首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barren Island (India) is a relatively little studied, little known active volcano in the Andaman Sea, and the northernmost active volcano of the great Indonesian arc. The volcano is built of prehistoric (possibly late Pleistocene) lava flows (dominantly basalt and basaltic andesite, with minor andesite) intercalated with volcaniclastic deposits (tuff breccias, and ash beds deposited by pyroclastic falls and surges), which are exposed along a roughly circular caldera wall. There are indications of a complete phreatomagmatic tephra ring around the exposed base of the volcano. A polygenetic cinder cone has existed at the centre of the caldera and produced basalt-basaltic andesite aa and blocky aa lava flows, as well as tephra, during historic eruptions (1787–1832) and three recent eruptions (1991, 1994–95, 2005–06). The recent aa flows include a toothpaste aa flow, with tilted and overturned crustal slabs carried atop an aa core, as well as locally developed tumuli-like elliptical uplifts having corrugated crusts. Based on various evidence we infer that it belongs to either the 1991 or the 1994–95 eruptions. The volcano has recently (2008) begun yet another eruption, so far only of tephra. We make significantly different interpretations of several features of the volcano than previous workers. This study of the volcanology and eruptive styles of the Barren Island volcano lays the ground for detailed geochemical-isotopic and petrogenetic work, and provides clues to what the volcano can be expected to do in the future.  相似文献   

2.
One active and ten extinct Quaternary volcanoes are described from the Cape Hoskins area, on the north coast of New Britain. They are mostly strato volcanoes built up of lava flows, lava domes, pyroclastic flows, lahars, tephra, and derived alluvial sediments. The volcanic products range in composition from basalt to rhyolite, but basaltic andesite and andesite predominate. Much of the area is covered by tephra, several metres thick, consisting mainly of rhyolitic pumice. The active volcano, Pago, is built up of several glacier-like lava flows, the last of which was formed during an eruption in 1914–18. Pago lies within a well-preserved caldera forming the central part of a broad low-angle cone, named Witori, which consists largely of welded and unwelded pyroclastic flow deposits. C-14 dates obtained on charcoal indicate that the caldera eruption occurred about 2500 years B. P. Another caldera of similar age lies south of Witori. Of the other eight volcanoes described four are relatively well-preserved steep-sided cones formed mainly of lava flows, one is a remnant of a low-angle cone with a caldera, and three are deeply eroded cones which have none of their constructional surfaces preserved.  相似文献   

3.
Geologic mapping on a scale of 1:10000 and detailed stratigraphic studies of lava flows and tephra deposits of the Arenal-Chato volcanic system reveal a complex and cyclic volcanic history. This cyclicity provides insight into the evolution of magma batches during the growth of the andesitic volcanic system. The Arenal and Chato volcanoes have a central zone comprised of a lava armor and a distal zone comprised of a tephra apron. During Arenal's last two eruptive periods major craters formed near intersections of regional fractures at the lava armortephra apron transition. We suggest that such intersections are potential sites for future major explosions. The earliest rocks, i.e., the Chato lava flows, range in composition from basaltic andesite to andesite. These rocks, except for the andesitic domes of Chatito and La Espina, appear to have evolved from a common parental magma. The last active period of Chato volcano occurred 3550 B. P. The earliest known activity of Arenal volcano is 2900 B. P. Arenal lava flows have 54–56 wt% SiO2 and may be subdivided into a high-alumina group (HAG, Al2O3 = 20 wt%) and a low-alumina group (LAG, Al2O3 = 19 wt%). Compared to the HAG, the LAG also has smaller amounts of incompatible elements and higher amounts of FeO and MgO. Arenal tephra deposits were emplaced by Plinian-Sub-Plinian explosions occurring at 300±150-yr intervals. These deposits are compositionally zoned and alternate between dacite and basalt. The stratigraphy reveals an apparent magmatic cycle consisting of (a) dacitic-andesitic tephra, (b) HAG lava flows, (c) LAG lava flows, and (d) andesitic-basaltic tephra. This magmatic cycle is repeated four times during Arenal's history and is interpreted to have developed by the crystal fractionation and crystal redistribution of a single magma batch. The period of this cycle, and consequently the life of a magma batch, is about 800 years. If the cyclic pattern continues, a basaltic explosive phase may occur in the next 250 years.  相似文献   

4.
Narcondam Island in the Andaman Sea represents a dacite–andesite dome volcano in the volcanic chain of the Burma–Java subduction complex. The pyroclasts of andesitic composition are restricted to the periphery of the dome predominantly in the form of block‐and‐ash deposits and minor base surge deposits. Besides pyroclastic deposits, andesitic lava occurs dominantly at the basal part of the dome whereas dacitic lava occupies the central part of the dome. The pyroclasts are represented by non‐vesiculated to poorly vesiculated blocks of andesite, lapilli, and ash. The hot debris derived from dome collapse was deposited initially as massive to reversely‐graded beds with the grain support at the lower part and matrix support at the upper part. This sequence is overlain by repetitive beds of lapilli breccia to tuff breccia. These deposits are recognized as a basal avalanche rather than lahar deposit. This basal avalanche was punctuated by an ash‐cloud surge deposit representing a sequence of thinly bedded units of normal graded unit to parallel laminated beds.  相似文献   

5.
Sinker Butte is the erosional remnant of a very large basaltic tuff cone of middle Pleistocene age located at the southern edge of the western Snake River Plain. Phreatomagmatic tephras are exposed in complete sections up to 100 m thick in the walls of the Snake River Canyon, creating an unusual opportunity to study the deposits produced by this volcano through its entire sequence of explosive eruptions. The main objectives of the study were to determine the overall evolution of the Sinker Butte volcano while focusing particularly on the tephras produced by its phreatomagmatic eruptions. Toward this end, twenty-three detailed stratigraphic sections ranging from 20 to 100 m thick were examined and measured in canyon walls exposing tephras deposited around 180° of the circumference of the volcano.Three main rock units are recognized in canyon walls at Sinker Butte: a lower sequence composed of numerous thin basaltic lava flows, an intermediate sequence of phreatomagmatic tephras, and a capping sequence of welded basaltic spatter and more lava flows. We subdivide the phreatomagmatic deposits into two main parts, a series of reworked, mostly subaqueously deposited tephras and a more voluminous sequence of overlying subaerial surge and fall deposits. Most of the reworked deposits are gray in color and exhibit features such as channel scour and fill, planar-stratification, high and low angle cross-stratification, trough cross-stratification, and Bouma-turbidite sequences consistent with their being deposited in shallow standing water or in braided streams. The overlying subaerial deposits are commonly brown or orange in color due to palagonitization. They display a wide variety of bedding types and sedimentary structures consistent with deposition by base surges, wet to dry pyroclastic fall events, and water saturated debris flows.Proximal sections through the subaerial tephras exhibit large regressive cross-strata, planar bedding, and bomb sags suggesting deposition by wet base surges and tephra fallout. Medial and distal deposits consist of a thick sequence of well-bedded tephras; however, the cross-stratified base-surge deposits are thinner and interbedded within the fallout deposits. The average wavelength and amplitude of the cross strata continue to decrease with distance from the vent. These bedded surge and fall deposits grade upward into dominantly fall deposits containing 75–95% juvenile vesiculated clasts and localized layers of welded spatter, indicating a greatly reduced water-melt ratio. Overlying these “dryer” deposits are massive tuff breccias that were probably deposited as water saturated debris flows (lahars). The first appearance of rounded river gravels in these massive tuff breccias indicates downward coring of the diatreme and entrainment of country rock from lower in the stratigraphic section. The “wetter” nature of these deposits suggests a renewed source of external water. The massive deposits grade upward into wet fallout tephras and the phreatomagmatic sequence ends with a dry scoria fall deposit overlain by welded spatter and lava flows.Field observations and two new 40Ar–39Ar incremental heating dates suggest the succession of lavas and tephra deposits exposed in this part of the Snake River canyon may all have been erupted from a closely related complex of vents at Sinker Butte. We propose that initial eruptions of lava flows built a small shield edifice that dammed or disrupted the flow of the ancestral Snake River. The shift from effusive to explosive eruptions occurred when the surface water or rising ground water gained access to the vent. As the river cut a new channel around the lava dam, water levels dropped and the volcano returned to an effusive style of eruption.  相似文献   

6.
7.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   

8.
Tungurahua, one of Ecuador's most active volcanoes, is made up of three volcanic edifices. Tungurahua I was a 14-km-wide andesitic stratocone which experienced at least one sector collapse followed by the extrusion of a dacite lava series. Tungurahua II, mainly composed of acid andesite lava flows younger than 14,000 years BP, was partly destroyed by the last collapse event, 2955±90 years ago, which left a large amphitheater and produced a ∼8-km3 debris deposit. The avalanche collided with the high ridge immediately to the west of the cone and was diverted to the northwest and southwest for ∼15 km. A large lahar formed during this event, which was followed in turn by dacite extrusion. Southwestward, the damming of the Chambo valley by the avalanche deposit resulted in a ∼10-km-long lake, which was subsequently breached, generating another catastrophic debris flow. The eruptive activity of the present volcano (Tungurahua III) has rebuilt the cone to about 50% of its pre-collapse size by the emission of ∼3 km3 of volcanic products. Two periods of construction are recognized in Tungurahua's III history. From ∼2300 to ∼1400 years BP, high rates of lava extrusion and pyroclastic flows occurred. During this period, the magma composition did not evolve significantly, remaining essentially basic andesite. During the last ∼1300 years, eruptive episodes take place roughly once per century and generally begin with lapilli fall and pyroclastic flow activity of varied composition (andesite+dacite), and end with more basic andesite lava flows or crater plugs. This pattern is observed in the three historic eruptions of 1773, 1886 and 1916–1918. Given good age control and volumetric considerations, Tungurahua III growth's rate is estimated at ∼1.5×106 m3/year over the last 2300 years. Although an infrequent event, a sector collapse and associated lahars constitute a strong hazard of this volcano. Given the ∼3000 m relief and steep slopes of the present cone, a future collapse, even of small volume, could cover an area similar to that affected by the ∼3000-year-old avalanche. The more frequent eruptive episodes of each century, characterized by pyroclastic flows, lavas, lahars, as well as tephra falls, directly threaten 25,000 people and the Agoyan hydroelectric dam located at the foot of the volcano.  相似文献   

9.
The Atexcac maar is located in the central part of the Serdán–Oriental lacustrine/playa basin in the eastern Mexican Volcanic Belt. It is part of a dispersed and isolated monogenetic field consisting of maar volcanoes, basaltic cinder cones and rhyolitic domes. Atexac is a maar volcano excavated into pyroclastic deposits, basaltic lava flows and the flanks of a cinder cone cluster, which itself was built on a topographic high consisting of limestone. It has an ENE-trending elliptical shape with beds, mostly unconsolidated deposits that dip outward at 16–22°. The Atexcac crater was formed from vigorous phreatomagmatic explosions in which fluctuations in the availability of external water, temporal migration of the locus of the explosion, and periodic injection of new magma were important controls on the evolution of the maar crater. Variations in grain sizes and component proportions of correlated deposits from the different sections suggest a migration of the locus of explosions, producing different eruptive conditions with fluctuating water–magma interactions. Deposits rich in large intrusive and limestone blocks are associated with a matrix enriched in small andesitic lapilli. This could suggest differential degrees of fragmentation due to inherited (previously acquired) fragmentation and/or relative distance to the locus of explosions. Initial short-lived phreatic explosions started at the southwest part of the crater and were followed by an ephemeral vertical column and the influx of external water that led to relatively shallow explosive interactions with the ascending basaltic magma. Drier explosions progressed downward and/or laterally northward, sampling subsurface rock types, particularly intrusive, limestone and andesitic zones as well as localized altered zones (N-NE), caused by repetitive injection of basaltic magma. A final explosive phase involved a new injection of magma and a new influx of external water producing wetter conditions at the end of the maar formation. We infer the aquifer was formed by fractured rocks, predominantly andesitic lava flows and limestone rocks. Andesitic accessory clasts dominate in all stratigraphic levels but these rocks are not exposed in the nearby area. These local hydrogeological conditions contrast with those at nearby maar volcanoes, where the water for the magma/water interactions apparently mostly came from a dominantly unconsolidated tuffaceous aquifer, producing tuff rings with a much lower profile than Atexcac.  相似文献   

10.
Peperites formed by mixing of magma and wet sediment are well exposed along Punta China, Baja California, Mexico, where two sills intrude a section of lava flows, limestones, and volcaniclastic rocks. Irregular lobes and dikes extend from the sills several meters into host sediments, including highly comminuted flow top breccias (lithic lapilli tuff breccias) and shelly micrites, whereas intrusive contacts with lava flows are sharp and planar. Where one sill intruded both coarse-grained volcaniclastic rock and fine-grained limestone, textural differences between the hosts produced strikingly different styles of peperite. Blocky masses of the basaltic intrusions up to 1 m in size were dispersed for distances up to 3 m into host lithic lapilli tuff breccias; the blocks consequently underwent in situ fragmentation as they were rapidly quenched. The high degree of dispersion resulted from steam explosions as the magma enveloped pockets of water in the coarse-grained permeable host. Elutriation of fine-grained material from vertical pipes in tuff breccia above the lower sill provides evidence for meter-scale fluidization of the host. The contact zone between the basaltic magma and the shelly micrite host resembles a mixture of two viscous, immiscible fluids (fluidal peperite). Intrusion occurred behind a stable vapor film which entrained lime mud particles and carried them off grain by grain as magma advanced into the host. Thin-section-scale elutriation pipes formed. Microglobular peperite represents a frozen example of a fuel-coolant interaction (FCI) between basaltic magma and fluidized micrite host. The intimate intermixing of magma and host at the submillimeter level is attributed to fluid instabilities developed along the magma-vapor-host interface. Such intimate intermixing of magma and water-bearing fragmental debris is commonly a precursory step toward explosive hydrovolcanism.  相似文献   

11.
During the past 500 thousand years, Unzen volcano, an active composite volcano in the Southwest Japan Arc, has erupted lavas and pyroclastic materials of andesite to dacite composition and has developed a volcanotectonic graben. The volcano can be divided into the Older and the Younger Unzen volcanoes. The exposed rocks of the Older Unzen volcano are composed of thick lava flows and pyroclastic deposits dated around 200–300 ka. Drill cores recovered from the basal part of the Older Unzen volcano are dated at 400–500 ka. The volcanic rocks of the Older Unzen exceed 120 km3 in volume. The Younger Unzen volcano is composed of lava domes and pyroclastic deposits, mostly younger than 100 ka. This younger volcanic edifice comprises Nodake, Myokendake, Fugendake, and Mayuyama volcanoes. Nodake, Myokendake and Fugendake volcanoes are 100–70 ka, 30–20 ka, and <20 ka, respectively. Mayuyama volcano formed huge lava domes on the eastern flank of the Unzen composite volcano about 4000 years ago. Total eruptive volume of the Younger Unzen volcano is about 8 km3, and the eruptive production rate is one order of magnitude smaller than that of the Older Unzen volcano.  相似文献   

12.
The lapilli tuff breccias (LTB-1 and LTB-2) of the Archean Hunter Mine Group in the south-central part of the Abitibi greenstone belt are inferred to be the product of subaqueous lava fountaining. Intercalated sub-wave base iron-formations, interstratified turbiditic tuffs, the absence of wave-induced sedimentary structures, and the stratigraphic position of lapilli tuff breccias beneath basaltic komatiites, support this contention. A complete eruptive sequence shows a tripartite division into (a) massive breccia, (b) stratified lapilli tuff, and (c) turbiditic tuff-lapilli tuff division. The massive breccia division is characterized by clusters of isolated and compressed irregular-shaped clasts inferred to be deposited directly from the hot magmatic lava fountain. Abundant vesicular pyroclasts with a vesicle content of up to 60% exhibit locally coalescing vesicles indicating bubble nucleation prior to eruption. The prevalence of irregular to amoeboid clast shapes suggests transport from the vent in a steamy-rich, high-density current to the site under a self-generated steam cupola. Ubiquitous subequant lapilli-size pyroclasts of the stratified lapilli tuff division suggest that significant ingress of water into the fountain changed the prevalent fragmentation process from magmatic to hydrovolcanic. The turbiditic tuff-lapilli tuff division composed of pumice, lithic fragments and vitric ash is envisaged to have formed by gravitational collapse of a subaqueous turbulent eruptive plume. This type of eruptive mechanism constituted a minor but important process of volcanic construction on the ocean floor during the Archean, and possibly during incipient arc and backarc formation in modern day settings.  相似文献   

13.
Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.  相似文献   

14.
Split Butte is a volcanic crater of Quaternary age consisting of a tephra ring which at one time retained a lava lake. The tephra is thinly bedded and is composed of partially palagonitized sideromelane clasts and subordinate lithic fragments. The beds typically dip radially away from the center of the crater, but locally dip toward the crater center. The tephra ring resulted from phreatomagmatic eruptions as a result of interaction of groundwater with rising basaltic magma, evidenced by glassy and granulated pyroclastic debris, the presence of abundant palagonite and other secondary minerals, numerous armored lapilli, and plastically deformed ash layers below ejecta blocks. Statistical analysis of the grain size distribution of the ash also indicates a phreatomagmatic origin of Split Butte tephra. In addition, the analysis reveals that the stratigraphically lowest tephra was deposited primarily by pyroclastic flow mechanisms while the upper tephra layers, comprising the bulk of the deposits, were deposited dominantly by airfall and pyroclastic surge. The lava lake and four en echelon basalt dikes were emplaced when phreatomagmatic activity at the vent ceased. Subsequent collapse caused a broad, shallow pit crater to form in the laval lake, and minor spattering occurred at one point along the pit crater scarp. Partial erosion of the tephra, deposition of aeolian sediments and encroachment of the Butte by later lava flows completed the development of Split Butte.  相似文献   

15.
The Golan Heights is a Plio-Pleistocene volcanic plateau. Cinder cones of Late Pleistocene age are very common in the eastern and northern Golan, while phreatomagmatic deposits are relatively rare and occur just in two structures — the maar of Birket Ram and the tuff ring of Mt. Avital. The complex of Mt. Avital includes two large cinder cones, a tuff ring with an elongated central depression and several basaltic flows, some of them breach the cinder cones. The (exposed) eruptive history of the complex includes (1) an early stage of basaltic lava flows, (2) strombolian activity and the buildup of the southern cinder cone, (3) a second stage of basaltic flows and the buildup of the northern cinder cone, and then a transition to (4) phreatomagmatic explosions. The phreatomagmatic deposits include surges, lapilli fallout deposits and coarse-grained lithic tuff breccias, which were found up to 200 m above the central depression. Basaltic and scoriaceous clasts are the main component of all deposits, while juvenile material is usually a minor component, almost absent in the lapilli deposits.It is suggested that the phreatomagmatic events in Mt. Avital were induced by the infiltration of water from a lake that existed in a nearby topographic low (Quneitra Valley). The lake was formed or significantly expanded at about 300 ka due to a lava flow that blocked the drainage of the valley to the west. The interlayering of tuff and scoria at the top of the northern cinder cone and the good preservation of a lava flow top breccia under the surges imply that the phreatomagmatic activity immediately followed and even coincided with the last stages of strombolian activity. It is suggested that the dry–wet transition was triggered by the effusion of the second stage lavas and the buildup of the northern cinder cone, which probably caused a reduction of pressure in the magmatic system and allowed the lake water an access to the magmatic system. The minimum age of the phreatomagmatic events is determined by a 54 ka Musterian site which lies directly on top of the tuff in the Quneitra Valley.  相似文献   

16.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

17.
The geological evolution of Merapi volcano, Central Java, Indonesia   总被引:1,自引:0,他引:1  
Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170?ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109?±?60?ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138?±?3?ka; 135?±?3?ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30?ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8?±?1.5?ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792?±?90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872?AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.  相似文献   

18.
 Pliocene–Recent volcanic outcrops at Seal Nunataks and Beethoven Peninsula (Antarctic Peninsula) are remnants of several monogenetic volcanoes formed by eruption of vesiculating basaltic magma into shallow water, in an englacial environment. The diversity of sedimentary and volcanic lithofacies present in the Antarctic Peninsula outcrops provides a clear illustration of the wide range of eruptive, transportational and depositional processes which are associated with englacial Surtseyan volcanism. Early-formed pillow lava and glassy breccia, representing a pillow volcano stage of construction, are draped by tephra erupted explosively during a tuff cone stage. The tephra was resedimented around the volcano flanks, mainly by coarse-grained sediment gravity flows. Fine-grained lithofacies are rare, and fine material probably bypassed the main volcanic edifice, accumulating in the surrounding englacial basin. The pattern of sedimentation records variations in eruption dynamics. Products of continuous-uprush eruptions are thought to be represented by stacks of poorly bedded gravelly sandstone, whereas better bedded, lithologically more diverse sequences accumulated during periods of quiescence or effusive activity. Evidence for volcano flank failure is common. In Seal Nunataks, subaerial lithofacies (mainly lavas and cinder cone deposits) are volumetrically minor and occur at a similar stratigraphical position to pillow lava, suggesting that glacial lake drainage may have occurred prior to or during deposition of the subaerial lithofacies. By contrast, voluminous subaerial effusion in Beethoven Peninsula led to the development of laterally extensive stratified glassy breccias representing progradation of hyaloclastite deltas. Received: 5 February 1996 / Accepted: 17 January 1997  相似文献   

19.
The ca. 8800 14C yrs BP Sulphur Creek lava flowed eastward 12 km from the Schriebers Meadow cinder cone into the Baker River valley, on the southeast flank of Mount Baker volcano. The compositionally-zoned basaltic to basaltic andesite lava entered, crossed and partially filled the 2-km-wide and > 100-m-deep early Holocene remnant of Glacial Lake Baker. The valley is now submerged beneath a reservoir, but seasonal drawdown permits study of the distal entrant lava. As a lava volume that may have been as much as 180 × 106 m3 entered the lake, the flow invaded the lacustrine sequence and extended to the opposite (east) side of the drowned Baker River valley. The volume and mobility of the lava can be attributed to a high flux rate, a prolonged eruption, or both. Basalt exposed below the former level of the remnant glacial lake is glassy or microcrystalline and sparsely vesicular, with pervasive hackly or blocky fractures. Together with pseudopillow fractures, these features reflect fracturing normal to penetrative thermal fronts and quenching by water. A fine-grained hyaloclastite facies was probably formed during quench fragmentation or isolated magma-water explosions. Although the structures closely resemble those developed in lava-ice contact environments, establishing the depositional environment for lava exhibiting similar intense fracturing should be confirmed by geologic evidence rather than by internal structure alone. The lava also invaded the lacustrine sequence, forming varieties of peperite, including sills that are conformable within the invaded strata and resemble volcaniclastic breccias. The peperite is generally fragmental and clast- or matrix-supported; fine-grained and rounded fluidal margins occur locally. The lava formed a thickened subaqueous plug that, as the lake drained in the mid-Holocene, was exposed to erosion. The Baker River then cut a 52-m-deep gorge through the shattered, highly erodible basalt.  相似文献   

20.
Mount Hasan is a double-peaked stratovolcano, located in Central Anatolia, Turkey. The magmas erupted from this multi-caldera complex range from basalt to rhyolite, but are dominated by andesite and dacite. Two terminal cones (Big Mt. Hasan and Small Mt. Hasan) culminate at 3253 m and 3069 m respectively. There are four evolutionary stages in the history of the volcanic complex (stage 1: Kecikalesi volcano, 13 Ma, stage 2: Palaeovolcano, 7 Ma, stage 3: Mesovolcano and stage 4: Neovolcano). The eruptive products consist of lava flows, lava domes, and pyroclastic rocks. The later include ignimbrites, phreatomagmatic intrusive breccias and nuées ardentes, sometimes reworked as lahars. The total volume is estimated to be 354 km3, the area extent 760 km2. Textural and mineralogical data suggest that both magma mixing and fractional crystallization were involved in the generation of the andesites and dacites. The magmas erupted from the central volcanoes show a transition with time from tholeite to calc-alkaline. Three generations of basaltic strombolian cones and lava flows were emplaced contemporaneously with the central volcanoes. The corresponding lavas are alkaline with a sodic tendency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号