首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The double-sunspot-cycle variation in terrestrial magnetic activity has been well known for about 30 years. In 1990 we examined and compared the low-solar-activity (LSA) part of two consecutive cycles and predicted from this database and from published results the existence of a double-sunspot-cycle variation in total electron content (TEC) of the ionosphere too. This is restricted to noontime when the semi-annual component is well developed. Since 1995 we have had enough data for the statistical processing for high-solar-activity (HSA) conditions of two successive solar cycles. The results confirm the LSA findings. The annual variation of TEC shows a change from an autumn maximum in cycle 21 to a spring maximum during the next solar cycle. Similar to the aa indices for geomagnetic activity the TEC data show a phase change in the 1-year component of the Fourier transform of the annual variation. Additionally we found the same behaviour in the F-layer peak electron density (Nmax) over four solar cycles. This indicates that there exists a double-sunspot-cycle variation in the F-layer ionization over Europe too. It is very likely coupled with the 22-year cycle in geomagnetic activity.  相似文献   

2.
本文对德意志民主共和国Juliusruh/Rügen电离层站(54°38′N,13°23′E),在1958年11月至1959年10月期間,日出前后一分钟測量一次的頻高图記录进行了分析。可以确认,E2层是一个純受太阳紫外輻射所控制的正常层次;該层每天开始电离时的太阳高度年变化是沒有規律的,而F层每天开始电离时的太阳高度却具有有規律的年变化。对这些統計分析結果进行理論研究,可以发現无論对F层而言,还是对E层而言,均不存在能够强烈吸收有关太阳紫外輻射的遮蔽层。决定F层每天开始电离时間的机制,是高层大气随季节不同而膨胀或收縮。在同样的太阳高度下,E1层和E2层的电子密度主要由运动項所决定,該項的大小和电离层飘移速度的东西分量有紧密的关系。此外,还估計了各个月份的E1层极大电子生成率,以及与E1层有关的太阳輻射的强度。对E2层的成因也作了一些估計。  相似文献   

3.
南极中山站电离层F2层临界频率变化特征   总被引:10,自引:2,他引:8       下载免费PDF全文
对南极中山站数字式电离层测高仪1995~2002年观测数据的月中值进行了统计分析,揭示了中山站电离层F2层临界频率(foF2)的主要特征:foF2存在明显的日变化和年变化;日变化存在“磁中午异常”现象;年变化中中午foF2在太阳活动低年不出现“冬季异常”,在太阳活动高年出现“半年异常”,即两分点高于两至点.本文结合中山站所处的地理位置,考虑太阳辐射电离、磁层的驱动和中性大气成分变化等因素,分析了这些现象的产生机理.  相似文献   

4.
北京地区地磁场Sq强度的季节变化和长期变化   总被引:1,自引:0,他引:1       下载免费PDF全文
吴迎燕 《地球物理学报》2018,61(9):3552-3559
本文利用北京地区的北京台(BJI)和北京十三陵台(BMT)的地磁场XYZ分量时均值数据,研究了1960年至2013年期间该地区地磁场Sq强度的季节变化和长期变化.结果表明:(1)BJI台和BMT台的地磁场Sq不仅变幅相近,而且具有一致的地方时变化、季节变化、太阳活动周变化和长期变化.(2)BJI台和BMT台Sq强度的逐月变化,其中ASqX)主要表现为春秋增强而冬夏减弱的季节变化.ASqY)呈现出夏季增强的半年变化.ASqZ)变化较为复杂.虽然在5月和9月出现减小,但是总体来看,其变化曲线也具有夏季增强的半年变化特征.同时,Sq强度与太阳活动F107指数之间存在明显的正相关关系,具有一致的11年太阳活动周变化和长期变化,反映出了Sq与太阳活动之间的密切关系.(3)BJI台和BMT台Sq强度差值dASq表明,在大多数年份,两个台站的Sq强度之差一般不超过±2 nT,同时没有明显的季节或年周期变化特征.在2000年和2001年太阳活动高年,dASq出现显著增强,最大可达12.3 nT.反映出了北京地区Sq场强度梯度的剧烈扰动与太阳活动之间的密切关系,意味着在太阳活动高年,Sq电离层发电机电流的局部结构可能发生了明显的改变.  相似文献   

5.
Semiannual and annual variations in the height of the ionospheric F2-peak   总被引:4,自引:0,他引:4  
Ionosonde data from sixteen stations are used to study the semiannual and annual variations in the height of the ionospheric F2-peak, hmF2. The semiannual variation, which peaks shortly after equinox, has an amplitude of about 8 km at an average level of solar activity (10.7 cm flux = 140 units), both at noon and midnight. The annual variation has an amplitude of about 11 km at northern midlatitudes, peaking in early summer; and is larger at southern stations, where it peaks in late summer. Both annual and semiannual amplitudes increase with increasing solar activity by day, but not at night. The semiannual variation in hmF2 is unrelated to the semiannual variation of the peak electron density NmF2, and is not reproduced by the CTIP and TIME-GCM computational models of the quiet-day thermosphere and ionosphere. The semiannual variation in hmF2 is approximately isobaric, in that its amplitude corresponds quite well to the semiannual variation in the height of fixed pressure-levels in the thermosphere, as represented by the MSIS empirical model. The annual variation is not isobaric. The annual mean of hmF2 increases with solar 10.7 cm flux, both by night and by day, on average by about 0.45 km/flux unit, rather smaller than the corresponding increase of height of constant pressure-levels in the MSIS model. The discrepancy may be due to solar-cycle variations of thermospheric winds. Although geomagnetic activity, which affects thermospheric density and temperature and therefore hmF2 also, is greatest at the equinoxes, this seems to account for less than half the semiannual variation of hmF2. The rest may be due to a semiannual variation of tidal and wave energy transmitted to the thermosphere from lower levels in the atmosphere.  相似文献   

6.
An empirical model of total electron content (TEC) for a low-latitude station, Palehua, has been developed using harmonic analysis of TEC data measured at this station during the period 1980–1990; the TEC data were obtained from Faraday rotation measurements of linearly polarised signals transmitted by geostationary satellites. The analysis reveals that monthly mean values of the daily mean and the first four harmonics vary in phase with solar activity and exhibit annual, semi-annual variations and equinoctial asymmetries. A set of 81 coefficients of zero and the first four orders were determined which were found to be sufficient to model the TEC. The model strongly depends on the sunspot number. The harmonic components derived from the 81 coefficients are scaled by this property. The modelled monthly mean TEC values agree quantitatively with the measured data, the maximum deviation being limited to ±15%. The model reasonably reproduces the features observed in the diurnal, seasonal and solar cycle variations of the measured data. The annual variation of observed TEC exhibits opposite equinoctial asymmetries at solar minimum and solar maximum. Also, the mean and first four harmonics show a saturation/decreasing effect when the sunspot number exceeds about 170. The observed features are discussed qualitatively.  相似文献   

7.
The 22-year variation in the frequency of aurora occurrence is found through an analysis of data of the Russian network of meteorological stations from 1837–1909. This variation is obtained in a form of asymmetry between even and odd solar cycles. We found that the nature of the 22-year variation depends on the latitude of the observation station. The annual number N of midlatitude auroras (geomagnetic latitudes Φ < 56°) for about three years at the end of the descending part of solar cycles is larger for the even cycles than for the odd. For high-latitude auroras (Φ ≥ 56°), the pattern is opposite: at the descending part of the solar cycle, N is larger in the odd cycles than in the even. For the high-latitude sector, asymmetry of the polar sun cycles (the period between two magnetic field reversals) is clearly observed: an increased N is observed during the whole odd polar cycle (which starts approximately at the maximum of the odd Schwabe cycle) as compared to the even cycle. Extrapolation of the modern picture of alternation of the sign of the global solar magnetic field back in time leads to the conclusion that the most geoeffective polar cycles in cycles 8–14 were those in which the polar magnetic field in the northen hemisphere was negative.  相似文献   

8.
The effect of the 11-year solar cycle on the response of planetary wavenumbers 1 and 2 at 10 and 30 hPa in winter to solar activity oscillations on the time scale of the Sun's rotation (27.2 day) is discussed in terms of statistical spectral analysis. The three oscillations studied are the 27.2 d (period of the Sun's rotation), 25.3 d (periodicity caused by modulation of the 27.2 d stratospheric response by annual atmospheric variation), and 54.4 d (doubled period of the solar rotation). A significant effect of the 11-year solar cycle is found for the 54.4 d periodicity in planetary wavenumber 1, and for the 27.2 and 25.3 d periodicities in planetary wavenumber 2. The effect of the 11-year solar cycle is expressed in the evident differences between the amplitudes of responses of planetary waves at maximum and minimum of the solar cycle: the amplitudes are much larger at high than at low solar activity. The 11-year modulation of planetary wave activity is most pronounced at mid-latitudes, mainly at 40–60°N, where the observed variability of planetary waves is large. The results obtained are in good agreement with results of the recent modeling study by Shindell et al. (Science 284 (1999) 305).  相似文献   

9.
Solar radiation-controlled microclimatic variation has been considered a major force on hillslope evolution via feedback among geomorphology, vegetation, soil and hydrology. In this study, we investigate the influence of solar radiation on hillslope dynamics on Santa Catalina Island, CA by comparing hillslope morphology and frequency–magnitude relationships of shallow landslides, rills and gullies on slopes receiving low annual solar radiation (LSR) and high annual solar radiation (HSR), which were found equivalent to north- and south-facing slopes, respectively. LSR slopes on Santa Catalina Island were found more vegetated compared to HSR slopes. LiDAR elevation-derived hillslope morphology showed LSR slopes steeper, rougher and more concave than HSR slopes. Similarly, frequency–magnitude plots showed larger relative frequency of high-magnitude shallow landslides, rills and gullies on LSR slopes, and low-magnitude shallow landslides, rills and gullies on HSR slopes. We argue that the morphology, mass movement and erosion characteristics of LSR and HSR slopes reflect the process–response of microclimate-controlled variation in type and density of vegetation cover, soil physical properties – including moisture, texture, structure, infiltration and erodibility – and surface and subsurface hydrology. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
利用IGS数据分析全球TEC的周年和半年变化特性   总被引:10,自引:1,他引:9       下载免费PDF全文
利用太阳活动高年(2000年)IGS提供的全球TEC数据,采用傅里叶展开的方法,分析了白天电离层TEC周年和半年变化的全球特征.结果显示:电离层TEC周年变化幅度在南北半球中高纬度地区较大、赤道和低纬地区很小.半年变化的幅度在“远极地区”(远离地球南北地磁极点的东北亚和南美地区) 比“近极地区”(靠近地球南北地磁极点的北美和澳大利亚)大得多.进一步的统计显示,全球大部分地区TEC在春秋月份出现最大值,北半球近极地区最大值在冬季出现.南半球的南美和澳大利亚部分地区,最大值出现在夏季.同样,采用傅里叶方法分析了中性大气模式MSIS90计算的全球大气原子分子浓度比值([O/N2])的数据,发现在南北半球中高纬度地区,中性成分[O/N2]周年变化幅度较大且有明显的冬季异常现象,依据Rishbeth等提出的理论,我们认为大气成分[O/N2]可能对TEC周年变化的产生有重要作用,并且也是TEC在近极地区出现冬季异常现象的主要原因.TEC半年变化的全球分布特征形成的原因较复杂,我们初步分析可能是由于中性成分[O/N2]、太阳天顶角控制的电离层光化学产生率变化共同作用而产生的.  相似文献   

11.
The solar cycle induces strong periodicity in processes underlying monthly rainfall totals. Seasonally varying parameters of rainfall distributions can be estimated with reasonable reliability from relatively few years of monthly data. The distribution of annual totals or maxima in terms of these varying parameters can thus be used to predict long term annual characteristics from quite short records. Specification of seasonal variation of parameters as a harmonic process simplifies the derivations. Ignoring seasonal variation in the rainfall process leads to incorrect estimates of long-term extreme rainfalls when using traditional methodology.  相似文献   

12.
The annual and semi-annual variations of the ionosphere are investigated in the present paper by using the daytime F2 layer peak electron concentration (NmF2) observed at a global ionosonde network with 104 stations. The main features are outlined as follows. (1) The annual variations are most pronounced at magnetic latitudes of 40–60° in both hemispheres, and usually manifest as winter anomalies; Below magnetic latitude of 40° as well as in the tropical region they are much weaker and winter anomalies that are not obvious. (2) The semi-annual variations, which are usually peak in March or April in most regions, are generally weak in the near-pole regions and strong in the far-pole regions of both hemispheres. (3) Compared with their annual components, the semi-annual variations in the tropical region are more significant.In order to explain the above results, we particularly analyze the global atomic/molecular ratio of [O/N2] at the F2 layer peak height by the MSIS90 model. The results show that the annual variation of [O/N2] is closely related with that of NmF2 prevailing in mid-latitudes and [O/N2] annual variation usually may lead to the winter anomalies of NmF2 occurring in the near-pole region. Moreover, NmF2 semi-annual variations appearing in the tropical region also have a close relationship with the variation of [O/N2]. On the other hand, the semi-annual variations of NmF2 in the far-pole region cannot be simply explained by that of [O/N2], but the variation of the solar zenith angle may also have a significant contribution.  相似文献   

13.
This study analyzes the TEC data during 1998–2007, observed by the AREQ (16.5°S, 71.5°W) GPS station to investigate the equatorial ionospheric variations under geomagnetic quiet-conditions. The diurnal TEC values generally have a maximum value between 1330 and 1500 LT and a minimum around 0500 LT. For the seasonal variation, the semi-annual variation apparently exists in the daytime TEC with two peaks in equinoctial months. In contrast, this semi-annual variation is not found in the nighttime. Furthermore, the results of the annual variation show that the correlation between the daytime TEC value and the solar activity factor is highly positive.  相似文献   

14.
In this paper, globally-averaged, thermospheric total mass density, derived from the orbits of ~5000 objects at 250, 400, and 550 km that were tracked from 1967 to 2006, has been used to quantitatively study the annual asymmetry of thermospheric mass density and its mechanism(s). The results show that thermospheric mass density had a significant annual asymmetry, which changed from year to year. The annual asymmetry at the three altitudes varied synchronously and its absolute value increased with altitudes. The results suggest that there is an annual asymmetry in solar EUV radiation that is caused by the difference in the Sun-Earth distance between the two solstices and the random variation of solar activity within a year. This change in radiation results in an annual change in the thermospheric temperature and thus the scale height of the neutral gas, and is the main cause of the annual asymmetry of thermospheric mass density. The annual asymmetry of mass density increases with altitude because of the accumulating effect of the changes in neutral temperature and scale height in the vertical direction.  相似文献   

15.
The long-term variation of the semiannual amplitude in the geomagnetic activity index aa is analyzed with the purpose of contributing to the understanding of solar variability, directly linked to geomagnetic variability. The time series of the semiannual oscillation amplitude, obtained through a wavelet analysis of the daily aa series, presents a long-term variation similar to that shown by solar and geomagnetic indices, like aa itself or Dst. However, the maximum in the semiannual amplitude series occurs around 1947, almost 10 years before it occurs in solar and geomagnetic indices time series. The phase of the semiannual oscillation fluctuates around the values predicted by the equinoctial and Russell–McPherron models, with a predominance of the equinoctial mechanism during the period of maximum semiannual amplitude. A possible source of changes in the equinoctial mechanism would be the secular variation of the Earth's dipole tilt. But, since it does not follow the semiannual amplitude trend, at first sight, it seems not to be responsible for the equinoctial predominance around 1947. The analysis of quiet and disturbed days separately indicates that only disturbed days present the semiannual annual amplitude maximum around 1947, so the 10 year time shift could be due to the mechanism responsible for the semiannual variation in geomagnetically active periods.  相似文献   

16.
The effect of the mutual orientation of the Poynting vector P of the electromagnetic energy density in the solar wind and the vector M of the Earth’s magnetic moment (taking into account its orbital and diurnal motions) on the geomagnetic activity has been examined for the first time using the measurements of the solar wind parameters on the Earth orbit in 1963–2005. The component P m of the vector P along the vector M is shown to have a pronounced annual variation with the extrema in November and May and a diurnal variation with the extrema at ∼6 and 18 UT. The phases of the variations are shown to be determined only by the geometric parameters and are independent of the sign of the sector structure of the interplanetary magnetic field. The experimental data on the planetary and high-latitude geomagnetic activity, which is a response to changes in the orientation of P relative to M, are presented. The power of the sources of the electromagnetic energy of the solar wind during strong geomagnetic disturbances is also estimated.  相似文献   

17.
The thermospheric semiannual density response to solar EUV heating   总被引:1,自引:0,他引:1  
The goal of this study was to characterize the thermospheric semiannual density response to solar heating during the last 35 years. Historical radar observational data have been processed with special orbit perturbations on 28 satellites with perigee heights ranging from 200 to 1100 km. Approximately 225,000 very accurate average daily density values at perigee have been obtained for all satellites using orbit energy dissipation rates. The semiannual variation has been found to be extremely variable from year to year. The magnitude of the maximum yearly difference, from the July minimum to the October maximum, is used to characterize the yearly semiannual variability. It has been found that this maximum difference can vary by as much as 100% from one year to the next. A high correlation has been found between this maximum difference and solar EUV data. The semiannual variation for each year has been characterized based on analyses of annual and semiannual cycles, using Fourier analysis, and equations have been developed to characterize this yearly variability. The use of new solar indices in the EUV and FUV wavelengths is shown to very accurately describe the semiannual July minimum phase shifting and the variations in the observed yearly semiannual amplitude.  相似文献   

18.
Evapotranspiration is an important component of hydrological cycle and a key input to hydrological models. Therefore, analysis of the spatiotemporal variation of potential evapotranspiration (PET) will help a better understanding of climate change and its effect on hydrological cycle and water resources. In this study, the Penman–Monteith method was used to estimate PET in the Wei River basin (WRB) in China based on daily data at 21 meteorological stations during 1959–2008. Spatial distribution and temporal trends of annual and seasonal PET were analysed by using the Spline interpolation method and the Mann–Kendall test method. Abrupt changes were detected by using the Pettitt test method. In order to explore the contribution of key meteorological variables to the variation of PET, the sensitivity coefficients method was employed in this study. The results showed that: (1) mean annual and seasonal PET in the WRB was generally decreasing from northeast to southwest. Summer and spring made the major contributions to the annual values; (2) annual and seasonal PET series in most part of the WRB exhibited increasing trends; (3) abrupt changes appeared in 1993 for annual and spring PET series for the entire basin, while summer value series was detected in the late 1970s. (4) Relative humidity was the most sensitive variable for PET in general for the WRB, followed by wind speed, air temperature and solar radiation. In the headwater and outlet of the WRB, relative humidity and air temperature were the most sensitive variables to PET, while relative humidity and wind speed were more influential in most part of the middle‐lower region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
基于国际全球定位服务中心(International GPS Service,IGS)提供的120°E 上空1999-2009年IONEX格式电离层电子浓度总含量(TEC)资料,分析赤道电离异常驼峰区TEC峰值Inc和Isc的年变化和季节变化以及与太阳、地磁活动的相关性.在11年时间尺度上,Inc和Isc与太阳辐射P指数的日均值有较好的相关性(r=0.90和r=0.84),而与地磁活动指数Dst、Kp和Ap日均值的相关性均不好.驼峰区TEC峰值Inc和Isc都是在北半球春、秋季出现极大值,而且冬季值大于夏季值,即Inc呈现"半年异常"和"冬季异常"现象,我们认为Inc和Isc相似的半年变化特征是与赤道上空电离层电急流相关的东向电场半年变化导致的.利用支持向量回归方法构建了EIA指数的预报模型,预报试验结果表明,该预报模型能较准确地描述Inc和Isc的变化,对南北驼峰TEC峰值预报的平均相对误差分别为22.96%和10.2%.基于支持向量机回归的预测方法为赤道电离异常特征指数预报的实现提供一条有效方法途径和好的应用前景.  相似文献   

20.
中国大陆地表温度年变基准场研究   总被引:10,自引:4,他引:6       下载免费PDF全文
非构造活动或非地震因素对地表热辐射场(地表温度)的影响,对于利用卫星热红外遥感探索地震前兆抑或断层活动有着重要的现实意义.地表温度中,典型非构造活动或非地震因素成份有:由太阳辐射引起的稳定年周期成份和与地形、纬度及能量平衡等因素有关的长期稳定成份,合称年变基准场.本文根据2000~2008年的MODIS/Terra地表温度产品,利用小波分析提取了中国大陆地表温度的年变基准场.在此基础上,结合热传导方程和数学物理方法,获得了年变基准场的(半)定量化表达式.进一步, 利用地表温度的长期稳定成份,获得了温度与海拔、纬度变化之间的定量关系:海拔每增加100 m,温度降低0.51±0.01 K; 纬度每增加1°,温度降低0.77±0.08 K.总之,年变基准场可为利用热红外辐射提取地壳活动信息提供一种参考背景, 温度与海拔、纬度变化之间的定量关系则可用来校正地形起伏和纬度变化对地表温度的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号