首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intermediate intrusion of low salinity water (LSW) into Sagami Bay was investigated on the basis of CTD data taken in Sagami Bay and off the Boso Peninsula in 1993–1994. In October 1993, water of low temperature (<7.0°C), low salinity (<34.20 psu) and high dissolved oxygen concentration (>3.5 ml I−1) intruded along the isopycnal surface of {ie29-1} at depths of 320–500 m from the Oshima East Channel to the center of the bay. On the other hand, the LSW was absent in Sagami Bay in the period of September–November 1994, though it was always found to the south off the Boso Peninsula. Salinity and dissolved oxygen distributions on relevant isopycnal surfaces and water characteristics of LSW cores revealed that the LSW intruded from the south off the Boso Peninsula to Sagami Bay through the Oshima East Channel. The LSW cores were distributed on the continental slope along 500–1000 m isobaths and its onshore-offshore scales were two to three times the internal deformation radius. Initial phosphate concentrations in the LSW revealed its origin in the northern seas. These facts suggest that the observed LSW is the submerged Oyashio Water and it flows southwestward along the continental slope as a density current in the rotating fluid. The variation of the LSW near the center of Sagami Bay is closely related to the Kuroshio flow path. The duration of LSW in Sagami Bay is 0.5 to 1.5 months.  相似文献   

2.
Generation and propagation of several-day period fluctuations along the southeast coast of Honshu, Japan, were investigated by analyzing sea level data and by using a numerical model. The sea level data obtained at twelve stations from Choshi to Omaezaki in fall in 1991, showed energy peaks at the 3–6 day period at the eastern stations in this coast. Time lags of the 3–6 day period fluctuations between station and station indicate westward propagation along the coast. However, the energy level of the 3–6 day period fluctuations suddenly decreased south of the Izu Peninsula. Numerical experiments using a two-layer model were performed to clarify the generation and propagation mechanism of the several-day period fluctuations by periodical wind in fall. The amplitude distributions of observed sea level were qualitatively explained by a coastal-trapped wave (CTW) in the numerical experiment. From the discussions on propagation of a free wave, CTW with the characteristics of a shelf wave generated by the wind along the northeast of the Boso Peninsula was separated into two types of wave at the southeast of the peninsula. One is an internal Kelvin wave with large interface displacement and the other is the shelf wave propagating over the northern part of the Izu Ridge. The sudden decrease in the surface displacement with the 3–6 day period observed at the western stations is considered to be due to the local effect of the wind and phase relation between the internal Kelvin wave and shelf wave.  相似文献   

3.
石强  蒲书箴  苏洁  尹杰 《海洋学报》1999,21(3):40-50
将两层约化重力原始流体动力方程耦合气候月平均风场,数值计算流场基本能够正确反映热带太平洋上层主流系和温跃层的空间分布和季节变化.在气候平均条件下,东太平洋125°W附近经向风应力可激发出高阶混合Rossby重力波.海洋高阶赤道Kelvin波流速模态可从西太平洋边界传播到东太平洋边界,而高阶赤道Kelvin波温跃层模态从西太平洋边界东传后,在中太平洋受到高阶混合Rossby重力波诱发的西传温跃层扰动的阻挡.  相似文献   

4.
Response of surface subtidal current to wind and outflow plume in the bay-shape estuary, which had been artificially made by the Samangeum reclamation dike with two sluices in the west coast of Korea, was examined using the ocean radar-derived current data obtained in the summer 2010. The southerly wind was dominant due to Asian summer monsoon and the outflow plume water was discharged by the gate operation of the Shinsi and Garyeok sluices separated by 11 km into the study area that are opened in a southwestward direction. The monthly-mean flow pattern consisted of the westward outflow currents around the two sluices, the along-dike currents between the two sluices and the northward currents in the outer bay. Based upon the complex correlations of subtidal current to wind and outflow jets we explained that the northward mean current in the outer bay be formed by both the southerly wind-driven current and the geostrophic current by mean pressure setup due to the Ekman transport and plume water accumulation in the inner bay, and the along-dike mean current may be induced by the southerly wind that generates on-dike currents in the central region of study area and leads to pressure setup toward the dike between the two sluices. Combination of outflow jets, wind and coastline configuration affects variations of subtidal surface current in the inner bay. Variability of subtidal current in the outer bay is dominated by wind variation. The southerly wind produced the northward current in the outer bay though the outflow plumes from the two sluices turned clockwise from the inner to the outer bay due to the geostrophic balance when the wind was calm. The wind factor was from 2% to 7% depending on the amount of freshwater outflow and wind speed. Occasionally, when plume water discharges were large and the southerly wind was stronger than 5 m/s, a large eddy with a closed loop current was produced off the Shinsi sluice.  相似文献   

5.
The Bay of Banten is an example of a shallow-water reef environment adjacent to an eroding delta system, where corals survive in turbid conditions. This study investigated the hydrodynamic controls over residual fluxes of terrigenous sediment in the bay. Observations of wind, waves, currents and suspended sediment concentrations in 1998 and 1999 revealed contrasting dynamic turbidity conditions influenced by tides, monsoon-driven flows and locally generated waves. The most sediment-rich suspensions originate from the shallow coastal margin of an inactive delta, where waves resuspend sediment and small creeks discharge freshwater and sediment. Because of coupling between monsoonal wind, throughflow in the bay and wave height, when wave-induced resuspension peaks seasonally during the northwest monsoon, an eastward throughflow prevents the nearshore reefs in the bay from being directly exposed to turbid water masses generated in the eroding delta. In inshore waters, tidal asymmetry and the spatial variation of current amplitudes cause residual sediment transport, largely depending on the availability of erodible sediment. In the center of the bay, where there is a patch reef complex, the tidal and subtidal currents are weak and therefore here there is a zone where sediment accumulates.  相似文献   

6.
A numerical experiment using a three dimensional level model was performed to clarify the mechanism generating a strong coastal current, Kyucho, induced by the passage of Typhoon 0406 around the tip of the Tango Peninsula, Japan in June 2004. Wind stress accompanied by Typhoon 0406 was applied to the model ocean with realistic bottom topography and stratification condition. The model well reproduced the characteristics of Kyucho observed by Kumaki et al. (2005), i.e., the strong alongshore current with maximum velocity of 53 cm s−1 and its propagation along the peninsula with propagation speed of about 0.6 m s−1 one half-day after the typhoon’s passage. Coastal-trapped waves (CTW) accompanied by downwelling were induced along the northwest coast of the peninsula by the alongshore wind stress. The energy density flux due to the CTW flowed eastward along the coast, and indicated scattering of the CTW around the eastern coast of the peninsula. In addition, significant near-inertial internal gravity waves were also caused in the offshore region from the west of the Noto Peninsula to the north of the Tango Peninsula by the typhoon’s passage. The energy flux density of the near-inertial fluctuations flowed southward off the Fukui coast, and part of the energy flux was trapped on the tip of the Tango Peninsula, flowing with the coast on its right. It was found that the strong current, Kyucho, at the northeastern tip of the Tango Peninsula was generated by superposition of the near-inertial internal gravity waves and subinertial CTW.  相似文献   

7.
Current measurements in the surface layer in Sagami and Suruga Bays showed existence of significant tidal currents which are considered to be mainly due to internal tides (Inaba, 1982; Ohwaki,ea al., 1991). In addition, the prevailing period of the tidal currents is semidiurnal in Sagami Bay, but diurnal in Suruga Bay. To explain this difference in the prevailing, periods, numerical experiments were carried out using a two layer model. The internal tides are generated on the Izu Ridge outside the two bays. The semidiurnal internal tide propagates into Sagami Bay having characteristics of an internal inertia-gravity wave, while it propagates into Suruga Bay having characteristics of either an internal inertia-gravity wave or an internal Kelvin wave. The diurnal internal tide behaves only as an internal Kelvin wave, because the diurnal period is longer than the inertia period. Thus, the diurnal internal tide generated on the Izu Ridge can be propagated into Suruga Bay, while it cannot propagate into the inner region of Sagami Bay, though it is trapped around Oshima Island, which is located at the mouth of Sagami Bay. The difference in the propagation characteristics between the semidiurnal and diurnal internal tides can give a mechanism to explain the difference in the prevailing periods of the internal tides between Sagami and Suruga Bays.  相似文献   

8.
As the Agulhas Current flows along the south-east coast of South Africa, a number of processes operate that bring cold, deep water up onto the narrow shelf. As a consequence, upwelling along the coastline is enhanced farther southward and downstream. This situation is investigated off Algoa Bay and along the south-east coast to Port Alfred, where measurements demonstrate that marked temperature variability occurs at the coastline, particularly in summer when temperature structures are more intense and easterly-component winds more common. There is no indication that upwelling is more prevalent at Port Alfred; increasing variability farther south is evident at Woody Cape/Cape Padrone, where the coastline veers westwards, forming the eastern boundary of Algoa Bay. Here it is found that, after a wind change to north-easterly, cold water is upwelled along the shoreline between 19 hours and 2.5 days later. Such upwelling progresses north-eastwards with the movement of the wind and weather systems, although colder water also moves south-westwards into Algoa Bay. Winds, currents, sea level and sea temperatures are highly correlated, with fluctuations in sea level measuring >50 cm being associated with coastal trapped waves (CTWs). Such barotropic wind-driven CTWs are frequently active during upwelling, although it is unclear whether there is any interaction between the two phenomena.  相似文献   

9.
A three-dimensional, multi-level model was used to study the energy dissipation of semidiurnal internal Kelvin waves due to their interaction with bottom topography. A simplified topography consisting of a channel with an additional shallow bay was used to clarify the wave’s scattering process. When the first mode semidiurnal internal wave given at an open boundary arrives at the bay mouth, higher-mode internal waves are generated at a step bottom of the bay mouth. As a result, the energy of the first mode internal Kelvin wave is effectively decayed. The decay rate of the internal Kelvin wave depends on both the width and length of the additional bay. The maximum decay rate was found when a resonance condition occurs the bay, that is, the bay length is equal to a quarter of wave length of the first mode internal wave on the shallow region. The decay rate in the wide bay cases is higher than that in a narrow case, due to a contribution from the scattering due to the Poincare wave that emanates from the corners of the bay head. The decay rate with the additional bay is 1.1–1.8 times that of the case without the additional bay. The decay rate due to the scattering process is found to be of the same order as that of the internal and bottom friction.  相似文献   

10.
大亚湾冬季水位的亚潮变化及其与南海的耦合   总被引:1,自引:0,他引:1  
李立 《台湾海峡》1998,17(4):383-390
本文应用常规时间序列谱分析方法和频域的多输入线性模型研究了冬季广东省大亚湾内水位的亚潮变化及其与大亚湾本地和外海远处各种强迫作用因素间的关系。结果表明:冬季在亚湾亚潮水位的能量主要集中在6.4d和3.6d频带,而在10.7d频带还有一较弱谱峰,同期广东沿海风的低频能量也主要集中于2-7d频段。造成冬季亚潮水位变化的原因包含了大亚湾本地气象条件的影响,但主要是远地因素作用于大亚湾的结果。外海影响一方  相似文献   

11.
Air-sea interaction, coastal circulation and primary production exhibit an annual cycle in the eastern Arabian Sea (AS). During June to September, strong southwesterly winds (4∼9 m s−1) promote sea surface cooling through surface heat loss and vertical mixing in the central AS and force the West India Coastal Current equatorward. Positive wind stress curl induced by the Findlater jet facilitates Ekman pumping in the northern AS, and equatorward-directed alongshore wind stress induces upwelling which lowers sea surface temperature by about 2.5°C (compared to the offshore value) along the southwestern shelf of India and enhances phytoplankton concentration by more than 70% as compared to that in the central AS. During winter monsoon, from November to March, dry and weak northeasterly winds (2–6 m s−1) from the Indo-China continent enhance convective cooling of the upper ocean and deepen the mixed layer by more than 80 m, thereby increasing the vertical flux of nutrients in the photic layer which promotes wintertime phytoplankton blooms in the northern AS. The primary production rate integrated for photic layer and surface chlorophyll-a estimated from the Coastal Zone Color Scanner, both averaged for the entire western India shelf, increases from winter to summer monsoon from 24 to 70 g C m−2month and from 9 to 24 mg m−2, respectively. Remotely-forced coastal Kelvin waves from the Bay of Bengal propagate into the coastal AS, which modulate circulation pattern along the western India shelf; these Kelvin waves in turn radiate Rossby waves which reverse the circulation in the Lakshadweep Sea semiannually. This review leads us to the conclusion that seasonal monsoon forcing and remotely forced waves modulate the circulation and primary production in the eastern AS. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Sea level elevations from near the mouth of San Francisco Bay are used to describe the low-frequency variability of forcing of the coastal ocean on the Bay at a variety of temporal scales. About 90% of subtidal fluctuations in sea level in San Francisco Bay are driven by the sea level variations in the coastal ocean that propagate into the Bay at the estuary mouth. We use the 100-year sea level record available at San Francisco to document a 1.9 mm/yr mean sea level rise, and to determine fluctuations related to El Nino-Southern Oscillation (ENSO) and other climatic events. At time scales greater than 1 year, ENSO dominates the sea level signal and can result in fluctuations in sea level of 10–15 cm. Alongshore wind stress data from central California are also analyzed to determine the impact of changes in coastal elevation at the mouth of San Francisco Bay within the synoptic wind band of 2–30 days. At least 40% of the subtidal fluctuations in sea level of the Bay are tied to the large-scale regional wind field affecting sea level variations in the coastal ocean, with little local, direct wind forcing of the Bay itself. The majority of the subtidal sea level fluctuations within the Bay that are not related to the coastal ocean sea level signal are forced by an east–west sea level gradient resulting from tidally induced variations in sea level at specific beat frequencies that are enhanced in the northern reach of the Bay. River discharge into the Bay through the Sacramento and San Joaquin River Delta also contributes to the east–west gradient, but to a lesser degree.  相似文献   

13.
Bottom currents in Nankai Trough and Sagami Trough   总被引:1,自引:0,他引:1  
Mean flows and velocity fluctuations are described from direct measurements of bottom currents made at three stations across Nankai Trough and two stations in Sagami Trough from May 1982 to May 1984. Aanderaa current meters were moored 7 m above the bottom. The observed mean flows indicate a counter-clockwise circulation in Nankai Trough with current speeds of 0.9–2.1 cm sec–1. The mean flows were larger on the slopes than on the flat bottom of the trough. The mean flows observed in Sagami Trough show an inflow into Sagami Bay which is considered to be a part of the Oyashio undercurrent from the north that flows along the eastern coast of Honshu. Velocity fluctuations with periods greater than 100 hr were less energetic in the troughs than those at a station west of Hachijo-jima Island. A highly energetic fluctuation with a period of 66.7 hr was observed on the northern slope of Sagami Trough in the velocity component parallel to the trough axis. A maximum current speed of 49 cm sec–1 was observed in Sagami Trough.This study was sponsored by the Ministry of Education, Science and Culture, Japan.  相似文献   

14.
Through analysis of monthly in situ hydrographic, tide gauge, altimetry and Kuroshio axis data for the years 1993–2001, the intraannual variability of sea level around Tosa Bay, Japan, with periods of 2–12 months is examined together with the intraannual variability of the Kuroshio south of the bay. It is shown that the intraannual variation of steric height on the slope in Tosa Bay can account for that of sea level at the coast around the bay as well as on this slope. It is found that the steric height (or sea level) variation on the slope in this bay is mainly controlled by the subsurface thermal variation correlated with the Kuroshio variation off Cape Ashizuri, the western edge of Tosa Bay. That is, when the nearshore Kuroshio velocity south of the cape is intensified [weakened] concurrently with the northward [southward] displacement of the current axis, temperature in an entire water column decreases [increases] simultaneously, mainly due to the upward [downward] displacement of isotherms, coincident with that of the main thermocline. It follows that the steric height (or sea level) decreases [increases].  相似文献   

15.
闽粤交界的大埕湾岸滩稳定分析及岸滩防护对策   总被引:1,自引:0,他引:1  
蔡锋  苏贤泽  高智勇  陈坚 《台湾海峡》2003,22(4):518-525
本文在实地调查的基础上,通过对大埕湾沿岸输沙率变化和岸线形态的分析,综合探讨了该海湾的泥沙来源,沿岸泥沙迁移特征,岸滩冲淤动态以及海岸的演变趋势.结果表明:该湾沿岸带形成了一股朝W向迁移的波生泥沙流,泥沙主要来自诏安湾和宫口湾;该湾海岸除东部沙坝泻湖岸段略有淤伸外,其余岸段均处于侵蚀状态:随着泥沙来源的减少,海岸内凹蚀退是今后岸线调整的自然过程.文中还对大埕湾岸滩的防侵蚀提出了相应的对策建议。  相似文献   

16.
The results of the tropical Pacific response to the sudden onset of the equatorial wind stress anomalies are discussed. The ocean model is a barotropic, non-linearized one that includes reduced-gravity and an equation for the temperature of the ocean mixed-layer. The experiments are based on a state of equilibrium reached through a long running under the action of annual mean wind stress. There are two kinds of westward wind intensity regions: the whole tropical Pacific and the western tropical Pacific, which are all between latitude 6. 8癗 and 6. 8癝.In these cases, the results show that the positive sea surface temperature (SST) anomalies in the Eastern Pacific and the negative SST anomalies in the Western Pacific are produced, and the positive SST anomalies propagate eastward, just as those observed during the actual El Nino phenomena. The propagations of the Kelvin waves and Rossby waves in the ocean are discussed.Another experiment is also carried out in simulating the process of the decay of El Ni  相似文献   

17.
A study was conducted to understand the mechanisms driving observed subtidal variability in the stratification of Saldanha Bay, located in the southern Benguela system. It was found that the 6–8 day period variability in bay stratification was caused by the inflow and outflow of cold upwelled water driven by changing baroclinic pressure gradients between the coastal and bay domains. The direction and magnitude of the pressure gradients were governed by coastal upwelling activity and a lag in the response of the bay to changes in density structure in the coastal ocean. When the pressure gradients were bayward and cold water was being driven into the bay the cycle was termed to be in an ‘ active phase ’ and the reverse was termed the ‘ relaxation phase ’. The upwelling-favourable equatorward wind stress impacted the bay stratification in two ways: on the regional scale, wind drives upwelling and governs the inflow–outflow of cold upwelled bottom water, which strengthens stratification; conversely, on the local bay scale, wind drives vertical mixing, which weakens stratification. A four-phase model is used to describe the observed variability in stratification in the bay. The associated density-driven exchange flows are capable of flushing the bay in 6–8 days, about one-third of the time for tidal exchange alone (c. 25 days). These inflows of cold bottom water are ecologically critical as they supply nutrients to the bay and thus impose a control on new production within the bay environment. Further ecological implications of this bay–ocean exchange include export of phytoplankton new production to the coast, limitation of the risk of harmful algal blooms (HABs) and the division of the system into two distinct ecosystems (bay and lagoon).  相似文献   

18.
Dynamical properties of short-period temperature fluctuations are studied. Water temperature was measured continuously at several depths at the following stations: at 38°29.5′N, 141°35.8′E (100 m depth) on the continental shelf off Miyagi Prefecture in the summer of 1967, at 35°01.8′N, 139°0.8.5′E (100 m depth) in Sagami Bay in the summer of 1968, and at 32°32.2′N, 129°53.7′E (74 m depth) in Tachibana Bay in the summer of 1970. These measurements were made with a thermistor array laid down from the R. V.Tanseimaru (Ocean Research Institute, University of Tokyo) which was fixed with bow and stern anchors. Significant temperature fluctuations found at the first and the third stations are thought to be due to first mode internal waves having amplitude 3 to 5 m and period 5 to 20 minutes. The wave length of the waves is estimated to be 25 m to 400 m from the observed density structure. At the second station, we found second-mode internal waves. The period, amplitude and wave length of the waves are about 30 minutes, 1.3 m and 600 m, respectively. In all cases, the spectral density of the temperature fluctuations decreases with increase in frequency. However, the decrease obey neither the ?3 power law nor the ?5/3 power law. Coherences in the temperature fluctuations between two depths of measurement in the seasonal thermocline are significantly high in the range of frequencies lower than the local Brunt-Väisälä frequency, but are low in the higher frequency range. At the first and the third stations, the difference in the level of coherences between the lower frequencies and the higher frequencies are large. Phase differences between two depths in the thermocline are small in the lower frequency range. This suggests that the first-mode internal waves are predominant over higher-mode internal waves and over other disturbances.  相似文献   

19.
In order to examine seasonal variation in a coastal current and the dynamics of the current, we carried out a mooring current measurement near the coast on the eastern shelf of Hidaka Bay from December 2002 to July 2003. There seemed to be two current regimes during the observed period; one a southeastward current from December to March, and the other a northwestward current after April. Arrested topographic wave dynamics was used to understand along-shore steady momentum balance at the mooring site. It was found that the friction term was negligible during the former regime, that is, the wind stress term roughly counterbalanced the pressure gradient term. On the other hand, the contribution of each term to the momentum balance was sensitive to the resistance coefficient value during the latter regime. A numerical study showed that wind forcing alone could not reproduce the observed current velocity and momentum balance during the former regime. One possible interpretation of the observed results is superposition of the arrested topographic waves forced by the along-shore wind stress and downstream extension of the Coastal Oyashio. Numerical experiments using combined forcing of the wind stress and an inflow associated with the Coastal Oyashio supported the expected dynamics.  相似文献   

20.
Subinertial and seasonal variations in the Soya Warm Current (SWC) are investigated using data obtained by high frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly captured the seasonal variations in the surface current fields of the SWC. Almost the same seasonal cycle was repeated in the period from August 2003 to March 2007, although interannual variations were also discernible. In addition to the annual and interannual variations, the SWC exhibited subinertial variations with a period of 5–20 days. The surface transport by the SWC was significantly correlated with the sea level difference between the Sea of Japan and Sea of Okhotsk for both the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. The generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC were significantly correlated with the meridional wind stress component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind stress variations by one or two days. Sea level difference through the strait caused by wind-generated coastally trapped waves (CTWs) along the east coast of Sakhalin and west coast of Hokkaido is considered to be a possible mechanism causing the subinertial variations in the SWC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号