island in the Andaman Sea represents a dacite–andesite dome volcano in the volcanic chain of the Burma–Java subduction complex. The pyroclasts of andesitic composition are restricted to the periphery of the dome predominantly in the form of block‐and‐ash deposits and minor base surge deposits. Besides pyroclastic deposits, andesitic lava occurs dominantly at the basal part of the dome whereas dacitic lava occupies the central part of the dome. The pyroclasts are represented by non‐vesiculated to poorly vesiculated blocks of andesite, lapilli, and ash. The hot debris derived from dome collapse was deposited initially as massive to reversely‐graded beds with the grain support at the lower part and matrix support at the upper part. This sequence is overlain by repetitive beds of lapilli breccia to tuff breccia. These deposits are recognized as a basal avalanche rather than lahar deposit. This basal avalanche was punctuated by an ash‐cloud surge deposit representing a sequence of thinly bedded units of normal graded unit to parallel laminated beds.  相似文献   

7.
8.
The ~5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin–medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water–magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a “magmatic horizon” of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW–SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.  相似文献   

9.
 A subaqueous volcaniclastic mass-flow deposit in the Miocene Josoji Formation, Shimane Peninsula, is 15–16 m thick, and comprises mainly blocks and lapilli of rhyolite and andesite pumices and non- to poorly vesiculated rhyolite. It can be divided into four layers in ascending order. Layer 1 is an inversely to normally graded and poorly sorted lithic breccia 0.3–6 m thick. Layer 2 is an inversely to normally graded tuff breccia to lapilli tuff 6–11 m thick. This layer bifurcates laterally into minor depositional units individually composed of a massive, lithic-rich lower part and a diffusely stratified, pumice-rich upper part with inverse to normal grading of both lithic and pumice clasts. Layer 3 is 2.5–3 m thick, and consists of interbedded fines-depleted pumice-rich and pumice-poor layers a few centimeters thick. Layer 4 is a well-stratified and well-sorted coarse ash bed 1.5–2 m thick. The volcaniclastic deposit shows internal features of high-density turbidites and contains no evidence for emplacement at a high temperature. The mass-flow deposit is extremely coarse-grained, dominated by traction structures, and is interpreted as the product of a deep submarine, explosive eruption of vesicular magma or explosive collapse of lava. Received: 10 January 1996 / Accepted: 23 February 1996  相似文献   

10.
The tuff ring of Averno (3700 years BP) is a wide maar-type, lake-filled volcano which formed during one of the most recent explosive eruptions inside the Campi Flegrei caldera.The eruptive products consist of (a) a basal coarse unit, intercalated ballistic fallout breccia, subplinian pumice deposits and pyroclastic surge bedsets and (b) an upper fine-grained, stratified, pyroclastic surge sequence.During the deposition of the lower unit both purely magmatic (lapilli breccia) and hydromagmatic episodes (wavy and planar bedded, fine ash pyroclastic surge bedsets) coexisted. The hydromagmatic deposits exhibit both erosive and depositional features. The upper unit mostly comprises fine grained, wet pyroclastic surge deposits. The pyroclastic surges were controlled by a highly irregular pre-existing topography, produced by volcano-tectonic dislocation of older tuff rings and cones.Both the upper and lower units show decreasing depletion of fines with increasing distance from the vent. The ballistic fallout layers, however, exhibit only a weak increase in fines with distance from the vent, in spite of marked fining of the lapilli and blocks. The deposits consist dominantly of moderately to highly vesicular juvenile material, generated by primary magmatic volatile driven fragmentation followed by episodes of near-surface magma-water interaction.The evolution of the eruption toward increased fragmentation and a more hydromagmatic character may reflect that the progressive depletion in magmatic volatiles and a decrease in conduit pressure during the last stage of the eruption, possibly associated with a widening of the vent at sea level.  相似文献   

11.
Cas  R A F  Allen  R L  Bull  S W  Clifford  B A  Wright  J V 《Bulletin of Volcanology》1990,52(3):159-174
The relics of two Late Devonian subaqueous rhyolitic dome-top tuff and pumice cone successions are preserved in the Bunga Beds outlier of the Boyd Volcanic Complex, southeastern Australia. These cone successions and other rhyolitic volcanics of the Bunga Beds are associated with turbidite and other deep-water massflow sedimentary rocks. The two cone successions have a generally similar stratigraphy. At the base, flow-banded, variably autobrecciated and quench-fragmented rhyolite, representing an intrusive to extrusive dome, is overlain by rhyolitesediment breccia, representing extrusion of the dome through the deep-water sediment pile and resedimentation down its flanks. In the northern cone succession an overlying, succession of bedded pumiceous crystal-rich to crystal-poor tuffs represents the onset of pyroclastic activity and growth of a tuff cone. An overyling debris flow deposit represents degradation of part of the cone. The topmost unit, a stratified pumice succession, is thought to represent another cone-building eruptive phase, and is separated from the underlying strata by a major slide surface. The southern cone succession contains less tuff and abundant pumice, and is also terminated by a debris-flow deposit, indicating cone degradation. A modern analogue for the inferred eruptive style and sequence is the 1953–1957 rhyolite eruption that formed the Tuluman Island lava-tuff cone complex in the Bismarck Sea. The eruptions were often cyclical consisting of an initial inferred submarine-lava-forming stage, passing into a pumicecone-forming stage, in some cases a subaeriallava-forming stage, and a final stage, following the cessation of volcanism, during which the cones collapsed gravitationally or were destroyed by wave erosion. Using observations from both the Tuluman Island eruptions and the preserved stratigraphies of the Devonian tuff cones, a dynamic model is proposed for the formation of subaqueous rhyolitic dome-top tuff and pumice cones.  相似文献   

12.
The Kos Plateau Tuff consists of pyroclastic deposits from a major Quaternary explosive rhyolitic eruption, centred about 10 km south of the island of Kos in the eastern Aegean, Greece. Five main units are present, the first two (units A and B) were the product of a phreatoplinian eruption. The eruption style then changed to `dry' explosive style as the eruption intensity increased forming a sequence of ignimbrites and initiating caldera collapse. The final waning phase returned to phreatomagmatic eruptive conditions (unit F). The phreatomagmatic units are fine grained, poorly sorted, and dominated by blocky vitric ash, thickly ash-coated lapilli and accretionary lapilli. They are non-welded and were probably deposited at temperatures below 100°C. All existing exposures occur at distances between 10 km and 40 km from the inferred source. Unit A is a widespread (>42 km from source), thin (upwind on Kos) to very thick (downwind), internally laminated, dominantly ash bed with mantling, sheet-like form. Upwind unit A and the lower and middle part of downwind unit A are ash-rich (ash-rich facies) whereas the upper part of downwind unit A includes thin beds of well sorted fine pumice lapilli (pumice-rich facies). Unit A is interpreted to be a phreatoplinian fall deposit. Although locally the bedforms were influenced by wind, surface water and topography. The nature and position of the pumice-rich facies suggests that the eruption style alternated between `wet' phreatoplinian and `dry' plinian during the final stages of unit A deposition.Unit B is exposed 10–19 km north of the inferred source on Kos, overlying unit A. It is a thick to very thick, internally stratified bed, dominated by ash-coated, medium and fine pumice lapilli in an ash matrix. Unit B shows a decrease in thickness and grain size and variations in bedforms downcurrent that allow definition of several different facies and laterally equivalent facies associations. Unit B ranges from being very thick, coarse and massive or wavy bedded in the closest outcrops to source, to being partly massive and partly diffusely stratified or cross-bedded in medial locations. Pinch and swell, clast-supported pumice layers are also present in medial locations. In the most distal sections, unit B is stratified or massive, and thinner and finer grained than elsewhere and dominated by thickly armoured lapilli. Unit B is interpreted to have been deposited from an unsteady, density stratified, pyroclastic density current which decelerated and progressively decreased its particle load with distance from source. Condensation of steam during outflow of the current promoted the early deposition of ash and resulted in the coarser pyroclasts being thickly ash-coated. The distribution, texture and stratigraphic position of unit B suggest that the pyroclastic density current was generated from collapse of the phreatoplinian column following a period of fluctuating discharge when the eruptive activity alternated between `wet' and `dry'. The pyroclastic density current was transitional in particle concentration between a dilute pyroclastic surge and a high particle concentration pyroclastic flow. Unidirectional bedforms in unit B suggest that the depositional boundary was commonly turbulent and in this respect did not resemble conventional pyroclastic flows. However, unit B is relatively thick and poorly sorted, and was deposited more than 19 km from source, implying that the current comprised a relatively high particle concentration and in this respect, did not resemble a typical pyroclastic surge.  相似文献   

13.
14.
The summit cone of the Erebus volcano contains two craters. The Main crater is roughly circular (∼ 500 m diameter) and contains an active persistent phonolite lava lake ∼ 200 m below the summit rim. The Side Crater is adjacent to the southwestern rim of the Main Crater. It is a smaller spoon-shaped Crater (250–350 m diameter, 50–100 m deep) and is inactive. The floor of the Side Crater is covered by snow/ice, volcanic colluvium or weakly developed volcanic soil in geothermal areas (a.k.a. warm ground). But in several places the walls of the Side Crater provide extensive vertical exposure of rock which offers an insight into the recent eruptive history of Erebus. The deposits consist of lava flows with subordinate volcanoclastic lithologies. Four lithostratigraphic units are described: SC 1 is a compound lava with complex internal flow fabrics; SC 2 consists of interbedded vitric lavas, autoclastic and pyroclastic breccias; SC 3 is a thick sequence of thin lavas with minor autoclastic breccias; SC 4 is a pyroclastic fall deposit containing large scoriaceous lava bombs in a matrix composed primarily of juvenile lapilli-sized pyroclasts. Ash-sized pyroclasts from SC 4 consist of two morphologic types, spongy and blocky, indicating a mixed strombolian-phreatomagmatic origin. All of the deposits are phonolitic and contain anorthoclase feldspar.  相似文献   

15.
An extensive rhyolitic dyke swarm has intruded subaqueous pyroclastic deposits, iron-formations, hyaloclastite breccias and lava flows of the 2730 Ma Hunter Mine Group (HMG) in the south-central part of the Archean Abitibi belt, Quebec. The dyke swarm has a minimum width of 500 m and can be traced perpendicular to the section for 2.4 km. Based on crosscutting relationships, chilled margins, quartz content and colour, five distinct dyke generations have been established. Each dyke generation has several magmatic pulses as indicated by parallel rows of columnar joints. Absence of brecciation between parallel rows suggests extremely brief intervals between magma pulses. The central parts of most dykes display inverted V-shaped patterns of columnar-joint convergence, inferred to indicate differential cooling during the late stages of dyke propagation. The dykes commonly display delicate spherulites suggesting rapid cooling, solidification temperatures between 400 and 600°C and penecontemporaneous devitrification. Quartz-feldspar aggregates in the groundmass have locally developed microgranophyric textures. Large spherulites near the chilled margins probably formed at temperatures below 400°C. Percolation of abundant water throughout the dyke complex is suggested by ubiquitous prominent chilled dyke margins. Development of a chilled margin 500 m along one dyke suggests that water percolated at least 500 m below the water/rock interface. Because the dykes intruded subaqueous pyroclastic deposits of similar composition, dyke emplacement below the sea floor is inferred. Interstratification of pillowed flows and brecciated pillowed flows containing rhyolite fragments at the top of the 4–5-km-thick sequence indicates that the central felsic complex probably never emerged during its evolutionary history, supporting the contention that the felsic dyke complex was emplaced beneath the Archean sea floor.  相似文献   

16.
The Shinjima Pumice is a fines-depleted pumice lapilli tuff emplaced several thousands years ago at about 100–140 m below sea level. This 40-m-thick deposit comprises many poorly defined flow units, which are 1–10 m thick, diffusely stratified and showing upward-coarsening of pumice clasts with a sharp to transitional base. Parallel to wavy diffuse stratifications are commonly represented by alignment of pumice clasts, especially in the lower half of the flow units. Pumice clasts of block to coarse-lapilli size commonly have thermal-contraction cracks best developed on the surfaces, demonstrating that they were hot but cooled down to the ambient temperatures prior to their emplacement. These features are suggestive of the direct origin of the Shinjima Pumice from subaqueous eruptions. A theoretical consideration on the behavior of subaqueous eruption plumes and hot and cold pumice clasts suggests that subaqueous eruption plumes commonly collapse by turbulent mixing with the ambient water and are transformed into water-logged mass flows.  相似文献   

17.
The Mawson Formation and correlatives in the Transantarctic Mountains and South Africa record an early eruption episode related to the onset of Ferrar-Karoo flood basalt volcanism. Mawson Formation rocks at Coombs Hills comprise mainly (≥80% vol) structureless tuff breccia and coarse lapilli tuff cut by irregular dikes and sills, within a large vent complex (>30 km2). Quenched juvenile fragments of generally low but variable vesicularity, accretionary lapilli and country rock clasts within vent-fill, and pyroclastic density current deposits point to explosive interaction of basalt with groundwater in porous country rock and wet vent filling debris. Metre-scale dikes and pods of coherent basalt in places merge imperceptibly into peperite and then into surrounding breccia. Steeply dipping to sub-vertical depositional contacts juxtapose volcaniclastic rocks of contrasting componentry and grainsize. These sub-vertical tuff breccia zones are inferred to have formed when jets of debris + steam + water passed through unconsolidated vent-filling deposits. These jets of debris may have sometimes breached the surface to form subaerial tephra jets which fed subaerial pyroclastic density currents and fall deposits. Others, however, probably died out within vent fill before reaching the surface, allowing mixing and recycling of clasts which never reached the atmosphere. Most of the ejecta that did escape the debris-filled vents was rapidly recycled as vents broadened via lateral quarrying of country rock and bedded pyroclastic vent-rim deposits, which collapsed along the margins into individual vents. The unstratified, poorly sorted deposits comprising most of the complex are capped by tuff, lapilli tuff and tuff breccia beds inferred to have been deposited on the floor of the vent complex by pyroclastic density currents. Development of the extensive Coombs Hills vent-complex involved interaction of large volumes of magma and water. We infer that recycling of water, as well as recycling of pyroclasts, was important in maintaining water supply for phreatomagmatic interactions even when aquifer rock in the vent walls lay far from eruption sites as a consequence of vent-complex widening. The proportion of recycled water increased with vent-complex size in the same way that the proportion of recycled tephra did. Though water recycling leaves no direct rock record, the volcaniclastic deposits within the vent complex show through their lithofacies/structural architecture, lithofacies characteristics, and particle properties clear evidence for extensive and varied recycling of material as the complex evolved. Editorial responsibility: J. Donnelly-Nolan  相似文献   

18.
Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5–20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic stratigraphy, suggesting that the diatreme eruption did not penetrate below the base of the uppermost country rock unit, a sandstone aquifer ∼360 m thick. By comparison, other NVF diatremes several tens of kilometers away were excavated to depths of ∼1,000 m beneath the paleosurface (e.g., Delaney PT. Ship Rock, New Mexico: the vent of a violent volcanic eruption. In: Beus SS (ed) Geological society of America Centennial Field Guide, Rocky Mountain Section 2:411–415 (1987)). This can be accounted for by structurally controlled variations in aquifer thickness beneath different regions of the volcanic field. Variations in accidental clast composition and bedding style around the edifice are indicative of a laterally migrating or widening vent that encountered lateral variations in subsurface geology. We offer reasonable evidence that this subsurface lithology controlled the availability of external water to the magma, which in turn controlled characteristics of deposits and their distribution around the vent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Peperites formed by mixing of magma and wet sediment are well exposed along Punta China, Baja California, Mexico, where two sills intrude a section of lava flows, limestones, and volcaniclastic rocks. Irregular lobes and dikes extend from the sills several meters into host sediments, including highly comminuted flow top breccias (lithic lapilli tuff breccias) and shelly micrites, whereas intrusive contacts with lava flows are sharp and planar. Where one sill intruded both coarse-grained volcaniclastic rock and fine-grained limestone, textural differences between the hosts produced strikingly different styles of peperite. Blocky masses of the basaltic intrusions up to 1 m in size were dispersed for distances up to 3 m into host lithic lapilli tuff breccias; the blocks consequently underwent in situ fragmentation as they were rapidly quenched. The high degree of dispersion resulted from steam explosions as the magma enveloped pockets of water in the coarse-grained permeable host. Elutriation of fine-grained material from vertical pipes in tuff breccia above the lower sill provides evidence for meter-scale fluidization of the host. The contact zone between the basaltic magma and the shelly micrite host resembles a mixture of two viscous, immiscible fluids (fluidal peperite). Intrusion occurred behind a stable vapor film which entrained lime mud particles and carried them off grain by grain as magma advanced into the host. Thin-section-scale elutriation pipes formed. Microglobular peperite represents a frozen example of a fuel-coolant interaction (FCI) between basaltic magma and fluidized micrite host. The intimate intermixing of magma and host at the submillimeter level is attributed to fluid instabilities developed along the magma-vapor-host interface. Such intimate intermixing of magma and water-bearing fragmental debris is commonly a precursory step toward explosive hydrovolcanism.  相似文献   

20.
The Igwisi Hills volcanoes (IHV), Tanzania, are unique and important in preserving extra-crater lavas and pyroclastic edifices. They provide critical insights into the eruptive behaviour of kimberlite magmas that are not available at other known kimberlite volcanoes. Cosmogenic 3He dating of olivine crystals from IHV lavas and palaeomagnetic analyses indicates that they are Upper Pleistocene to Holocene in age. This makes them the youngest known kimberlite bodies on Earth by >30?Ma and may indicate a new phase of kimberlite volcanism on the Tanzania craton. Geological mapping, Global Positioning System surveying and field investigations reveal that each volcano comprises partially eroded pyroclastic edifices, craters and lavas. The volcanoes stand <40?m above the surrounding ground and are comparable in size to small monogenetic basaltic volcanoes. Pyroclastic cones consist of diffusely layered pyroclastic fall deposits comprising scoriaceous, pelletal and dense juvenile pyroclasts. Pyroclasts are similar to those documented in many ancient kimberlite pipes, indicating overlap in magma fragmentation dynamics between the Igwisi eruptions and other kimberlite eruptions. Characteristics of the pyroclastic cone deposits, including an absence of ballistic clasts and dominantly poorly vesicular scoria lapillistones and lapilli tuffs, indicate relatively weak explosive activity. Lava flow features indicate unexpectedly high viscosities (estimated at >102 to 106?Pa?s) for kimberlite, attributed to degassing and in-vent cooling. Each volcano is inferred to be the result of a small-volume, short-lived (days to weeks) monogenetic eruption. The eruptive processes of each Igwisi volcano were broadly similar and developed through three phases: (1) fallout of lithic-bearing pyroclastic rocks during explosive excavation of craters and conduits; (2) fallout of juvenile lapilli from unsteady eruption columns and the construction of pyroclastic edifices around the vent; and (3) effusion of degassed viscous magma as lava flows. These processes are similar to those observed for other small-volume monogenetic eruptions (e.g. of basaltic magma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号